|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
|
4
|
|
|
# This file is part of Abydos. |
|
5
|
|
|
# |
|
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
|
7
|
|
|
# it under the terms of the GNU General Public License as published by |
|
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
|
9
|
|
|
# (at your option) any later version. |
|
10
|
|
|
# |
|
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
|
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
14
|
|
|
# GNU General Public License for more details. |
|
15
|
|
|
# |
|
16
|
|
|
# You should have received a copy of the GNU General Public License |
|
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
|
18
|
|
|
|
|
19
|
1 |
|
"""abydos.distance.seqalign. |
|
20
|
|
|
|
|
21
|
|
|
The distance.seqalign module implements string edit distance functions |
|
22
|
|
|
used in sequence alignment: |
|
23
|
|
|
|
|
24
|
|
|
- Matrix similarity |
|
25
|
|
|
- Needleman-Wunsch score |
|
26
|
|
|
- Smith-Waterman score |
|
27
|
|
|
- Gotoh score |
|
28
|
|
|
""" |
|
29
|
|
|
|
|
30
|
1 |
|
from __future__ import unicode_literals |
|
31
|
|
|
|
|
32
|
1 |
|
from numpy import float32 as np_float32 |
|
33
|
1 |
|
from numpy import zeros as np_zeros |
|
34
|
|
|
|
|
35
|
1 |
|
from six.moves import range |
|
36
|
|
|
|
|
37
|
1 |
|
from ._basic import sim_ident |
|
38
|
1 |
|
from ._distance import Distance |
|
39
|
|
|
|
|
40
|
1 |
|
__all__ = [ |
|
41
|
|
|
'Gotoh', |
|
42
|
|
|
'NeedlemanWunsch', |
|
43
|
|
|
'SmithWaterman', |
|
44
|
|
|
'gotoh', |
|
45
|
|
|
'needleman_wunsch', |
|
46
|
|
|
'smith_waterman', |
|
47
|
|
|
] |
|
48
|
|
|
|
|
49
|
|
|
|
|
50
|
1 |
|
class NeedlemanWunsch(Distance): |
|
|
|
|
|
|
51
|
|
|
"""Needleman-Wunsch score. |
|
52
|
|
|
|
|
53
|
|
|
The Needleman-Wunsch score :cite:`Needleman:1970` is a standard edit |
|
54
|
|
|
distance measure. |
|
55
|
|
|
""" |
|
56
|
|
|
|
|
57
|
1 |
|
@staticmethod |
|
58
|
1 |
|
def sim_matrix( |
|
|
|
|
|
|
59
|
|
|
src, |
|
|
|
|
|
|
60
|
|
|
tar, |
|
|
|
|
|
|
61
|
|
|
mat=None, |
|
|
|
|
|
|
62
|
|
|
mismatch_cost=0, |
|
|
|
|
|
|
63
|
|
|
match_cost=1, |
|
|
|
|
|
|
64
|
|
|
symmetric=True, |
|
|
|
|
|
|
65
|
|
|
alphabet=None, |
|
|
|
|
|
|
66
|
|
|
): |
|
67
|
|
|
"""Return the matrix similarity of two strings. |
|
68
|
|
|
|
|
69
|
|
|
With the default parameters, this is identical to sim_ident. |
|
70
|
|
|
It is possible for sim_matrix to return values outside of the range |
|
71
|
|
|
:math:`[0, 1]`, if values outside that range are present in mat, |
|
72
|
|
|
mismatch_cost, or match_cost. |
|
73
|
|
|
|
|
74
|
|
|
Args: |
|
75
|
|
|
src (str): Source string for comparison |
|
76
|
|
|
tar (str): Target string for comparison |
|
77
|
|
|
mat (dict): A dict mapping tuples to costs; the tuples are (src, |
|
78
|
|
|
tar) pairs of symbols from the alphabet parameter |
|
79
|
|
|
mismatch_cost (float): the value returned if (src, tar) is absent |
|
80
|
|
|
from mat when src does not equal tar |
|
81
|
|
|
match_cost (float): the value returned if (src, tar) is absent from |
|
82
|
|
|
mat when src equals tar |
|
83
|
|
|
symmetric (bool): True if the cost of src not matching tar is |
|
84
|
|
|
identical to the cost of tar not matching src; in this case, |
|
85
|
|
|
the values in mat need only contain (src, tar) or (tar, src), |
|
86
|
|
|
not both |
|
87
|
|
|
alphabet (str): a collection of tokens from which src and tar are |
|
88
|
|
|
drawn; if this is defined a ValueError is raised if either tar |
|
89
|
|
|
or src is not found in alphabet |
|
90
|
|
|
|
|
91
|
|
|
Returns: |
|
92
|
|
|
float: Matrix similarity |
|
93
|
|
|
|
|
94
|
|
|
Raises: |
|
95
|
|
|
ValueError: src value not in alphabet |
|
96
|
|
|
ValueError: tar value not in alphabet |
|
97
|
|
|
|
|
98
|
|
|
Examples: |
|
99
|
|
|
>>> NeedlemanWunsch.sim_matrix('cat', 'hat') |
|
100
|
|
|
0 |
|
101
|
|
|
>>> NeedlemanWunsch.sim_matrix('hat', 'hat') |
|
102
|
|
|
1 |
|
103
|
|
|
|
|
104
|
|
|
""" |
|
105
|
1 |
|
if alphabet: |
|
106
|
1 |
|
alphabet = tuple(alphabet) |
|
107
|
1 |
|
for i in src: |
|
108
|
1 |
|
if i not in alphabet: |
|
109
|
1 |
|
raise ValueError('src value not in alphabet') |
|
110
|
1 |
|
for i in tar: |
|
111
|
1 |
|
if i not in alphabet: |
|
112
|
1 |
|
raise ValueError('tar value not in alphabet') |
|
113
|
|
|
|
|
114
|
1 |
|
if src == tar: |
|
115
|
1 |
|
if mat and (src, src) in mat: |
|
116
|
1 |
|
return mat[(src, src)] |
|
117
|
1 |
|
return match_cost |
|
118
|
1 |
|
if mat and (src, tar) in mat: |
|
119
|
1 |
|
return mat[(src, tar)] |
|
120
|
1 |
|
elif symmetric and mat and (tar, src) in mat: |
|
121
|
1 |
|
return mat[(tar, src)] |
|
122
|
1 |
|
return mismatch_cost |
|
123
|
|
|
|
|
124
|
1 |
View Code Duplication |
def dist_abs(self, src, tar, gap_cost=1, sim_func=sim_ident): |
|
|
|
|
|
|
125
|
|
|
"""Return the Needleman-Wunsch score of two strings. |
|
126
|
|
|
|
|
127
|
|
|
Args: |
|
128
|
|
|
src (str): Source string for comparison |
|
129
|
|
|
tar (str): Target string for comparison |
|
130
|
|
|
gap_cost (float): the cost of an alignment gap (1 by default) |
|
131
|
|
|
sim_func (function): a function that returns the similarity of two |
|
132
|
|
|
characters (identity similarity by default) |
|
133
|
|
|
|
|
134
|
|
|
Returns: |
|
135
|
|
|
float: Needleman-Wunsch score |
|
136
|
|
|
|
|
137
|
|
|
Examples: |
|
138
|
|
|
>>> cmp = NeedlemanWunsch() |
|
139
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
|
140
|
|
|
2.0 |
|
141
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
|
142
|
|
|
1.0 |
|
143
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
|
144
|
|
|
-1.0 |
|
145
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
|
146
|
|
|
0.0 |
|
147
|
|
|
|
|
148
|
|
|
""" |
|
149
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
|
150
|
|
|
|
|
151
|
1 |
|
for i in range(len(src) + 1): |
|
152
|
1 |
|
d_mat[i, 0] = -(i * gap_cost) |
|
153
|
1 |
|
for j in range(len(tar) + 1): |
|
154
|
1 |
|
d_mat[0, j] = -(j * gap_cost) |
|
155
|
1 |
|
for i in range(1, len(src) + 1): |
|
156
|
1 |
|
for j in range(1, len(tar) + 1): |
|
157
|
1 |
|
match = d_mat[i - 1, j - 1] + sim_func(src[i - 1], tar[j - 1]) |
|
158
|
1 |
|
delete = d_mat[i - 1, j] - gap_cost |
|
159
|
1 |
|
insert = d_mat[i, j - 1] - gap_cost |
|
160
|
1 |
|
d_mat[i, j] = max(match, delete, insert) |
|
161
|
1 |
|
return d_mat[d_mat.shape[0] - 1, d_mat.shape[1] - 1] |
|
162
|
|
|
|
|
163
|
|
|
|
|
164
|
1 |
|
def needleman_wunsch(src, tar, gap_cost=1, sim_func=sim_ident): |
|
165
|
|
|
"""Return the Needleman-Wunsch score of two strings. |
|
166
|
|
|
|
|
167
|
|
|
This is a wrapper for :py:meth:`NeedlemanWunsch.dist_abs`. |
|
168
|
|
|
|
|
169
|
|
|
Args: |
|
170
|
|
|
src (str): Source string for comparison |
|
171
|
|
|
tar (str): Target string for comparison |
|
172
|
|
|
gap_cost (float): the cost of an alignment gap (1 by default) |
|
173
|
|
|
sim_func (function): a function that returns the similarity of two |
|
174
|
|
|
characters (identity similarity by default) |
|
175
|
|
|
|
|
176
|
|
|
Returns: |
|
177
|
|
|
float: Needleman-Wunsch score |
|
178
|
|
|
|
|
179
|
|
|
Examples: |
|
180
|
|
|
>>> needleman_wunsch('cat', 'hat') |
|
181
|
|
|
2.0 |
|
182
|
|
|
>>> needleman_wunsch('Niall', 'Neil') |
|
183
|
|
|
1.0 |
|
184
|
|
|
>>> needleman_wunsch('aluminum', 'Catalan') |
|
185
|
|
|
-1.0 |
|
186
|
|
|
>>> needleman_wunsch('ATCG', 'TAGC') |
|
187
|
|
|
0.0 |
|
188
|
|
|
|
|
189
|
|
|
""" |
|
190
|
1 |
|
return NeedlemanWunsch().dist_abs(src, tar, gap_cost, sim_func) |
|
191
|
|
|
|
|
192
|
|
|
|
|
193
|
1 |
|
class SmithWaterman(NeedlemanWunsch): |
|
|
|
|
|
|
194
|
|
|
"""Smith-Waterman score. |
|
195
|
|
|
|
|
196
|
|
|
The Smith-Waterman score :cite:`Smith:1981` is a standard edit distance |
|
197
|
|
|
measure, differing from Needleman-Wunsch in that it focuses on local |
|
198
|
|
|
alignment and disallows negative scores. |
|
199
|
|
|
""" |
|
200
|
|
|
|
|
201
|
1 |
View Code Duplication |
def dist_abs(self, src, tar, gap_cost=1, sim_func=sim_ident): |
|
|
|
|
|
|
202
|
|
|
"""Return the Smith-Waterman score of two strings. |
|
203
|
|
|
|
|
204
|
|
|
Args: |
|
205
|
|
|
src (str): Source string for comparison |
|
206
|
|
|
tar (str): Target string for comparison |
|
207
|
|
|
gap_cost (float): the cost of an alignment gap (1 by default) |
|
208
|
|
|
sim_func (function): a function that returns the similarity of two |
|
209
|
|
|
characters (identity similarity by default) |
|
210
|
|
|
|
|
211
|
|
|
Returns: |
|
212
|
|
|
float: Smith-Waterman score |
|
213
|
|
|
|
|
214
|
|
|
Examples: |
|
215
|
|
|
>>> cmp = SmithWaterman() |
|
216
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
|
217
|
|
|
2.0 |
|
218
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
|
219
|
|
|
1.0 |
|
220
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
|
221
|
|
|
0.0 |
|
222
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
|
223
|
|
|
1.0 |
|
224
|
|
|
|
|
225
|
|
|
""" |
|
226
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
|
227
|
|
|
|
|
228
|
1 |
|
for i in range(len(src) + 1): |
|
229
|
1 |
|
d_mat[i, 0] = 0 |
|
230
|
1 |
|
for j in range(len(tar) + 1): |
|
231
|
1 |
|
d_mat[0, j] = 0 |
|
232
|
1 |
|
for i in range(1, len(src) + 1): |
|
233
|
1 |
|
for j in range(1, len(tar) + 1): |
|
234
|
1 |
|
match = d_mat[i - 1, j - 1] + sim_func(src[i - 1], tar[j - 1]) |
|
235
|
1 |
|
delete = d_mat[i - 1, j] - gap_cost |
|
236
|
1 |
|
insert = d_mat[i, j - 1] - gap_cost |
|
237
|
1 |
|
d_mat[i, j] = max(0, match, delete, insert) |
|
238
|
1 |
|
return d_mat[d_mat.shape[0] - 1, d_mat.shape[1] - 1] |
|
239
|
|
|
|
|
240
|
|
|
|
|
241
|
1 |
|
def smith_waterman(src, tar, gap_cost=1, sim_func=sim_ident): |
|
242
|
|
|
"""Return the Smith-Waterman score of two strings. |
|
243
|
|
|
|
|
244
|
|
|
This is a wrapper for :py:meth:`SmithWaterman.dist_abs`. |
|
245
|
|
|
|
|
246
|
|
|
Args: |
|
247
|
|
|
src (str): Source string for comparison |
|
248
|
|
|
tar (str): Target string for comparison |
|
249
|
|
|
gap_cost (float): the cost of an alignment gap (1 by default) |
|
250
|
|
|
sim_func (function): a function that returns the similarity of two |
|
251
|
|
|
characters (identity similarity by default) |
|
252
|
|
|
|
|
253
|
|
|
Returns: |
|
254
|
|
|
float: Smith-Waterman score |
|
255
|
|
|
|
|
256
|
|
|
Examples: |
|
257
|
|
|
>>> smith_waterman('cat', 'hat') |
|
258
|
|
|
2.0 |
|
259
|
|
|
>>> smith_waterman('Niall', 'Neil') |
|
260
|
|
|
1.0 |
|
261
|
|
|
>>> smith_waterman('aluminum', 'Catalan') |
|
262
|
|
|
0.0 |
|
263
|
|
|
>>> smith_waterman('ATCG', 'TAGC') |
|
264
|
|
|
1.0 |
|
265
|
|
|
|
|
266
|
|
|
""" |
|
267
|
1 |
|
return SmithWaterman().dist_abs(src, tar, gap_cost, sim_func) |
|
268
|
|
|
|
|
269
|
|
|
|
|
270
|
1 |
|
class Gotoh(NeedlemanWunsch): |
|
|
|
|
|
|
271
|
|
|
"""Gotoh score. |
|
272
|
|
|
|
|
273
|
|
|
The Gotoh score :cite:`Gotoh:1982` is essentially Needleman-Wunsch with |
|
274
|
|
|
affine gap penalties. |
|
275
|
|
|
""" |
|
276
|
|
|
|
|
277
|
1 |
|
def dist_abs(self, src, tar, gap_open=1, gap_ext=0.4, sim_func=sim_ident): |
|
|
|
|
|
|
278
|
|
|
"""Return the Gotoh score of two strings. |
|
279
|
|
|
|
|
280
|
|
|
Args: |
|
281
|
|
|
src (str): Source string for comparison |
|
282
|
|
|
tar (str): Target string for comparison |
|
283
|
|
|
gap_open (float): the cost of an open alignment gap (1 by default) |
|
284
|
|
|
gap_ext (float): the cost of an alignment gap extension (0.4 by |
|
285
|
|
|
default) |
|
286
|
|
|
sim_func (function): a function that returns the similarity of two |
|
287
|
|
|
characters (identity similarity by default) |
|
288
|
|
|
|
|
289
|
|
|
Returns: |
|
290
|
|
|
float: Gotoh score |
|
291
|
|
|
|
|
292
|
|
|
Examples: |
|
293
|
|
|
>>> cmp = Gotoh() |
|
294
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
|
295
|
|
|
2.0 |
|
296
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
|
297
|
|
|
1.0 |
|
298
|
|
|
>>> round(cmp.dist_abs('aluminum', 'Catalan'), 12) |
|
299
|
|
|
-0.4 |
|
300
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
|
301
|
|
|
2.0 |
|
302
|
|
|
|
|
303
|
|
|
""" |
|
304
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
|
305
|
1 |
|
p_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
|
306
|
1 |
|
q_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
|
307
|
|
|
|
|
308
|
1 |
|
d_mat[0, 0] = 0 |
|
309
|
1 |
|
p_mat[0, 0] = float('-inf') |
|
310
|
1 |
|
q_mat[0, 0] = float('-inf') |
|
311
|
1 |
|
for i in range(1, len(src) + 1): |
|
312
|
1 |
|
d_mat[i, 0] = float('-inf') |
|
313
|
1 |
|
p_mat[i, 0] = -gap_open - gap_ext * (i - 1) |
|
314
|
1 |
|
q_mat[i, 0] = float('-inf') |
|
315
|
1 |
|
q_mat[i, 1] = -gap_open |
|
316
|
1 |
|
for j in range(1, len(tar) + 1): |
|
317
|
1 |
|
d_mat[0, j] = float('-inf') |
|
318
|
1 |
|
p_mat[0, j] = float('-inf') |
|
319
|
1 |
|
p_mat[1, j] = -gap_open |
|
320
|
1 |
|
q_mat[0, j] = -gap_open - gap_ext * (j - 1) |
|
321
|
|
|
|
|
322
|
1 |
|
for i in range(1, len(src) + 1): |
|
323
|
1 |
|
for j in range(1, len(tar) + 1): |
|
324
|
1 |
|
sim_val = sim_func(src[i - 1], tar[j - 1]) |
|
325
|
1 |
|
d_mat[i, j] = max( |
|
326
|
|
|
d_mat[i - 1, j - 1] + sim_val, |
|
327
|
|
|
p_mat[i - 1, j - 1] + sim_val, |
|
328
|
|
|
q_mat[i - 1, j - 1] + sim_val, |
|
329
|
|
|
) |
|
330
|
|
|
|
|
331
|
1 |
|
p_mat[i, j] = max( |
|
332
|
|
|
d_mat[i - 1, j] - gap_open, p_mat[i - 1, j] - gap_ext |
|
333
|
|
|
) |
|
334
|
|
|
|
|
335
|
1 |
|
q_mat[i, j] = max( |
|
336
|
|
|
d_mat[i, j - 1] - gap_open, q_mat[i, j - 1] - gap_ext |
|
337
|
|
|
) |
|
338
|
|
|
|
|
339
|
1 |
|
i, j = (n - 1 for n in d_mat.shape) |
|
|
|
|
|
|
340
|
1 |
|
return max(d_mat[i, j], p_mat[i, j], q_mat[i, j]) |
|
341
|
|
|
|
|
342
|
|
|
|
|
343
|
1 |
|
def gotoh(src, tar, gap_open=1, gap_ext=0.4, sim_func=sim_ident): |
|
344
|
|
|
"""Return the Gotoh score of two strings. |
|
345
|
|
|
|
|
346
|
|
|
This is a wrapper for :py:meth:`Gotoh.dist_abs`. |
|
347
|
|
|
|
|
348
|
|
|
Args: |
|
349
|
|
|
src (str): Source string for comparison |
|
350
|
|
|
tar (str): Target string for comparison |
|
351
|
|
|
gap_open (float): the cost of an open alignment gap (1 by default) |
|
352
|
|
|
gap_ext (float): the cost of an alignment gap extension (0.4 by |
|
353
|
|
|
default) |
|
354
|
|
|
sim_func (function): a function that returns the similarity of two |
|
355
|
|
|
characters (identity similarity by default) |
|
356
|
|
|
|
|
357
|
|
|
Returns: |
|
358
|
|
|
float: Gotoh score |
|
359
|
|
|
|
|
360
|
|
|
Examples: |
|
361
|
|
|
>>> gotoh('cat', 'hat') |
|
362
|
|
|
2.0 |
|
363
|
|
|
>>> gotoh('Niall', 'Neil') |
|
364
|
|
|
1.0 |
|
365
|
|
|
>>> round(gotoh('aluminum', 'Catalan'), 12) |
|
366
|
|
|
-0.4 |
|
367
|
|
|
>>> gotoh('cat', 'hat') |
|
368
|
|
|
2.0 |
|
369
|
|
|
|
|
370
|
|
|
""" |
|
371
|
1 |
|
return Gotoh().dist_abs(src, tar, gap_open, gap_ext, sim_func) |
|
372
|
|
|
|
|
373
|
|
|
|
|
374
|
|
|
if __name__ == '__main__': |
|
375
|
|
|
import doctest |
|
376
|
|
|
|
|
377
|
|
|
doctest.testmod() |
|
378
|
|
|
|