1
|
|
|
"""Helpers to normalize inputs and text.""" |
2
|
|
|
|
3
|
|
|
import re |
4
|
|
|
import string |
5
|
|
|
from collections import defaultdict |
6
|
|
|
|
7
|
|
|
from nltk.corpus import stopwords |
|
|
|
|
8
|
|
|
|
9
|
|
|
from pattern.vector import PORTER |
|
|
|
|
10
|
|
|
from pattern.vector import stem |
|
|
|
|
11
|
|
|
|
12
|
|
|
import settings as namebot_settings |
|
|
|
|
13
|
|
|
|
14
|
|
|
|
15
|
|
|
def flatten(lst): |
16
|
|
|
"""Flatten a list with arbitrary levels of nesting. |
17
|
|
|
|
18
|
|
|
CREDIT: http://stackoverflow.com/questions/10823877/ |
19
|
|
|
what-is-the-fastest-way-to-flatten-arbitrarily-nested-lists-in-python |
20
|
|
|
Changes made include: |
21
|
|
|
1. Adding error handling, |
22
|
|
|
2. Renaming variables, |
23
|
|
|
3. Using `any` instead of `or`. |
24
|
|
|
See http://creativecommons.org/licenses/by-sa/3.0/ for specific details. |
25
|
|
|
|
26
|
|
|
Args: |
27
|
|
|
lst (list): The nested list. |
28
|
|
|
|
29
|
|
|
Returns: |
30
|
|
|
(generator): The new flattened list of words. |
31
|
|
|
""" |
32
|
|
|
if not isinstance(lst, list): |
33
|
|
|
yield [] |
34
|
|
|
for i in lst: |
35
|
|
|
if any([isinstance(i, list), isinstance(i, tuple)]): |
36
|
|
|
for j in flatten(i): |
37
|
|
|
yield j |
38
|
|
|
else: |
39
|
|
|
yield i |
40
|
|
|
|
41
|
|
|
|
42
|
|
|
def remove_odd_sounding_words(words): |
43
|
|
|
"""Remove random odd sounding word combinations via regular expressions. |
44
|
|
|
|
45
|
|
|
Args: |
46
|
|
|
words (list): The list of words |
47
|
|
|
|
48
|
|
|
Returns: |
49
|
|
|
list: An updated word list with words cleaned. |
50
|
|
|
""" |
51
|
|
|
odd_regexes = [ |
52
|
|
|
re.compile(r'^a|e|i|o|u|y{3,6}'), |
53
|
|
|
# bk, ck, dk, gk, etc... |
54
|
|
|
re.compile(r'\b[^aeiouys]k|zt|ksd|kd|zhr'), |
55
|
|
|
re.compile(r'\bzt|ksd|kd|zhr') |
56
|
|
|
] |
57
|
|
|
cleaned = [] |
58
|
|
|
if words is None or len(words) == 0: |
59
|
|
|
return words |
60
|
|
|
# Loop through any number of |
61
|
|
|
# regexes and add only if no matches exist |
62
|
|
|
[cleaned.append(word) for word in words if not any( |
|
|
|
|
63
|
|
|
re.match(regex, word) for regex in odd_regexes)] |
64
|
|
|
return cleaned |
65
|
|
|
|
66
|
|
|
|
67
|
|
|
def stem_words(words): |
68
|
|
|
"""Stem words to their base linguistic stem to remove redundancy. |
69
|
|
|
|
70
|
|
|
Args: |
71
|
|
|
words (list): The list of words |
72
|
|
|
|
73
|
|
|
Returns: |
74
|
|
|
list: An updated word list with words stemmed. |
75
|
|
|
""" |
76
|
|
|
new = [] |
77
|
|
|
for val in words: |
78
|
|
|
val = stem(val, stemmer=PORTER) |
79
|
|
|
new.append(val) |
80
|
|
|
return new |
81
|
|
|
|
82
|
|
|
|
83
|
|
|
def remove_stop_words(words): |
84
|
|
|
"""Remove all stop words. |
85
|
|
|
|
86
|
|
|
Args: |
87
|
|
|
words (list): The list of words |
88
|
|
|
|
89
|
|
|
Returns: |
90
|
|
|
list: An updated word list with stopwords removed. |
91
|
|
|
""" |
92
|
|
|
stop_words = stopwords.words('english') |
93
|
|
|
# http://stackoverflow.com/questions/5486337/ |
94
|
|
|
# how-to-remove-stop-words-using-nltk-or-python |
95
|
|
|
newdata = [w for w in words if w.lower() not in stop_words] |
96
|
|
|
# newdata = set(stopwords.words('english')) |
97
|
|
|
return newdata |
98
|
|
|
|
99
|
|
|
|
100
|
|
|
def remove_bad_words(words): |
101
|
|
|
"""Remove naughty words that might come from wordnet synsets and lemmata. |
102
|
|
|
|
103
|
|
|
Args: |
104
|
|
|
words (list): The list of words |
105
|
|
|
|
106
|
|
|
Returns: |
107
|
|
|
list: An updated word list with bad words removed. |
108
|
|
|
""" |
109
|
|
|
bad_words = ["nigger", "wop", |
110
|
|
|
"kike", "faggot", |
111
|
|
|
"fuck", "pussy", "cunt"] |
112
|
|
|
|
113
|
|
|
newdata = [word for word in words if word.lower() not in bad_words] |
114
|
|
|
return newdata |
115
|
|
|
|
116
|
|
|
|
117
|
|
|
def filter_words(words): |
118
|
|
|
"""Filter words by default min/max settings in the settings module. |
119
|
|
|
|
120
|
|
|
Args: |
121
|
|
|
words (list): The list of words |
122
|
|
|
|
123
|
|
|
Returns: |
124
|
|
|
list: The filtered words |
125
|
|
|
""" |
126
|
|
|
new_arr = [] |
127
|
|
|
for word in words: |
128
|
|
|
if not re.search(' ', word): |
129
|
|
|
if len(word) <= namebot_settings.MAX_LENGTH and \ |
130
|
|
|
len(word) >= namebot_settings.MIN_LENGTH: |
131
|
|
|
new_arr.append(word) |
|
|
|
|
132
|
|
|
|
133
|
|
|
elif re.search(' ', word): |
134
|
|
|
split = re.split(' ', word) |
135
|
|
|
split_join = [] |
136
|
|
|
for chunks in split: |
137
|
|
|
length = len(chunks) |
138
|
|
|
if length <= namebot_settings.SPACED_MAX_LENGTH and \ |
139
|
|
|
length >= namebot_settings.MIN_LENGTH: |
140
|
|
|
split_join.append(chunks) |
|
|
|
|
141
|
|
|
|
142
|
|
|
new_arr.append( |
143
|
|
|
' '.join(split_join)) |
144
|
|
|
return new_arr |
145
|
|
|
|
146
|
|
|
|
147
|
|
|
def uniquify(words): |
148
|
|
|
"""Remove duplicates from a list. |
149
|
|
|
|
150
|
|
|
Args: |
151
|
|
|
words (list): The list of words |
152
|
|
|
|
153
|
|
|
Returns: |
154
|
|
|
list: An updated word list with duplicates removed. |
155
|
|
|
""" |
156
|
|
|
if words is not None: |
157
|
|
|
return {}.fromkeys(words).keys() |
158
|
|
|
else: |
159
|
|
|
return words |
160
|
|
|
|
161
|
|
|
|
162
|
|
|
def clean_sort(words): |
163
|
|
|
"""A function for cleaning and prepping words for techniques. |
164
|
|
|
|
165
|
|
|
Args: |
166
|
|
|
words (list): The list of words |
167
|
|
|
|
168
|
|
|
Returns: |
169
|
|
|
list: An updated word list with words cleaned and sorted. |
170
|
|
|
""" |
171
|
|
|
if isinstance(words, basestring): |
|
|
|
|
172
|
|
|
return words |
173
|
|
|
chars = '!"#$%\'()*+,._/:;<=>?@[\\]^`{|}~01234567890' |
174
|
|
|
if words is not None: |
175
|
|
|
try: |
176
|
|
|
words = [word.strip().lower().translate( |
177
|
|
|
string.maketrans('', ''), |
|
|
|
|
178
|
|
|
chars) for word in words if len(word) > 1] |
179
|
|
|
except TypeError: |
|
|
|
|
180
|
|
|
pass |
181
|
|
|
return words |
182
|
|
|
|
183
|
|
|
|
184
|
|
|
def chop_duplicate_ends(word): |
185
|
|
|
"""Remove duplicate letters on either end, if the are adjacent. |
186
|
|
|
|
187
|
|
|
Args: |
188
|
|
|
words (list): The list of words |
189
|
|
|
|
190
|
|
|
Returns: |
191
|
|
|
list: An updated word list with duplicate ends removed for each word. |
192
|
|
|
""" |
193
|
|
|
if word[0] == word[1]: |
194
|
|
|
word = word[1:] |
195
|
|
|
if word[-2:-1] == word[-1:]: |
196
|
|
|
word = word[:-1] |
197
|
|
|
return word |
198
|
|
|
|
199
|
|
|
|
200
|
|
|
def key_words_by_pos_tag(words): |
201
|
|
|
"""Key words by the pos tag name, given when using pos_tag on a list. |
202
|
|
|
|
203
|
|
|
Args: |
204
|
|
|
words (list): The list of words, where each item is a 2-tuple. |
205
|
|
|
|
206
|
|
|
Returns: |
207
|
|
|
dict: An updated dictionary keyed by pos tag, |
208
|
|
|
with values as a list of matching pos matching words. |
209
|
|
|
""" |
210
|
|
|
alltags = defaultdict(list) |
211
|
|
|
for word, pos in words: |
212
|
|
|
alltags[pos].append(word) |
213
|
|
|
return alltags |
214
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.