|
1
|
|
|
"""Metrics for measuring various aspects of words. |
|
2
|
|
|
|
|
3
|
|
|
Conventions used in this utility: |
|
4
|
|
|
1. All functions return a dictionary, |
|
5
|
|
|
with key 'data' and/or 'summary': |
|
6
|
|
|
return { |
|
7
|
|
|
'data': data, |
|
8
|
|
|
'summary': summary or None |
|
9
|
|
|
} |
|
10
|
|
|
""" |
|
11
|
|
|
|
|
12
|
|
|
from __future__ import division |
|
13
|
|
|
import re |
|
14
|
|
|
from pattern.en import parse |
|
15
|
|
|
from nltk import pos_tag |
|
16
|
|
|
|
|
17
|
|
|
|
|
18
|
|
|
def prep_file(file_name): |
|
19
|
|
|
"""Take a file, extracts items line-by-line, and returns a list of them. |
|
20
|
|
|
|
|
21
|
|
|
Args: |
|
22
|
|
|
file_name (str): The file name to open |
|
23
|
|
|
|
|
24
|
|
|
Returns: |
|
25
|
|
|
items (list): A list of items extracted from the file |
|
26
|
|
|
""" |
|
27
|
|
|
items = [] |
|
28
|
|
|
with open(file_name) as files: |
|
29
|
|
|
for newline in files: |
|
30
|
|
|
items.append(newline) |
|
31
|
|
|
return items |
|
32
|
|
|
|
|
33
|
|
|
|
|
34
|
|
|
def get_named_numbers_1_10(words): |
|
35
|
|
|
"""Return a summary of words spelled out (e.g. one, two). |
|
36
|
|
|
|
|
37
|
|
|
Args: |
|
38
|
|
|
words (list): A list of words |
|
39
|
|
|
|
|
40
|
|
|
Returns: |
|
41
|
|
|
dict: The data and summary results. |
|
42
|
|
|
""" |
|
43
|
|
|
matches = [] |
|
44
|
|
|
numbers = re.compile( |
|
45
|
|
|
r'\Aone |two |three |four |five |six |seven |eight |nine |ten', |
|
46
|
|
|
re.IGNORECASE) |
|
47
|
|
|
for word in words: |
|
48
|
|
|
if re.findall(numbers, word): |
|
49
|
|
|
matches.append(word) |
|
50
|
|
|
return { |
|
51
|
|
|
'data': matches, |
|
52
|
|
|
'summary': 'Of {} words, {} matched'.format(len(words), len(matches)) |
|
53
|
|
|
} |
|
54
|
|
|
|
|
55
|
|
|
|
|
56
|
|
|
def name_length(words): |
|
57
|
|
|
"""Check the length of each word and an average. |
|
58
|
|
|
|
|
59
|
|
|
Args: |
|
60
|
|
|
words (list): A list of words |
|
61
|
|
|
|
|
62
|
|
|
Returns: |
|
63
|
|
|
dict: The data and summary results. |
|
64
|
|
|
""" |
|
65
|
|
|
names_length = [] |
|
66
|
|
|
for val in words: |
|
67
|
|
|
names_length.append(len(val)) |
|
68
|
|
|
summary = 'Of {} words, the average length of names is...{}'.format( |
|
69
|
|
|
len(words), |
|
70
|
|
|
round(sum(names_length) / len(names_length))) |
|
71
|
|
|
return { |
|
72
|
|
|
'data': names_length, |
|
73
|
|
|
'summary': summary |
|
74
|
|
|
} |
|
75
|
|
|
|
|
76
|
|
|
|
|
77
|
|
|
def name_vowel_count(words): |
|
78
|
|
|
"""Check the number of times vowels occurs, and total the results. |
|
79
|
|
|
|
|
80
|
|
|
Args: |
|
81
|
|
|
words (list): A list of words |
|
82
|
|
|
|
|
83
|
|
|
Returns: |
|
84
|
|
|
dict: The data and summary results. |
|
85
|
|
|
""" |
|
86
|
|
|
num_count = {'a': 0, 'e': 0, 'i': 0, 'o': 0, 'u': 0} |
|
87
|
|
|
try: |
|
88
|
|
|
for word in words: |
|
89
|
|
|
num_count['a'] += word.count('a') |
|
90
|
|
|
num_count['e'] += word.count('e') |
|
91
|
|
|
num_count['i'] += word.count('i') |
|
92
|
|
|
num_count['o'] += word.count('o') |
|
93
|
|
|
num_count['u'] += word.count('u') |
|
94
|
|
|
except AttributeError: |
|
95
|
|
|
pass |
|
96
|
|
|
finally: |
|
97
|
|
|
return { |
|
98
|
|
|
'data': num_count, |
|
99
|
|
|
'summary': None |
|
100
|
|
|
} |
|
101
|
|
|
|
|
102
|
|
|
|
|
103
|
|
|
def name_starts_with_vowel(words): |
|
104
|
|
|
"""Check the number of times a list of words starts with a vowel. |
|
105
|
|
|
|
|
106
|
|
|
Args: |
|
107
|
|
|
words (list): A list of words |
|
108
|
|
|
|
|
109
|
|
|
Returns: |
|
110
|
|
|
dict: The data and summary results. |
|
111
|
|
|
""" |
|
112
|
|
|
vowelcount = 0 |
|
113
|
|
|
vowels = re.compile(r'\A[aeiou]') |
|
114
|
|
|
for name in words: |
|
115
|
|
|
if re.match(vowels, name): |
|
116
|
|
|
vowelcount += 1 |
|
117
|
|
|
summary = 'Of {} words, {} or {}% are vowels as the first letter.'.format( |
|
118
|
|
|
len(words), vowelcount, |
|
119
|
|
|
round(float(vowelcount) / len(words) * 100)) |
|
120
|
|
|
return { |
|
121
|
|
|
'data': None, |
|
122
|
|
|
'summary': summary |
|
123
|
|
|
} |
|
124
|
|
|
|
|
125
|
|
|
|
|
126
|
|
|
def get_digits_frequency(words): |
|
127
|
|
|
"""Look for and count the digits in names, e.g. 7-11, 3M, etc... |
|
128
|
|
|
|
|
129
|
|
|
Args: |
|
130
|
|
|
words (list): A list of words |
|
131
|
|
|
|
|
132
|
|
|
Returns: |
|
133
|
|
|
dict: The data and summary results. |
|
134
|
|
|
""" |
|
135
|
|
|
new_words = [] |
|
136
|
|
|
count = 0 |
|
137
|
|
|
digits = re.compile(r'[0-9]+') |
|
138
|
|
|
for name in words: |
|
139
|
|
|
if re.findall(digits, name): |
|
140
|
|
|
count += 1 |
|
141
|
|
|
matches = re.findall(digits, name) |
|
142
|
|
|
new_words += matches |
|
143
|
|
|
return { |
|
144
|
|
|
'data': new_words, |
|
145
|
|
|
'summary': ('Of {} words, {} have numbers in them, ' |
|
146
|
|
|
'with a total of {} numbers found.').format( |
|
147
|
|
|
len(words), count, len(new_words)) |
|
148
|
|
|
} |
|
149
|
|
|
|
|
150
|
|
|
|
|
151
|
|
|
def get_first_letter_frequency(words): |
|
152
|
|
|
"""Add the frequency of first letters e.g. [C]at, [C]law, c = 2. |
|
153
|
|
|
|
|
154
|
|
|
Args: |
|
155
|
|
|
words (list): A list of words |
|
156
|
|
|
|
|
157
|
|
|
Returns: |
|
158
|
|
|
dict: The data and summary results. |
|
159
|
|
|
""" |
|
160
|
|
|
letters = {} |
|
161
|
|
|
# populate keys |
|
162
|
|
|
for name in words: |
|
163
|
|
|
letters[name[0]] = 0 |
|
164
|
|
|
# add counts |
|
165
|
|
|
for name in words: |
|
166
|
|
|
letters[name[0]] += 1 |
|
167
|
|
|
return { |
|
168
|
|
|
'data': letters, |
|
169
|
|
|
'summary': None |
|
170
|
|
|
} |
|
171
|
|
|
|
|
172
|
|
|
|
|
173
|
|
|
def get_special_chars(words): |
|
174
|
|
|
"""Find occurrences of special characters (non-alphabetical characters). |
|
175
|
|
|
|
|
176
|
|
|
Args: |
|
177
|
|
|
words (list): A list of words |
|
178
|
|
|
|
|
179
|
|
|
Returns: |
|
180
|
|
|
dict: The data and summary results. |
|
181
|
|
|
""" |
|
182
|
|
|
data = [] |
|
183
|
|
|
chars = re.compile(r'[^a-z]', re.IGNORECASE) |
|
184
|
|
|
for word in words: |
|
185
|
|
|
if re.findall(chars, word): |
|
186
|
|
|
data += re.findall(chars, word) |
|
187
|
|
|
return { |
|
188
|
|
|
'data': data, |
|
189
|
|
|
'summary': ('{} occurrences of special characters were' |
|
190
|
|
|
' found in {} words.').format(len(data), len(words)) |
|
191
|
|
|
} |
|
192
|
|
|
|
|
193
|
|
|
|
|
194
|
|
|
def get_word_types(words): |
|
195
|
|
|
"""Determine the occurrences of pos types. |
|
196
|
|
|
|
|
197
|
|
|
Args: |
|
198
|
|
|
words (list): A list of words |
|
199
|
|
|
|
|
200
|
|
|
Returns: |
|
201
|
|
|
dict: The data and summary results. |
|
202
|
|
|
""" |
|
203
|
|
|
new_arr = [] |
|
204
|
|
|
for val in words: |
|
205
|
|
|
try: |
|
206
|
|
|
val = parse( |
|
207
|
|
|
val, |
|
208
|
|
|
encoding='utf-8', |
|
209
|
|
|
tokenize=False, |
|
210
|
|
|
light=False, |
|
211
|
|
|
tags=True, |
|
212
|
|
|
chunks=False, |
|
213
|
|
|
relations=False, |
|
214
|
|
|
lemmata=False) |
|
215
|
|
|
new_arr.append(val) |
|
216
|
|
|
except IndexError: |
|
217
|
|
|
continue |
|
218
|
|
|
return { |
|
219
|
|
|
'data': new_arr, |
|
220
|
|
|
'summary': None |
|
221
|
|
|
} |
|
222
|
|
|
|
|
223
|
|
|
|
|
224
|
|
|
def get_name_spaces(words): |
|
225
|
|
|
"""Check number of spaces for a given set of words. |
|
226
|
|
|
|
|
227
|
|
|
Args: |
|
228
|
|
|
words (list): A list of words |
|
229
|
|
|
|
|
230
|
|
|
Returns: |
|
231
|
|
|
dict: The data and summary results. |
|
232
|
|
|
""" |
|
233
|
|
|
results = [{'word': word, 'spaces': len(word.split(r' '))} |
|
234
|
|
|
for word in words] |
|
235
|
|
|
return { |
|
236
|
|
|
'data': results, |
|
237
|
|
|
'summary': None |
|
238
|
|
|
} |
|
239
|
|
|
|
|
240
|
|
|
|
|
241
|
|
|
def get_consonant_repeat_frequency(words): |
|
242
|
|
|
"""Check for repeating consonant frequency for a given set of words. |
|
243
|
|
|
|
|
244
|
|
|
Args: |
|
245
|
|
|
words (list): A list of words |
|
246
|
|
|
|
|
247
|
|
|
Returns: |
|
248
|
|
|
dict: The data and summary results. |
|
249
|
|
|
""" |
|
250
|
|
|
count = 0 |
|
251
|
|
|
cons = re.compile(r'[^a|e|i|o|u{6}]') |
|
252
|
|
|
for val in words: |
|
253
|
|
|
if re.match(cons, val): |
|
254
|
|
|
count += 1 |
|
255
|
|
|
return { |
|
256
|
|
|
'data': count, |
|
257
|
|
|
'summary': None |
|
258
|
|
|
} |
|
259
|
|
|
|
|
260
|
|
|
|
|
261
|
|
|
def get_consonant_duplicate_repeat_frequency(words): |
|
262
|
|
|
"""Check for duplicate repeating consonant frequency. |
|
263
|
|
|
|
|
264
|
|
|
Args: |
|
265
|
|
|
words (list): A list of words |
|
266
|
|
|
|
|
267
|
|
|
Returns: |
|
268
|
|
|
dict: The data and summary results. |
|
269
|
|
|
""" |
|
270
|
|
|
count = 0 |
|
271
|
|
|
cons_dup = re.compile(r'[^a|e|i|o|u]{1,}') |
|
272
|
|
|
for name in words: |
|
273
|
|
|
if re.match(cons_dup, name): |
|
274
|
|
|
count += 1 |
|
275
|
|
|
return { |
|
276
|
|
|
'data': count, |
|
277
|
|
|
'summary': None |
|
278
|
|
|
} |
|
279
|
|
|
|
|
280
|
|
|
|
|
281
|
|
|
def get_vowel_repeat_frequency(words): |
|
282
|
|
|
"""Check for repeating vowel frequency for a given set of words. |
|
283
|
|
|
|
|
284
|
|
|
Args: |
|
285
|
|
|
words (list): A list of words |
|
286
|
|
|
|
|
287
|
|
|
Returns: |
|
288
|
|
|
dict: The data and summary results. |
|
289
|
|
|
""" |
|
290
|
|
|
count = 0 |
|
291
|
|
|
cons_vowel = re.compile(r'[aeiou{3}]') |
|
292
|
|
|
for val in words: |
|
293
|
|
|
if re.match(cons_vowel, val): |
|
294
|
|
|
count += 1 |
|
295
|
|
|
return { |
|
296
|
|
|
'data': count, |
|
297
|
|
|
'summary': None |
|
298
|
|
|
} |
|
299
|
|
|
|
|
300
|
|
|
|
|
301
|
|
|
def get_adjective_verb_or_noun(words): |
|
302
|
|
|
"""Get the number of words that are classified as verbs or nouns. |
|
303
|
|
|
|
|
304
|
|
|
Args: |
|
305
|
|
|
words (TYPE): Description |
|
306
|
|
|
|
|
307
|
|
|
Returns: |
|
308
|
|
|
dict: The data and summary results. |
|
309
|
|
|
""" |
|
310
|
|
|
total = len(words) |
|
311
|
|
|
data = {'verbs': 0, 'nouns': 0} |
|
312
|
|
|
verby = ['VBP', 'VB', 'RB', 'VBG'] |
|
313
|
|
|
nouns = ['NN', 'NNP'] |
|
314
|
|
|
for word, tag in pos_tag(words): |
|
315
|
|
|
if tag in nouns: |
|
316
|
|
|
data['nouns'] += 1 |
|
317
|
|
|
elif tag in verby: |
|
318
|
|
|
data['verbs'] += 1 |
|
319
|
|
|
remainder = total - (data['verbs'] + data['nouns']) |
|
320
|
|
|
return { |
|
321
|
|
|
'data': data, |
|
322
|
|
|
'summary': ('Of {0} words, {1} were nouns, {2} were verbs, ' |
|
323
|
|
|
'and {3} were everything else.').format( |
|
324
|
|
|
total, data['nouns'], data['verbs'], remainder) |
|
325
|
|
|
} |
|
326
|
|
|
|
|
327
|
|
|
|
|
328
|
|
|
def categorize_word_type(words): |
|
329
|
|
|
"""Get the common naming strategy 'category' of a name, based on precedence. |
|
330
|
|
|
|
|
331
|
|
|
Categories are derived from |
|
332
|
|
|
http://www.thenameinspector.com/10-name-types/, |
|
333
|
|
|
so it is important to note there is no agreed upon standard, |
|
334
|
|
|
meaning it is ultimately a little arbitrary. |
|
335
|
|
|
|
|
336
|
|
|
Since it is a bit challenging to actually determine its type, |
|
337
|
|
|
we give a weighting for each word based on a few known metrics. |
|
338
|
|
|
This can be updated in the future so that weightings are binary |
|
339
|
|
|
(e.g. 0.0 and 100.0), giving traditional False/True. |
|
340
|
|
|
|
|
341
|
|
|
Categories ==== |
|
342
|
|
|
|
|
343
|
|
|
1. Real Words |
|
344
|
|
|
1a. Misspelled words |
|
345
|
|
|
1b. Foreign words |
|
346
|
|
|
2. Compounds |
|
347
|
|
|
3. Phrases |
|
348
|
|
|
4. Blends |
|
349
|
|
|
5. Tweaked |
|
350
|
|
|
6. Affixed |
|
351
|
|
|
7. Fake/obscure |
|
352
|
|
|
8. Puns |
|
353
|
|
|
9. People's names |
|
354
|
|
|
10. Initials and Acronyms |
|
355
|
|
|
|
|
356
|
|
|
Args: |
|
357
|
|
|
words (list): A list of words |
|
358
|
|
|
|
|
359
|
|
|
Returns: |
|
360
|
|
|
new_words (list) - A list of lists, with each word |
|
361
|
|
|
and its distribution by word "type" |
|
362
|
|
|
""" |
|
363
|
|
|
new_words = [] |
|
364
|
|
|
|
|
365
|
|
|
def _get_distribution(word): |
|
366
|
|
|
# TODO: |
|
367
|
|
|
# misspelled, foreign, tweaked, affixed, fake_obscure, |
|
368
|
|
|
# initials_acronym, blend, puns, person, compound |
|
369
|
|
|
"""Return the distribution for all categories, given a single word.""" |
|
370
|
|
|
categories = { |
|
371
|
|
|
'real': 0, |
|
372
|
|
|
'misspelled': 0, |
|
373
|
|
|
'foreign': 0, |
|
374
|
|
|
'compound': 0, |
|
375
|
|
|
'phrase': 0, |
|
376
|
|
|
'blend': 0, |
|
377
|
|
|
'tweaked': 0, |
|
378
|
|
|
'affixed': 0, |
|
379
|
|
|
'fake_obscure': 0, |
|
380
|
|
|
'puns': 0, |
|
381
|
|
|
'person': 0, |
|
382
|
|
|
'initials_acronym': 0, |
|
383
|
|
|
} |
|
384
|
|
|
if len(word.split(' ')) == 1: |
|
385
|
|
|
# Real words are single |
|
386
|
|
|
categories['real'] = 50 |
|
387
|
|
|
else: |
|
388
|
|
|
# Phrases are not |
|
389
|
|
|
categories['phrase'] = 50 |
|
390
|
|
|
# If word cannot be tagged, |
|
391
|
|
|
# it's very likely fake_obscure |
|
392
|
|
|
if pos_tag([word])[0][1] == '-NONE-': |
|
393
|
|
|
categories['real'] = 0 |
|
394
|
|
|
categories['fake_obscure'] = 75 |
|
395
|
|
|
return categories |
|
396
|
|
|
|
|
397
|
|
|
for word in words: |
|
398
|
|
|
new_words.append([word, _get_distribution(word)]) |
|
399
|
|
|
return new_words |
|
400
|
|
|
|
|
401
|
|
|
|
|
402
|
|
|
def generate_all_metrics(filename=None, words=None): |
|
403
|
|
|
"""Generate all metrics in this module in one place. |
|
404
|
|
|
|
|
405
|
|
|
Args: |
|
406
|
|
|
filename (str, optional): A filename to load words from. |
|
407
|
|
|
words (TYPE, optional): Words to use, if file is not specified. |
|
408
|
|
|
|
|
409
|
|
|
Returns: |
|
410
|
|
|
dict: All metrics results, keyed by name. |
|
411
|
|
|
""" |
|
412
|
|
|
if not filename and not words: |
|
413
|
|
|
return None |
|
414
|
|
|
if filename: |
|
415
|
|
|
allnames = prep_file(filename) |
|
416
|
|
|
else: |
|
417
|
|
|
allnames = words |
|
418
|
|
|
return { |
|
419
|
|
|
'names': allnames, |
|
420
|
|
|
'metrics': { |
|
421
|
|
|
'digits_freq': get_digits_frequency(allnames), |
|
422
|
|
|
'length': name_length(allnames), |
|
423
|
|
|
'vowel_beginning': name_starts_with_vowel(allnames), |
|
424
|
|
|
'vowel_count': name_vowel_count(allnames), |
|
425
|
|
|
'name_length': name_length(allnames), |
|
426
|
|
|
'name_spaces': get_name_spaces(allnames), |
|
427
|
|
|
'consonant_repeat_freq': get_consonant_repeat_frequency(allnames), |
|
428
|
|
|
'consonant_dup_repeat_freq': get_consonant_duplicate_repeat_frequency(allnames), |
|
429
|
|
|
'vowel_repeat_freq': get_vowel_repeat_frequency(allnames), |
|
430
|
|
|
'special_characters': get_special_chars(allnames), |
|
431
|
|
|
'name_numbers': get_named_numbers_1_10(allnames), |
|
432
|
|
|
'adj_verb_noun': get_adjective_verb_or_noun(allnames), |
|
433
|
|
|
'first_letter_freq': get_first_letter_frequency(allnames), |
|
434
|
|
|
'word_types': get_word_types(allnames) |
|
435
|
|
|
} |
|
436
|
|
|
} |
|
437
|
|
|
|