1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance.jaro. |
20
|
|
|
|
21
|
|
|
The distance.jaro module implements distance metrics based on |
22
|
|
|
:cite:`Jaro:1989` and subsequent works: |
23
|
|
|
|
24
|
|
|
- Jaro distance |
25
|
|
|
- Jaro-Winkler distance |
26
|
|
|
- the strcmp95 algorithm variant of Jaro-Winkler distance |
27
|
|
|
""" |
28
|
|
|
|
29
|
1 |
|
from __future__ import division, unicode_literals |
30
|
|
|
|
31
|
1 |
|
from collections import defaultdict |
32
|
|
|
|
33
|
1 |
|
from six.moves import range |
34
|
|
|
|
35
|
1 |
|
from ._distance import Distance |
36
|
1 |
|
from ..tokenizer import QGrams |
37
|
|
|
|
38
|
1 |
|
__all__ = [ |
39
|
|
|
'JaroWinkler', |
40
|
|
|
'Strcmp95', |
41
|
|
|
'dist_jaro_winkler', |
42
|
|
|
'dist_strcmp95', |
43
|
|
|
'sim_jaro_winkler', |
44
|
|
|
'sim_strcmp95', |
45
|
|
|
] |
46
|
|
|
|
47
|
|
|
|
48
|
1 |
|
class Strcmp95(Distance): |
|
|
|
|
49
|
|
|
"""Strcmp95. |
50
|
|
|
|
51
|
|
|
This is a Python translation of the C code for strcmp95: |
52
|
|
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
53
|
|
|
:cite:`Winkler:1994`. |
54
|
|
|
The above file is a US Government publication and, accordingly, |
55
|
|
|
in the public domain. |
56
|
|
|
|
57
|
|
|
This is based on the Jaro-Winkler distance, but also attempts to correct |
58
|
|
|
for some common typos and frequently confused characters. It is also |
59
|
|
|
limited to uppercase ASCII characters, so it is appropriate to American |
60
|
|
|
names, but not much else. |
61
|
|
|
""" |
62
|
|
|
|
63
|
1 |
|
_sp_mx = ( |
64
|
|
|
('A', 'E'), |
65
|
|
|
('A', 'I'), |
66
|
|
|
('A', 'O'), |
67
|
|
|
('A', 'U'), |
68
|
|
|
('B', 'V'), |
69
|
|
|
('E', 'I'), |
70
|
|
|
('E', 'O'), |
71
|
|
|
('E', 'U'), |
72
|
|
|
('I', 'O'), |
73
|
|
|
('I', 'U'), |
74
|
|
|
('O', 'U'), |
75
|
|
|
('I', 'Y'), |
76
|
|
|
('E', 'Y'), |
77
|
|
|
('C', 'G'), |
78
|
|
|
('E', 'F'), |
79
|
|
|
('W', 'U'), |
80
|
|
|
('W', 'V'), |
81
|
|
|
('X', 'K'), |
82
|
|
|
('S', 'Z'), |
83
|
|
|
('X', 'S'), |
84
|
|
|
('Q', 'C'), |
85
|
|
|
('U', 'V'), |
86
|
|
|
('M', 'N'), |
87
|
|
|
('L', 'I'), |
88
|
|
|
('Q', 'O'), |
89
|
|
|
('P', 'R'), |
90
|
|
|
('I', 'J'), |
91
|
|
|
('2', 'Z'), |
92
|
|
|
('5', 'S'), |
93
|
|
|
('8', 'B'), |
94
|
|
|
('1', 'I'), |
95
|
|
|
('1', 'L'), |
96
|
|
|
('0', 'O'), |
97
|
|
|
('0', 'Q'), |
98
|
|
|
('C', 'K'), |
99
|
|
|
('G', 'J'), |
100
|
|
|
) |
101
|
|
|
|
102
|
1 |
|
def sim(self, src, tar, long_strings=False): |
|
|
|
|
103
|
|
|
"""Return the strcmp95 similarity of two strings. |
104
|
|
|
|
105
|
|
|
Args: |
106
|
|
|
src (str): Source string for comparison |
107
|
|
|
tar (str): Target string for comparison |
108
|
|
|
long_strings (bool): Set to True to increase the probability of a |
109
|
|
|
match when the number of matched characters is large. This |
110
|
|
|
option allows for a little more tolerance when the strings are |
111
|
|
|
large. It is not an appropriate test when comparing fixed |
112
|
|
|
length fields such as phone and social security numbers. |
113
|
|
|
|
114
|
|
|
Returns: |
115
|
|
|
float: Strcmp95 similarity |
116
|
|
|
|
117
|
|
|
Examples: |
118
|
|
|
>>> cmp = Strcmp95() |
119
|
|
|
>>> cmp.sim('cat', 'hat') |
120
|
|
|
0.7777777777777777 |
121
|
|
|
>>> cmp.sim('Niall', 'Neil') |
122
|
|
|
0.8454999999999999 |
123
|
|
|
>>> cmp.sim('aluminum', 'Catalan') |
124
|
|
|
0.6547619047619048 |
125
|
|
|
>>> cmp.sim('ATCG', 'TAGC') |
126
|
|
|
0.8333333333333334 |
127
|
|
|
|
128
|
|
|
""" |
129
|
|
|
|
130
|
1 |
|
def _in_range(char): |
131
|
|
|
"""Return True if char is in the range (0, 91). |
132
|
|
|
|
133
|
|
|
Args: |
134
|
|
|
char (str): The character to check |
135
|
|
|
|
136
|
|
|
Returns: |
137
|
|
|
bool: True if char is in the range (0, 91) |
138
|
|
|
|
139
|
|
|
""" |
140
|
1 |
|
return 91 > ord(char) > 0 |
141
|
|
|
|
142
|
1 |
|
ying = src.strip().upper() |
143
|
1 |
|
yang = tar.strip().upper() |
144
|
|
|
|
145
|
1 |
|
if ying == yang: |
146
|
1 |
|
return 1.0 |
147
|
|
|
# If either string is blank - return - added in Version 2 |
148
|
1 |
|
if not ying or not yang: |
149
|
1 |
|
return 0.0 |
150
|
|
|
|
151
|
1 |
|
adjwt = defaultdict(int) |
152
|
|
|
|
153
|
|
|
# Initialize the adjwt array on the first call to the function only. |
154
|
|
|
# The adjwt array is used to give partial credit for characters that |
155
|
|
|
# may be errors due to known phonetic or character recognition errors. |
156
|
|
|
# A typical example is to match the letter "O" with the number "0" |
157
|
1 |
|
for i in self._sp_mx: |
158
|
1 |
|
adjwt[(i[0], i[1])] = 3 |
159
|
1 |
|
adjwt[(i[1], i[0])] = 3 |
160
|
|
|
|
161
|
1 |
|
if len(ying) > len(yang): |
162
|
1 |
|
search_range = len(ying) |
163
|
1 |
|
minv = len(yang) |
164
|
|
|
else: |
165
|
1 |
|
search_range = len(yang) |
166
|
1 |
|
minv = len(ying) |
167
|
|
|
|
168
|
|
|
# Blank out the flags |
169
|
1 |
|
ying_flag = [0] * search_range |
170
|
1 |
|
yang_flag = [0] * search_range |
171
|
1 |
|
search_range = max(0, search_range // 2 - 1) |
172
|
|
|
|
173
|
|
|
# Looking only within the search range, |
174
|
|
|
# count and flag the matched pairs. |
175
|
1 |
|
num_com = 0 |
176
|
1 |
|
yl1 = len(yang) - 1 |
177
|
1 |
|
for i in range(len(ying)): |
|
|
|
|
178
|
1 |
|
low_lim = (i - search_range) if (i >= search_range) else 0 |
179
|
1 |
|
hi_lim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
180
|
1 |
|
for j in range(low_lim, hi_lim + 1): |
181
|
1 |
|
if (yang_flag[j] == 0) and (yang[j] == ying[i]): |
182
|
1 |
|
yang_flag[j] = 1 |
183
|
1 |
|
ying_flag[i] = 1 |
184
|
1 |
|
num_com += 1 |
185
|
1 |
|
break |
186
|
|
|
|
187
|
|
|
# If no characters in common - return |
188
|
1 |
|
if num_com == 0: |
189
|
1 |
|
return 0.0 |
190
|
|
|
|
191
|
|
|
# Count the number of transpositions |
192
|
1 |
|
k = n_trans = 0 |
193
|
1 |
|
for i in range(len(ying)): |
|
|
|
|
194
|
1 |
|
if ying_flag[i] != 0: |
195
|
1 |
|
j = 0 |
196
|
1 |
|
for j in range(k, len(yang)): # pragma: no branch |
197
|
1 |
|
if yang_flag[j] != 0: |
198
|
1 |
|
k = j + 1 |
199
|
1 |
|
break |
200
|
1 |
|
if ying[i] != yang[j]: |
201
|
1 |
|
n_trans += 1 |
202
|
1 |
|
n_trans //= 2 |
203
|
|
|
|
204
|
|
|
# Adjust for similarities in unmatched characters |
205
|
1 |
|
n_simi = 0 |
206
|
1 |
|
if minv > num_com: |
|
|
|
|
207
|
1 |
|
for i in range(len(ying)): |
|
|
|
|
208
|
1 |
|
if ying_flag[i] == 0 and _in_range(ying[i]): |
209
|
1 |
|
for j in range(len(yang)): |
|
|
|
|
210
|
1 |
|
if yang_flag[j] == 0 and _in_range(yang[j]): |
211
|
1 |
|
if (ying[i], yang[j]) in adjwt: |
212
|
1 |
|
n_simi += adjwt[(ying[i], yang[j])] |
213
|
1 |
|
yang_flag[j] = 2 |
214
|
1 |
|
break |
215
|
1 |
|
num_sim = n_simi / 10.0 + num_com |
216
|
|
|
|
217
|
|
|
# Main weight computation |
218
|
1 |
|
weight = ( |
219
|
|
|
num_sim / len(ying) |
220
|
|
|
+ num_sim / len(yang) |
221
|
|
|
+ (num_com - n_trans) / num_com |
222
|
|
|
) |
223
|
1 |
|
weight /= 3.0 |
224
|
|
|
|
225
|
|
|
# Continue to boost the weight if the strings are similar |
226
|
1 |
|
if weight > 0.7: |
227
|
|
|
|
228
|
|
|
# Adjust for having up to the first 4 characters in common |
229
|
1 |
|
j = 4 if (minv >= 4) else minv |
230
|
1 |
|
i = 0 |
231
|
1 |
|
while (i < j) and (ying[i] == yang[i]) and (not ying[i].isdigit()): |
232
|
1 |
|
i += 1 |
233
|
1 |
|
if i: |
234
|
1 |
|
weight += i * 0.1 * (1.0 - weight) |
235
|
|
|
|
236
|
|
|
# Optionally adjust for long strings. |
237
|
|
|
|
238
|
|
|
# After agreeing beginning chars, at least two more must agree and |
239
|
|
|
# the agreeing characters must be > .5 of remaining characters. |
240
|
1 |
|
if ( |
241
|
|
|
long_strings |
|
|
|
|
242
|
|
|
and (minv > 4) |
|
|
|
|
243
|
|
|
and (num_com > i + 1) |
|
|
|
|
244
|
|
|
and (2 * num_com >= minv + i) |
|
|
|
|
245
|
|
|
): |
246
|
1 |
|
if not ying[0].isdigit(): |
247
|
1 |
|
weight += (1.0 - weight) * ( |
248
|
|
|
(num_com - i - 1) / (len(ying) + len(yang) - i * 2 + 2) |
249
|
|
|
) |
250
|
|
|
|
251
|
1 |
|
return weight |
252
|
|
|
|
253
|
|
|
|
254
|
1 |
|
def sim_strcmp95(src, tar, long_strings=False): |
255
|
|
|
"""Return the strcmp95 similarity of two strings. |
256
|
|
|
|
257
|
|
|
This is a wrapper for :py:meth:`Strcmp95.sim`. |
258
|
|
|
|
259
|
|
|
Args: |
260
|
|
|
src (str): Source string for comparison |
261
|
|
|
tar (str): Target string for comparison |
262
|
|
|
long_strings (bool): Set to True to increase the probability of a |
263
|
|
|
match when the number of matched characters is large. This option |
264
|
|
|
allows for a little more tolerance when the strings are large. It |
265
|
|
|
is not an appropriate test when comparing fixed length fields such |
266
|
|
|
as phone and social security numbers. |
267
|
|
|
|
268
|
|
|
Returns: |
269
|
|
|
float: strcmp95 similarity |
270
|
|
|
|
271
|
|
|
Examples: |
272
|
|
|
>>> sim_strcmp95('cat', 'hat') |
273
|
|
|
0.7777777777777777 |
274
|
|
|
>>> sim_strcmp95('Niall', 'Neil') |
275
|
|
|
0.8454999999999999 |
276
|
|
|
>>> sim_strcmp95('aluminum', 'Catalan') |
277
|
|
|
0.6547619047619048 |
278
|
|
|
>>> sim_strcmp95('ATCG', 'TAGC') |
279
|
|
|
0.8333333333333334 |
280
|
|
|
|
281
|
|
|
""" |
282
|
1 |
|
return Strcmp95().sim(src, tar, long_strings) |
283
|
|
|
|
284
|
|
|
|
285
|
1 |
|
def dist_strcmp95(src, tar, long_strings=False): |
286
|
|
|
"""Return the strcmp95 distance between two strings. |
287
|
|
|
|
288
|
|
|
This is a wrapper for :py:meth:`Strcmp95.dist`. |
289
|
|
|
|
290
|
|
|
Args: |
291
|
|
|
src (str): Source string for comparison |
292
|
|
|
tar (str): Target string for comparison |
293
|
|
|
long_strings (bool): Set to True to increase the probability of a |
294
|
|
|
match when the number of matched characters is large. This option |
295
|
|
|
allows for a little more tolerance when the strings are large. It |
296
|
|
|
is not an appropriate test when comparing fixed length fields such |
297
|
|
|
as phone and social security numbers. |
298
|
|
|
|
299
|
|
|
Returns: |
300
|
|
|
float: strcmp95 distance |
301
|
|
|
|
302
|
|
|
Examples: |
303
|
|
|
>>> round(dist_strcmp95('cat', 'hat'), 12) |
304
|
|
|
0.222222222222 |
305
|
|
|
>>> round(dist_strcmp95('Niall', 'Neil'), 12) |
306
|
|
|
0.1545 |
307
|
|
|
>>> round(dist_strcmp95('aluminum', 'Catalan'), 12) |
308
|
|
|
0.345238095238 |
309
|
|
|
>>> round(dist_strcmp95('ATCG', 'TAGC'), 12) |
310
|
|
|
0.166666666667 |
311
|
|
|
|
312
|
|
|
""" |
313
|
1 |
|
return Strcmp95().dist(src, tar, long_strings) |
314
|
|
|
|
315
|
|
|
|
316
|
1 |
|
class JaroWinkler(Distance): |
|
|
|
|
317
|
|
|
"""Jaro-Winkler distance. |
318
|
|
|
|
319
|
|
|
Jaro(-Winkler) distance is a string edit distance initially proposed by |
320
|
|
|
Jaro and extended by Winkler :cite:`Jaro:1989,Winkler:1990`. |
321
|
|
|
|
322
|
|
|
This is Python based on the C code for strcmp95: |
323
|
|
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
324
|
|
|
:cite:`Winkler:1994`. The above file is a US Government publication and, |
325
|
|
|
accordingly, in the public domain. |
326
|
|
|
""" |
327
|
|
|
|
328
|
1 |
|
def sim( |
|
|
|
|
329
|
|
|
self, |
|
|
|
|
330
|
|
|
src, |
|
|
|
|
331
|
|
|
tar, |
|
|
|
|
332
|
|
|
qval=1, |
|
|
|
|
333
|
|
|
mode='winkler', |
|
|
|
|
334
|
|
|
long_strings=False, |
|
|
|
|
335
|
|
|
boost_threshold=0.7, |
|
|
|
|
336
|
|
|
scaling_factor=0.1, |
|
|
|
|
337
|
|
|
): |
338
|
|
|
"""Return the Jaro or Jaro-Winkler similarity of two strings. |
339
|
|
|
|
340
|
|
|
Args: |
341
|
|
|
src (str): Source string for comparison |
342
|
|
|
tar (str): Target string for comparison |
343
|
|
|
qval (int): The length of each q-gram (defaults to 1: |
344
|
|
|
character-wise matching) |
345
|
|
|
mode (str): Indicates which variant of this distance metric to |
346
|
|
|
compute: |
347
|
|
|
- ``winkler`` -- computes the Jaro-Winkler distance |
348
|
|
|
(default) which increases the score for matches near the |
349
|
|
|
start of the word |
350
|
|
|
- ``jaro`` -- computes the Jaro distance |
351
|
|
|
long_strings (bool): Set to True to "Increase the probability of a |
352
|
|
|
match when the number of matched characters is large. This |
353
|
|
|
option allows for a little more tolerance when the strings are |
354
|
|
|
large. It is not an appropriate test when comparing fixed |
355
|
|
|
length fields such as phone and social security numbers." |
356
|
|
|
(Used in 'winkler' mode only.) |
357
|
|
|
boost_threshold (float): A value between 0 and 1, below which the |
358
|
|
|
Winkler boost is not applied (defaults to 0.7). (Used in |
359
|
|
|
'winkler' mode only.) |
360
|
|
|
scaling_factor (float): A value between 0 and 0.25, indicating by |
361
|
|
|
how much to boost scores for matching prefixes (defaults to |
362
|
|
|
0.1). (Used in 'winkler' mode only.) |
363
|
|
|
|
364
|
|
|
Returns: |
365
|
|
|
float: Jaro or Jaro-Winkler similarity |
366
|
|
|
|
367
|
|
|
Raises: |
368
|
|
|
ValueError: Unsupported boost_threshold assignment; boost_threshold |
369
|
|
|
must be between 0 and 1. |
370
|
|
|
ValueError: Unsupported scaling_factor assignment; scaling_factor |
371
|
|
|
must be between 0 and 0.25.' |
372
|
|
|
|
373
|
|
|
Examples: |
374
|
|
|
>>> round(sim_jaro_winkler('cat', 'hat'), 12) |
375
|
|
|
0.777777777778 |
376
|
|
|
>>> round(sim_jaro_winkler('Niall', 'Neil'), 12) |
377
|
|
|
0.805 |
378
|
|
|
>>> round(sim_jaro_winkler('aluminum', 'Catalan'), 12) |
379
|
|
|
0.60119047619 |
380
|
|
|
>>> round(sim_jaro_winkler('ATCG', 'TAGC'), 12) |
381
|
|
|
0.833333333333 |
382
|
|
|
|
383
|
|
|
>>> round(sim_jaro_winkler('cat', 'hat', mode='jaro'), 12) |
384
|
|
|
0.777777777778 |
385
|
|
|
>>> round(sim_jaro_winkler('Niall', 'Neil', mode='jaro'), 12) |
386
|
|
|
0.783333333333 |
387
|
|
|
>>> round(sim_jaro_winkler('aluminum', 'Catalan', mode='jaro'), 12) |
388
|
|
|
0.60119047619 |
389
|
|
|
>>> round(sim_jaro_winkler('ATCG', 'TAGC', mode='jaro'), 12) |
390
|
|
|
0.833333333333 |
391
|
|
|
|
392
|
|
|
""" |
393
|
1 |
|
if mode == 'winkler': |
394
|
1 |
|
if boost_threshold > 1 or boost_threshold < 0: |
395
|
1 |
|
raise ValueError( |
396
|
|
|
'Unsupported boost_threshold assignment; ' |
397
|
|
|
+ 'boost_threshold must be between 0 and 1.' |
398
|
|
|
) |
399
|
1 |
|
if scaling_factor > 0.25 or scaling_factor < 0: |
400
|
1 |
|
raise ValueError( |
401
|
|
|
'Unsupported scaling_factor assignment; ' |
402
|
|
|
+ 'scaling_factor must be between 0 and 0.25.' |
403
|
|
|
) |
404
|
|
|
|
405
|
1 |
|
if src == tar: |
406
|
1 |
|
return 1.0 |
407
|
|
|
|
408
|
1 |
|
src = QGrams(src.strip(), qval).ordered_list |
409
|
1 |
|
tar = QGrams(tar.strip(), qval).ordered_list |
410
|
|
|
|
411
|
1 |
|
lens = len(src) |
412
|
1 |
|
lent = len(tar) |
413
|
|
|
|
414
|
|
|
# If either string is blank - return - added in Version 2 |
415
|
1 |
|
if lens == 0 or lent == 0: |
416
|
1 |
|
return 0.0 |
417
|
|
|
|
418
|
1 |
|
if lens > lent: |
419
|
1 |
|
search_range = lens |
420
|
1 |
|
minv = lent |
421
|
|
|
else: |
422
|
1 |
|
search_range = lent |
423
|
1 |
|
minv = lens |
424
|
|
|
|
425
|
|
|
# Zero out the flags |
426
|
1 |
|
src_flag = [0] * search_range |
427
|
1 |
|
tar_flag = [0] * search_range |
428
|
1 |
|
search_range = max(0, search_range // 2 - 1) |
429
|
|
|
|
430
|
|
|
# Looking only within the search range, |
431
|
|
|
# count and flag the matched pairs. |
432
|
1 |
|
num_com = 0 |
433
|
1 |
|
yl1 = lent - 1 |
434
|
1 |
|
for i in range(lens): |
435
|
1 |
|
low_lim = (i - search_range) if (i >= search_range) else 0 |
436
|
1 |
|
hi_lim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
437
|
1 |
|
for j in range(low_lim, hi_lim + 1): |
438
|
1 |
|
if (tar_flag[j] == 0) and (tar[j] == src[i]): |
439
|
1 |
|
tar_flag[j] = 1 |
440
|
1 |
|
src_flag[i] = 1 |
441
|
1 |
|
num_com += 1 |
442
|
1 |
|
break |
443
|
|
|
|
444
|
|
|
# If no characters in common - return |
445
|
1 |
|
if num_com == 0: |
446
|
1 |
|
return 0.0 |
447
|
|
|
|
448
|
|
|
# Count the number of transpositions |
449
|
1 |
|
k = n_trans = 0 |
450
|
1 |
|
for i in range(lens): |
451
|
1 |
|
if src_flag[i] != 0: |
452
|
1 |
|
j = 0 |
453
|
1 |
|
for j in range(k, lent): # pragma: no branch |
454
|
1 |
|
if tar_flag[j] != 0: |
455
|
1 |
|
k = j + 1 |
456
|
1 |
|
break |
457
|
1 |
|
if src[i] != tar[j]: |
458
|
1 |
|
n_trans += 1 |
459
|
1 |
|
n_trans //= 2 |
460
|
|
|
|
461
|
|
|
# Main weight computation for Jaro distance |
462
|
1 |
|
weight = ( |
463
|
|
|
num_com / lens + num_com / lent + (num_com - n_trans) / num_com |
464
|
|
|
) |
465
|
1 |
|
weight /= 3.0 |
466
|
|
|
|
467
|
|
|
# Continue to boost the weight if the strings are similar |
468
|
|
|
# This is the Winkler portion of Jaro-Winkler distance |
469
|
1 |
|
if mode == 'winkler' and weight > boost_threshold: |
470
|
|
|
|
471
|
|
|
# Adjust for having up to the first 4 characters in common |
472
|
1 |
|
j = 4 if (minv >= 4) else minv |
473
|
1 |
|
i = 0 |
474
|
1 |
|
while (i < j) and (src[i] == tar[i]): |
475
|
1 |
|
i += 1 |
476
|
1 |
|
weight += i * scaling_factor * (1.0 - weight) |
477
|
|
|
|
478
|
|
|
# Optionally adjust for long strings. |
479
|
|
|
|
480
|
|
|
# After agreeing beginning chars, at least two more must agree and |
481
|
|
|
# the agreeing characters must be > .5 of remaining characters. |
482
|
1 |
|
if ( |
483
|
|
|
long_strings |
|
|
|
|
484
|
|
|
and (minv > 4) |
|
|
|
|
485
|
|
|
and (num_com > i + 1) |
|
|
|
|
486
|
|
|
and (2 * num_com >= minv + i) |
|
|
|
|
487
|
|
|
): |
488
|
1 |
|
weight += (1.0 - weight) * ( |
489
|
|
|
(num_com - i - 1) / (lens + lent - i * 2 + 2) |
490
|
|
|
) |
491
|
|
|
|
492
|
1 |
|
return weight |
493
|
|
|
|
494
|
|
|
|
495
|
1 |
|
def sim_jaro_winkler( |
|
|
|
|
496
|
|
|
src, |
|
|
|
|
497
|
|
|
tar, |
|
|
|
|
498
|
|
|
qval=1, |
|
|
|
|
499
|
|
|
mode='winkler', |
|
|
|
|
500
|
|
|
long_strings=False, |
|
|
|
|
501
|
|
|
boost_threshold=0.7, |
|
|
|
|
502
|
|
|
scaling_factor=0.1, |
|
|
|
|
503
|
|
|
): |
504
|
|
|
"""Return the Jaro or Jaro-Winkler similarity of two strings. |
505
|
|
|
|
506
|
|
|
This is a wrapper for :py:meth:`JaroWinkler.sim`. |
507
|
|
|
|
508
|
|
|
Args: |
509
|
|
|
src (str): Source string for comparison |
510
|
|
|
tar (str): Target string for comparison |
511
|
|
|
qval (int): The length of each q-gram (defaults to 1: |
512
|
|
|
character-wise matching) |
513
|
|
|
mode (str): Indicates which variant of this distance metric to |
514
|
|
|
compute: |
515
|
|
|
- ``winkler`` -- computes the Jaro-Winkler distance (default) |
516
|
|
|
which increases the score for matches near the start of the |
517
|
|
|
word |
518
|
|
|
- ``jaro`` -- computes the Jaro distance |
519
|
|
|
long_strings (bool): Set to True to "Increase the probability of a |
520
|
|
|
match when the number of matched characters is large. This option |
521
|
|
|
allows for a little more tolerance when the strings are large. It |
522
|
|
|
is not an appropriate test when comparing fixedlength fields such |
523
|
|
|
as phone and social security numbers." (Used in 'winkler' mode |
524
|
|
|
only.) |
525
|
|
|
boost_threshold (float): A value between 0 and 1, below which the |
526
|
|
|
Winkler boost is not applied (defaults to 0.7). (Used in 'winkler' |
527
|
|
|
mode only.) |
528
|
|
|
scaling_factor (float): A value between 0 and 0.25, indicating by how |
529
|
|
|
much to boost scores for matching prefixes (defaults to 0.1). (Used |
530
|
|
|
in 'winkler' mode only.) |
531
|
|
|
|
532
|
|
|
Returns: |
533
|
|
|
float: Jaro or Jaro-Winkler similarity |
534
|
|
|
|
535
|
|
|
Examples: |
536
|
|
|
>>> round(sim_jaro_winkler('cat', 'hat'), 12) |
537
|
|
|
0.777777777778 |
538
|
|
|
>>> round(sim_jaro_winkler('Niall', 'Neil'), 12) |
539
|
|
|
0.805 |
540
|
|
|
>>> round(sim_jaro_winkler('aluminum', 'Catalan'), 12) |
541
|
|
|
0.60119047619 |
542
|
|
|
>>> round(sim_jaro_winkler('ATCG', 'TAGC'), 12) |
543
|
|
|
0.833333333333 |
544
|
|
|
|
545
|
|
|
>>> round(sim_jaro_winkler('cat', 'hat', mode='jaro'), 12) |
546
|
|
|
0.777777777778 |
547
|
|
|
>>> round(sim_jaro_winkler('Niall', 'Neil', mode='jaro'), 12) |
548
|
|
|
0.783333333333 |
549
|
|
|
>>> round(sim_jaro_winkler('aluminum', 'Catalan', mode='jaro'), 12) |
550
|
|
|
0.60119047619 |
551
|
|
|
>>> round(sim_jaro_winkler('ATCG', 'TAGC', mode='jaro'), 12) |
552
|
|
|
0.833333333333 |
553
|
|
|
|
554
|
|
|
""" |
555
|
1 |
|
return JaroWinkler().sim( |
556
|
|
|
src, tar, qval, mode, long_strings, boost_threshold, scaling_factor |
557
|
|
|
) |
558
|
|
|
|
559
|
|
|
|
560
|
1 |
|
def dist_jaro_winkler( |
|
|
|
|
561
|
|
|
src, |
|
|
|
|
562
|
|
|
tar, |
|
|
|
|
563
|
|
|
qval=1, |
|
|
|
|
564
|
|
|
mode='winkler', |
|
|
|
|
565
|
|
|
long_strings=False, |
|
|
|
|
566
|
|
|
boost_threshold=0.7, |
|
|
|
|
567
|
|
|
scaling_factor=0.1, |
|
|
|
|
568
|
|
|
): |
569
|
|
|
"""Return the Jaro or Jaro-Winkler distance between two strings. |
570
|
|
|
|
571
|
|
|
This is a wrapper for :py:meth:`JaroWinkler.dist`. |
572
|
|
|
|
573
|
|
|
Args: |
574
|
|
|
src (str): Source string for comparison |
575
|
|
|
tar (str): Target string for comparison |
576
|
|
|
qval (int): The length of each q-gram (defaults to 1: |
577
|
|
|
character-wise matching) |
578
|
|
|
mode (str): Indicates which variant of this distance metric to |
579
|
|
|
compute: |
580
|
|
|
- ``winkler`` -- computes the Jaro-Winkler distance (default) |
581
|
|
|
which increases the score for matches near the start of the |
582
|
|
|
word |
583
|
|
|
- ``jaro`` -- computes the Jaro distance |
584
|
|
|
long_strings (bool): Set to True to "Increase the probability of a |
585
|
|
|
match when the number of matched characters is large. This option |
586
|
|
|
allows for a little more tolerance when the strings are large. It |
587
|
|
|
is not an appropriate test when comparing fixedlength fields such |
588
|
|
|
as phone and social security numbers." (Used in 'winkler' mode |
589
|
|
|
only.) |
590
|
|
|
boost_threshold (float): A value between 0 and 1, below which the |
591
|
|
|
Winkler boost is not applied (defaults to 0.7). (Used in 'winkler' |
592
|
|
|
mode only.) |
593
|
|
|
scaling_factor (float): A value between 0 and 0.25, indicating by how |
594
|
|
|
much to boost scores for matching prefixes (defaults to 0.1). (Used |
595
|
|
|
in 'winkler' mode only.) |
596
|
|
|
|
597
|
|
|
Returns: |
598
|
|
|
float: Jaro or Jaro-Winkler distance |
599
|
|
|
|
600
|
|
|
Examples: |
601
|
|
|
>>> round(dist_jaro_winkler('cat', 'hat'), 12) |
602
|
|
|
0.222222222222 |
603
|
|
|
>>> round(dist_jaro_winkler('Niall', 'Neil'), 12) |
604
|
|
|
0.195 |
605
|
|
|
>>> round(dist_jaro_winkler('aluminum', 'Catalan'), 12) |
606
|
|
|
0.39880952381 |
607
|
|
|
>>> round(dist_jaro_winkler('ATCG', 'TAGC'), 12) |
608
|
|
|
0.166666666667 |
609
|
|
|
|
610
|
|
|
>>> round(dist_jaro_winkler('cat', 'hat', mode='jaro'), 12) |
611
|
|
|
0.222222222222 |
612
|
|
|
>>> round(dist_jaro_winkler('Niall', 'Neil', mode='jaro'), 12) |
613
|
|
|
0.216666666667 |
614
|
|
|
>>> round(dist_jaro_winkler('aluminum', 'Catalan', mode='jaro'), 12) |
615
|
|
|
0.39880952381 |
616
|
|
|
>>> round(dist_jaro_winkler('ATCG', 'TAGC', mode='jaro'), 12) |
617
|
|
|
0.166666666667 |
618
|
|
|
|
619
|
|
|
""" |
620
|
1 |
|
return JaroWinkler().dist( |
621
|
|
|
src, tar, qval, mode, long_strings, boost_threshold, scaling_factor |
622
|
|
|
) |
623
|
|
|
|
624
|
|
|
|
625
|
|
|
if __name__ == '__main__': |
626
|
|
|
import doctest |
627
|
|
|
|
628
|
|
|
doctest.testmod() |
629
|
|
|
|