1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
from __future__ import unicode_literals |
3
|
|
|
from processors.utils import LabelManager |
4
|
|
|
from collections import Counter |
5
|
|
|
import networkx as nx |
6
|
|
|
import collections |
7
|
|
|
import re |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
class DependencyUtils(object): |
11
|
|
|
""" |
12
|
|
|
A set of utilities for analyzing syntactic dependency graphs. |
13
|
|
|
|
14
|
|
|
Methods |
15
|
|
|
------- |
16
|
|
|
build_networkx_graph(roots, edges, name) |
17
|
|
|
Constructs a networkx.Graph |
18
|
|
|
|
19
|
|
|
shortest_path(g, start, end) |
20
|
|
|
Finds the shortest path in a `networkx.Graph` between any element in a list of start nodes and any element in a list of end nodes. |
21
|
|
|
|
22
|
|
|
retrieve_edges(dep_graph, path) |
23
|
|
|
Converts output of `shortest_path` into a list of triples that include the grammatical relation (and direction) for each node-node "hop" in the syntactic dependency graph. |
24
|
|
|
|
25
|
|
|
simplify_tag(tag) |
26
|
|
|
Maps part of speech (PoS) tag to a subset of PoS tags to better consolidate categorical labels. |
27
|
|
|
|
28
|
|
|
lexicalize_path(sentence, path, words=False, lemmas=False, tags=False, simple_tags=False, entities=False, limit_to=None) |
29
|
|
|
Lexicalizes path in syntactic dependency graph using Odin-style token constraints. |
30
|
|
|
|
31
|
|
|
pagerank(networkx_graph, alpha=0.85, personalization=None, max_iter=1000, tol=1e-06, nstart=None, weight='weight', dangling=None) |
32
|
|
|
Measures node activity in a `networkx.Graph` using a thin wrapper around `networkx` implementation of pagerank algorithm (see `networkx.algorithms.link_analysis.pagerank`). Use with `processors.ds.DirectedGraph.graph`. |
33
|
|
|
""" |
34
|
|
|
|
35
|
|
|
UNKNOWN = LabelManager.UNKNOWN |
36
|
|
|
|
37
|
|
|
@staticmethod |
38
|
|
|
def build_networkx_graph(roots, edges, name, reverse=False): |
39
|
|
|
""" |
40
|
|
|
Converts a `processors` dependency graph into a networkx graph |
41
|
|
|
""" |
42
|
|
|
G = nx.DiGraph() |
43
|
|
|
graph_name = name |
44
|
|
|
# store roots |
45
|
|
|
G.graph["roots"] = roots |
46
|
|
|
# reversing the graph is useful if you want to run pagerank to highlight predicate and argument nodes |
47
|
|
|
if reverse: |
48
|
|
|
edges = [(edge.destination, edge.source, {"relation": edge.relation}) for edge in edges] |
49
|
|
|
else: |
50
|
|
|
edges = [(edge.source, edge.destination, {"relation": edge.relation}) for edge in edges] |
51
|
|
|
G.add_edges_from(edges) |
52
|
|
|
return G |
53
|
|
|
|
54
|
|
|
@staticmethod |
55
|
|
|
def shortest_paths(g, start, end): |
56
|
|
|
""" |
57
|
|
|
Find the shortest paths between two nodes. |
58
|
|
|
Note that if `g` is a directed graph, a path will not be found. |
59
|
|
|
|
60
|
|
|
Parameters |
61
|
|
|
---------- |
62
|
|
|
g : a networkx graph |
63
|
|
|
The networkx graph to explore. |
64
|
|
|
|
65
|
|
|
start : int or [int] |
66
|
|
|
A single token index or list of token indices serving as the start of the graph traversal. |
67
|
|
|
|
68
|
|
|
end : int or [int] |
69
|
|
|
A single token index or list of token indices serving as the end of the graph traversal. |
70
|
|
|
|
71
|
|
|
Returns |
72
|
|
|
------- |
73
|
|
|
None or [[(int, int)]] |
74
|
|
|
None if no paths are found. Otherwise, a list of lists of (source index, target index) tuples representing path segments. |
75
|
|
|
""" |
76
|
|
|
# converts single int to [int] |
77
|
|
|
start = start if isinstance(start, collections.Iterable) else [start] |
78
|
|
|
end = end if isinstance(end, collections.Iterable) else [end] |
79
|
|
|
# node list -> edges (i.e., (source, dest) pairs) |
80
|
|
|
def path_to_edges(g, path): |
81
|
|
|
return [(path[i], path[i+1]) for i in range(len(path) - 1)] |
82
|
|
|
|
83
|
|
|
shortest_paths = [] |
84
|
|
|
# pathfinding b/w pairs of nodes |
85
|
|
|
for s in start: |
86
|
|
|
for e in end: |
87
|
|
|
try: |
88
|
|
|
paths = nx.algorithms.all_shortest_paths(g, s, e) |
89
|
|
|
for path in paths: |
90
|
|
|
shortest_paths.append(path_to_edges(g, path)) |
91
|
|
|
# no path found... |
92
|
|
|
except: |
93
|
|
|
#print("No path found between '{}' and '{}'".format(s, e)) |
94
|
|
|
continue |
95
|
|
|
return None if len(shortest_paths) == 0 else shortest_paths |
96
|
|
|
|
97
|
|
|
@staticmethod |
98
|
|
|
def shortest_path(g, start, end, scoring_func=lambda path: -len(path)): |
|
|
|
|
99
|
|
|
""" |
100
|
|
|
Find the shortest path between two nodes. |
101
|
|
|
Note that pathfinding is sensitive to direction. If you want to ignore direction, convert your networkx.Digraph to a networkx.Graph. |
102
|
|
|
|
103
|
|
|
Parameters |
104
|
|
|
---------- |
105
|
|
|
g : a networkx graph |
106
|
|
|
The networkx graph to explore. |
107
|
|
|
|
108
|
|
|
start : int or [int] |
109
|
|
|
A single token index or list of token indices serving as the start of the graph traversal. |
110
|
|
|
|
111
|
|
|
end : int or [int] |
112
|
|
|
A single token index or list of token indices serving as the end of the graph traversal. |
113
|
|
|
|
114
|
|
|
scoring_func : function |
115
|
|
|
A function that scores each path in a list of paths. Each path has the form [(source index, relation, destination index)]. |
116
|
|
|
The path with the maximum score will be returned. |
117
|
|
|
|
118
|
|
|
Returns |
119
|
|
|
------- |
120
|
|
|
None or [(int, int)] |
121
|
|
|
None if no paths are found. Otherwise, a list of (source index, target index) tuples representing path segments. |
122
|
|
|
""" |
123
|
|
|
paths = DependencyUtils.shortest_paths(g, start, end) |
124
|
|
|
return None if len(shortest_paths) == 0 else max(paths, key=scoring_func) |
|
|
|
|
125
|
|
|
|
126
|
|
|
@staticmethod |
127
|
|
|
def directed_relation(source_idx, destination_idx, relation, deps): |
128
|
|
|
""" |
129
|
|
|
Converts relation to a directed relation (incoming v. outgoing) |
130
|
|
|
if such a relation links `source_idx` and `destination_idx` in `deps`. |
131
|
|
|
|
132
|
|
|
Parameters |
133
|
|
|
---------- |
134
|
|
|
source_idx : int |
135
|
|
|
The token index for the source node |
136
|
|
|
|
137
|
|
|
destination_idx : int |
138
|
|
|
The token index for the destination node |
139
|
|
|
|
140
|
|
|
relation : str |
141
|
|
|
The undirected relation (i.e., the grammatical/semantic relation that connects the two nodes) |
142
|
|
|
|
143
|
|
|
deps : processors.ds.DirectedGraph |
144
|
|
|
The directed graph to be referenced |
145
|
|
|
|
146
|
|
|
Returns |
147
|
|
|
------- |
148
|
|
|
str or None |
149
|
|
|
The directed relation that connects the `source_idx` to the `destination_idx` in `deps`. |
150
|
|
|
""" |
151
|
|
|
matches = [">{}".format(rel) for d, rel in deps.outgoing[source_idx] if d == destination_idx and rel == relation] + \ |
152
|
|
|
["<{}".format(rel) for d, rel in deps.incoming[source_idx] if d == destination_idx and rel == relation] |
153
|
|
|
return None if len(matches) == 0 else matches[0] |
154
|
|
|
|
155
|
|
|
@staticmethod |
156
|
|
|
def retrieve_edges(dep_graph, path): |
157
|
|
|
""" |
158
|
|
|
Converts output of `DependencyUtils.shortest_path` |
159
|
|
|
into a list of triples that include the grammatical relation (and direction) |
160
|
|
|
for each node-node "hop" in the syntactic dependency graph. |
161
|
|
|
|
162
|
|
|
Parameters |
163
|
|
|
---------- |
164
|
|
|
dep_graph : processors.ds.DirectedGraph |
165
|
|
|
The `DirectedGraph` used to retrieve the grammatical relations for each edge in the `path`. |
166
|
|
|
|
167
|
|
|
path : [(int, int)] |
168
|
|
|
A list of tuples representing the shortest path from A to B in `dep_graph`. |
169
|
|
|
|
170
|
|
|
Returns |
171
|
|
|
------- |
172
|
|
|
[(int, str, int)] |
173
|
|
|
the shortest path (`path`) enhanced with the directed grammatical relations |
174
|
|
|
(ex. `>nsubj` for `predicate` to `subject` vs. `<nsubj` for `subject` to `predicate`). |
175
|
|
|
""" |
176
|
|
|
|
177
|
|
|
shortest_path = [] |
178
|
|
|
for (s, d) in path: |
179
|
|
|
# build dictionaries from incoming/outgoing |
180
|
|
|
outgoing = {dest_idx:">{}".format(rel) for (dest_idx, rel) in dep_graph.outgoing[s]} |
181
|
|
|
incoming = {source_idx:"<{}".format(rel) for (source_idx, rel) in dep_graph.incoming[s]} |
182
|
|
|
relation = outgoing[d] if d in outgoing else incoming[d] |
183
|
|
|
shortest_path.append((s, relation, d)) |
184
|
|
|
return shortest_path |
185
|
|
|
|
186
|
|
|
@staticmethod |
187
|
|
|
def simplify_tag(tag): |
188
|
|
|
""" |
189
|
|
|
Maps part of speech (PoS) tag to a subset of PoS tags to better consolidate categorical labels. |
190
|
|
|
|
191
|
|
|
Parameters |
192
|
|
|
---------- |
193
|
|
|
tag : str |
194
|
|
|
The Penn-style PoS tag to be mapped to a simplified form. |
195
|
|
|
|
196
|
|
|
Returns |
197
|
|
|
------- |
198
|
|
|
str |
199
|
|
|
A simplified form of `tag`. In some cases, the returned form may be identical to `tag`. |
200
|
|
|
""" |
201
|
|
|
simple_tag = "\"{}\"".format(tag) |
202
|
|
|
# collapse plurals |
203
|
|
|
if tag.startswith("NNP"): |
204
|
|
|
simple_tag = "/^NNP/" |
205
|
|
|
# collapse plurals |
206
|
|
|
elif tag.startswith("NN"): |
207
|
|
|
simple_tag = "/^N/" |
208
|
|
|
elif tag.startswith("VB"): |
209
|
|
|
simple_tag = "/^V/" |
210
|
|
|
# collapse comparative, superlatives, etc. |
211
|
|
|
elif tag.startswith("JJ"): |
212
|
|
|
simple_tag = "/^J/" |
213
|
|
|
# collapse comparative, superlatives, etc. |
214
|
|
|
elif tag.startswith("RB"): |
215
|
|
|
simple_tag = "/^RB/" |
216
|
|
|
# collapse possessive/non-possesive pronouns |
217
|
|
|
elif tag.startswith("PRP"): |
218
|
|
|
simple_tag = "/^PRP/" |
219
|
|
|
# treat WH determiners as DT |
220
|
|
|
elif tag == "WDT": |
221
|
|
|
simple_tag = "/DT$/" |
222
|
|
|
# treat DT the same as WDT |
223
|
|
|
elif tag == "DT": |
224
|
|
|
simple_tag = "/DT$/" |
225
|
|
|
return simple_tag |
226
|
|
|
|
227
|
|
|
@staticmethod |
228
|
|
|
def lexicalize_path(sentence, |
229
|
|
|
path, |
230
|
|
|
words=False, |
231
|
|
|
lemmas=False, |
232
|
|
|
tags=False, |
233
|
|
|
simple_tags=False, |
234
|
|
|
entities=False, |
235
|
|
|
limit_to=None, |
236
|
|
|
): |
237
|
|
|
""" |
238
|
|
|
Lexicalizes path in syntactic dependency graph using Odin-style token constraints. Operates on output of `DependencyUtils.retrieve_edges` |
239
|
|
|
|
240
|
|
|
Parameters |
241
|
|
|
---------- |
242
|
|
|
sentence : processors.ds.Sentence |
243
|
|
|
The `Sentence` from which the `path` was found. Used to lexicalize the `path`. |
244
|
|
|
|
245
|
|
|
path : list |
246
|
|
|
A list of (source index, relation, target index) triples. |
247
|
|
|
|
248
|
|
|
words : bool |
249
|
|
|
Whether or not to encode nodes in the `path` with a token constraint constructed from `Sentence.words` |
250
|
|
|
|
251
|
|
|
lemmas : bool |
252
|
|
|
Whether or not to encode nodes in the `path` with a token constraint constructed from `Sentence.lemmas` |
253
|
|
|
|
254
|
|
|
tags : bool |
255
|
|
|
Whether or not to encode nodes in the `path` with a token constraint constructed from `Sentence.tags` |
256
|
|
|
|
257
|
|
|
simple_tags : bool |
258
|
|
|
Whether or not to encode nodes in the `path` with a token constraint constructed from `DependencyUtils.simplify_tag` applied to `Sentence.tags` |
259
|
|
|
|
260
|
|
|
entities : bool |
261
|
|
|
Whether or not to encode nodes in the `path` with a token constraint constructed from `Sentence._entities` |
262
|
|
|
|
263
|
|
|
limit_to : [int] or None |
264
|
|
|
Selectively apply lexicalization only to the this list of token indices. None means apply the specified lexicalization to all token indices in the path. |
265
|
|
|
Returns |
266
|
|
|
------- |
267
|
|
|
[str] |
268
|
|
|
The lexicalized form of `path`, encoded according to the specified parameters. |
269
|
|
|
""" |
270
|
|
|
UNKNOWN = LabelManager.UNKNOWN |
271
|
|
|
lexicalized_path = [] |
272
|
|
|
relations = [] |
273
|
|
|
nodes = [] |
274
|
|
|
# gather edges and nodes |
275
|
|
|
for edge in path: |
276
|
|
|
relations.append(edge[1]) |
277
|
|
|
nodes.append(edge[0]) |
278
|
|
|
nodes.append(path[-1][-1]) |
279
|
|
|
|
280
|
|
|
for (i, node) in enumerate(nodes): |
281
|
|
|
if not limit_to or node in limit_to: |
282
|
|
|
# build token constraints |
283
|
|
|
token_constraints = [] |
284
|
|
|
# words |
285
|
|
|
if words: |
286
|
|
|
token_constraints.append("word=\"{}\"".format(sentence.words[node])) |
287
|
|
|
# PoS tags |
288
|
|
|
if tags and sentence.tags[node] != UNKNOWN: |
289
|
|
|
token_constraints.append("tag=\"{}\"".format(sentence.tags[node])) |
290
|
|
|
# lemmas |
291
|
|
|
if lemmas and sentence.lemmas[node] != UNKNOWN: |
292
|
|
|
token_constraints.append("lemma=\"{}\"".format(sentence.lemmas[node])) |
293
|
|
|
# NE labels |
294
|
|
|
if entities and sentence._entities[node] != UNKNOWN: |
295
|
|
|
token_constraints.append("entity=\"{}\"".format(sentence.entity[node])) |
296
|
|
|
# simple tags |
297
|
|
|
if simple_tags and sentence.tags[node] != UNKNOWN: |
298
|
|
|
token_constraints.append("tag={}".format(DependencyUtils.simplify_tag(sentence.tags[node]))) |
299
|
|
|
# build node pattern |
300
|
|
|
if len(token_constraints) > 0: |
301
|
|
|
node_pattern = "[{}]".format(" & ".join(token_constraints)) |
302
|
|
|
# store lexicalized representation of node |
303
|
|
|
lexicalized_path.append(node_pattern) |
304
|
|
|
# append next edge |
305
|
|
|
if i < len(relations): |
306
|
|
|
lexicalized_path.append(relations[i]) |
307
|
|
|
return lexicalized_path |
308
|
|
|
|
309
|
|
|
@staticmethod |
310
|
|
|
def pagerank(networkx_graph, |
311
|
|
|
alpha=0.85, |
312
|
|
|
personalization=None, |
313
|
|
|
max_iter=1000, |
314
|
|
|
tol=1e-06, |
315
|
|
|
nstart=None, |
316
|
|
|
weight='weight', |
317
|
|
|
dangling=None): |
318
|
|
|
""" |
319
|
|
|
Measures node activity in a `networkx.Graph` using a thin wrapper around `networkx` implementation of pagerank algorithm (see `networkx.algorithms.link_analysis.pagerank`). Use with `processors.ds.DirectedGraph.graph`. |
320
|
|
|
|
321
|
|
|
Parameters |
322
|
|
|
---------- |
323
|
|
|
networkx_graph : networkx.Graph |
324
|
|
|
Corresponds to `G` parameter of `networkx.algorithms.link_analysis.pagerank`. |
325
|
|
|
|
326
|
|
|
See Also |
327
|
|
|
-------- |
328
|
|
|
Method parameters correspond to those of [`networkx.algorithms.link_analysis.pagerank`](https://networkx.github.io/documentation/development/reference/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html#networkx.algorithms.link_analysis.pagerank_alg.pagerank) |
329
|
|
|
|
330
|
|
|
Returns |
331
|
|
|
------- |
332
|
|
|
collections.Counter |
333
|
|
|
A collections.Counter of node -> pagerank weights |
334
|
|
|
""" |
335
|
|
|
pg_res = nx.algorithms.link_analysis.pagerank(G=networkx_graph, alpha=alpha, personalization=personalization, max_iter=max_iter, tol=tol, nstart=nstart, weight=weight, dangling=dangling) |
336
|
|
|
return Counter(pg_res) |
337
|
|
|
|
338
|
|
|
|
339
|
|
|
|
340
|
|
|
class HeadFinder(object): |
341
|
|
|
|
342
|
|
|
import processors |
343
|
|
|
|
344
|
|
|
@staticmethod |
345
|
|
|
def semantic_head(sentence, graph_name="stanford-collapsed", valid_tags={r"^N", "VBG"}, valid_indices=None): |
346
|
|
|
""" |
347
|
|
|
Finds the token with the highest pagerank score that meets the filtering criteria. |
348
|
|
|
|
349
|
|
|
Parameters |
350
|
|
|
---------- |
351
|
|
|
sentence : processors.ds.Sentence |
352
|
|
|
The Sentence to be analyzed. |
353
|
|
|
|
354
|
|
|
graph_name : str |
355
|
|
|
The name of the graph upon which to run the algorithm. Default is "stanford-collapsed". |
356
|
|
|
|
357
|
|
|
valid_tags : set or None |
358
|
|
|
An optional set of str or regexes representing valid tokens. |
359
|
|
|
|
360
|
|
|
valid_indices : list or None |
361
|
|
|
A optional list of int representing the indices that should be considered. |
362
|
|
|
|
363
|
|
|
Returns |
364
|
|
|
------- |
365
|
|
|
int or None |
366
|
|
|
The index of the highest scoring token meeting the criteria. |
367
|
|
|
""" |
368
|
|
|
|
369
|
|
|
from processors.ds import Sentence as Sent |
370
|
|
|
|
371
|
|
|
def is_valid_tag(tag): |
372
|
|
|
return True if not valid_tags else any(re.match(tag_pattern, tag) for tag_pattern in valid_tags) |
373
|
|
|
|
374
|
|
|
# ensure we're dealing with a Sentence |
375
|
|
|
if not isinstance(sentence, Sent): return None |
376
|
|
|
|
377
|
|
|
valid_indices = valid_indices if valid_indices else list(range(sentence.length)) |
378
|
|
|
|
379
|
|
|
# corner case: if the sentence is a single token, pagerank doesn't apply. |
380
|
|
|
# check tag and index |
381
|
|
|
if sentence.length == 1: |
382
|
|
|
return 0 if is_valid_tag(sentence.tags[0]) and 0 in valid_indices else None |
383
|
|
|
|
384
|
|
|
dependencies = sentence.graphs.get(graph_name, None) |
385
|
|
|
|
386
|
|
|
if not dependencies: return None |
387
|
|
|
|
388
|
|
|
scored_toks = dependencies.pagerank().most_common() |
389
|
|
|
|
390
|
|
|
remaining = [i for (i, score) in scored_toks \ |
391
|
|
|
if i in valid_indices and |
392
|
|
|
is_valid_tag(sentence.tags[i])] |
393
|
|
|
# take token with the highest pagerank score |
394
|
|
|
return remaining[0] if len(remaining) > 0 else None |
395
|
|
|
|