1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance.seqalign. |
20
|
|
|
|
21
|
|
|
The distance.seqalign module implements string edit distance functions |
22
|
|
|
used in sequence alignment: |
23
|
|
|
|
24
|
|
|
- Matrix similarity |
25
|
|
|
- Needleman-Wunsch score |
26
|
|
|
- Smith-Waterman score |
27
|
|
|
- Gotoh score |
28
|
|
|
""" |
29
|
|
|
|
30
|
1 |
|
from __future__ import unicode_literals |
31
|
|
|
|
32
|
1 |
|
from numpy import float32 as np_float32 |
33
|
1 |
|
from numpy import zeros as np_zeros |
34
|
|
|
|
35
|
1 |
|
from six.moves import range |
36
|
|
|
|
37
|
1 |
|
from ._basic import sim_ident |
38
|
1 |
|
from ._distance import Distance |
39
|
|
|
|
40
|
1 |
|
__all__ = [ |
41
|
|
|
'Gotoh', |
42
|
|
|
'NeedlemanWunsch', |
43
|
|
|
'SmithWaterman', |
44
|
|
|
'gotoh', |
45
|
|
|
'needleman_wunsch', |
46
|
|
|
'smith_waterman', |
47
|
|
|
] |
48
|
|
|
|
49
|
|
|
|
50
|
1 |
|
class NeedlemanWunsch(Distance): |
|
|
|
|
51
|
|
|
"""Needleman-Wunsch score. |
52
|
|
|
|
53
|
|
|
The Needleman-Wunsch score :cite:`Needleman:1970` is a standard edit |
54
|
|
|
distance measure. |
55
|
|
|
""" |
56
|
|
|
|
57
|
1 |
|
@staticmethod |
58
|
1 |
|
def sim_matrix( |
|
|
|
|
59
|
|
|
src, |
|
|
|
|
60
|
|
|
tar, |
|
|
|
|
61
|
|
|
mat=None, |
|
|
|
|
62
|
|
|
mismatch_cost=0, |
|
|
|
|
63
|
|
|
match_cost=1, |
|
|
|
|
64
|
|
|
symmetric=True, |
|
|
|
|
65
|
|
|
alphabet=None, |
|
|
|
|
66
|
|
|
): |
67
|
|
|
"""Return the matrix similarity of two strings. |
68
|
|
|
|
69
|
|
|
With the default parameters, this is identical to sim_ident. |
70
|
|
|
It is possible for sim_matrix to return values outside of the range |
71
|
|
|
:math:`[0, 1]`, if values outside that range are present in mat, |
72
|
|
|
mismatch_cost, or match_cost. |
73
|
|
|
|
74
|
|
|
Args: |
75
|
|
|
src (str): Source string for comparison |
76
|
|
|
tar (str): Target string for comparison |
77
|
|
|
mat (dict): A dict mapping tuples to costs; the tuples are (src, |
78
|
|
|
tar) pairs of symbols from the alphabet parameter |
79
|
|
|
mismatch_cost (float): the value returned if (src, tar) is absent |
80
|
|
|
from mat when src does not equal tar |
81
|
|
|
match_cost (float): the value returned if (src, tar) is absent from |
82
|
|
|
mat when src equals tar |
83
|
|
|
symmetric (bool): True if the cost of src not matching tar is |
84
|
|
|
identical to the cost of tar not matching src; in this case, |
85
|
|
|
the values in mat need only contain (src, tar) or (tar, src), |
86
|
|
|
not both |
87
|
|
|
alphabet (str): a collection of tokens from which src and tar are |
88
|
|
|
drawn; if this is defined a ValueError is raised if either tar |
89
|
|
|
or src is not found in alphabet |
90
|
|
|
|
91
|
|
|
Returns: |
92
|
|
|
float: Matrix similarity |
93
|
|
|
|
94
|
|
|
Raises: |
95
|
|
|
ValueError: src value not in alphabet |
96
|
|
|
ValueError: tar value not in alphabet |
97
|
|
|
|
98
|
|
|
Examples: |
99
|
|
|
>>> NeedlemanWunsch.sim_matrix('cat', 'hat') |
100
|
|
|
0 |
101
|
|
|
>>> NeedlemanWunsch.sim_matrix('hat', 'hat') |
102
|
|
|
1 |
103
|
|
|
|
104
|
|
|
""" |
105
|
1 |
|
if alphabet: |
106
|
1 |
|
alphabet = tuple(alphabet) |
107
|
1 |
|
for i in src: |
108
|
1 |
|
if i not in alphabet: |
109
|
1 |
|
raise ValueError('src value not in alphabet') |
110
|
1 |
|
for i in tar: |
111
|
1 |
|
if i not in alphabet: |
112
|
1 |
|
raise ValueError('tar value not in alphabet') |
113
|
|
|
|
114
|
1 |
|
if src == tar: |
115
|
1 |
|
if mat and (src, src) in mat: |
116
|
1 |
|
return mat[(src, src)] |
117
|
1 |
|
return match_cost |
118
|
1 |
|
if mat and (src, tar) in mat: |
119
|
1 |
|
return mat[(src, tar)] |
120
|
1 |
|
elif symmetric and mat and (tar, src) in mat: |
121
|
1 |
|
return mat[(tar, src)] |
122
|
1 |
|
return mismatch_cost |
123
|
|
|
|
124
|
1 |
View Code Duplication |
def dist_abs(self, src, tar, gap_cost=1, sim_func=sim_ident): |
|
|
|
|
125
|
|
|
"""Return the Needleman-Wunsch score of two strings. |
126
|
|
|
|
127
|
|
|
Args: |
128
|
|
|
src (str): Source string for comparison |
129
|
|
|
tar (str): Target string for comparison |
130
|
|
|
gap_cost (float): the cost of an alignment gap (1 by default) |
131
|
|
|
sim_func (function): a function that returns the similarity of two |
132
|
|
|
characters (identity similarity by default) |
133
|
|
|
|
134
|
|
|
Returns: |
135
|
|
|
float: Needleman-Wunsch score |
136
|
|
|
|
137
|
|
|
Examples: |
138
|
|
|
>>> cmp = NeedlemanWunsch() |
139
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
140
|
|
|
2.0 |
141
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
142
|
|
|
1.0 |
143
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
144
|
|
|
-1.0 |
145
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
146
|
|
|
0.0 |
147
|
|
|
|
148
|
|
|
""" |
149
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
150
|
|
|
|
151
|
1 |
|
for i in range(len(src) + 1): |
152
|
1 |
|
d_mat[i, 0] = -(i * gap_cost) |
153
|
1 |
|
for j in range(len(tar) + 1): |
154
|
1 |
|
d_mat[0, j] = -(j * gap_cost) |
155
|
1 |
|
for i in range(1, len(src) + 1): |
156
|
1 |
|
for j in range(1, len(tar) + 1): |
157
|
1 |
|
match = d_mat[i - 1, j - 1] + sim_func(src[i - 1], tar[j - 1]) |
158
|
1 |
|
delete = d_mat[i - 1, j] - gap_cost |
159
|
1 |
|
insert = d_mat[i, j - 1] - gap_cost |
160
|
1 |
|
d_mat[i, j] = max(match, delete, insert) |
161
|
1 |
|
return d_mat[d_mat.shape[0] - 1, d_mat.shape[1] - 1] |
162
|
|
|
|
163
|
|
|
|
164
|
1 |
|
def needleman_wunsch(src, tar, gap_cost=1, sim_func=sim_ident): |
165
|
|
|
"""Return the Needleman-Wunsch score of two strings. |
166
|
|
|
|
167
|
|
|
This is a wrapper for :py:meth:`NeedlemanWunsch.dist_abs`. |
168
|
|
|
|
169
|
|
|
Args: |
170
|
|
|
src (str): Source string for comparison |
171
|
|
|
tar (str): Target string for comparison |
172
|
|
|
gap_cost (float): the cost of an alignment gap (1 by default) |
173
|
|
|
sim_func (function): a function that returns the similarity of two |
174
|
|
|
characters (identity similarity by default) |
175
|
|
|
|
176
|
|
|
Returns: |
177
|
|
|
float: Needleman-Wunsch score |
178
|
|
|
|
179
|
|
|
Examples: |
180
|
|
|
>>> needleman_wunsch('cat', 'hat') |
181
|
|
|
2.0 |
182
|
|
|
>>> needleman_wunsch('Niall', 'Neil') |
183
|
|
|
1.0 |
184
|
|
|
>>> needleman_wunsch('aluminum', 'Catalan') |
185
|
|
|
-1.0 |
186
|
|
|
>>> needleman_wunsch('ATCG', 'TAGC') |
187
|
|
|
0.0 |
188
|
|
|
|
189
|
|
|
""" |
190
|
1 |
|
return NeedlemanWunsch().dist_abs(src, tar, gap_cost, sim_func) |
191
|
|
|
|
192
|
|
|
|
193
|
1 |
|
class SmithWaterman(NeedlemanWunsch): |
|
|
|
|
194
|
|
|
"""Smith-Waterman score. |
195
|
|
|
|
196
|
|
|
The Smith-Waterman score :cite:`Smith:1981` is a standard edit distance |
197
|
|
|
measure, differing from Needleman-Wunsch in that it focuses on local |
198
|
|
|
alignment and disallows negative scores. |
199
|
|
|
""" |
200
|
|
|
|
201
|
1 |
View Code Duplication |
def dist_abs(self, src, tar, gap_cost=1, sim_func=sim_ident): |
|
|
|
|
202
|
|
|
"""Return the Smith-Waterman score of two strings. |
203
|
|
|
|
204
|
|
|
Args: |
205
|
|
|
src (str): Source string for comparison |
206
|
|
|
tar (str): Target string for comparison |
207
|
|
|
gap_cost (float): the cost of an alignment gap (1 by default) |
208
|
|
|
sim_func (function): a function that returns the similarity of two |
209
|
|
|
characters (identity similarity by default) |
210
|
|
|
|
211
|
|
|
Returns: |
212
|
|
|
float: Smith-Waterman score |
213
|
|
|
|
214
|
|
|
Examples: |
215
|
|
|
>>> cmp = SmithWaterman() |
216
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
217
|
|
|
2.0 |
218
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
219
|
|
|
1.0 |
220
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
221
|
|
|
0.0 |
222
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
223
|
|
|
1.0 |
224
|
|
|
|
225
|
|
|
""" |
226
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
227
|
|
|
|
228
|
1 |
|
for i in range(len(src) + 1): |
229
|
1 |
|
d_mat[i, 0] = 0 |
230
|
1 |
|
for j in range(len(tar) + 1): |
231
|
1 |
|
d_mat[0, j] = 0 |
232
|
1 |
|
for i in range(1, len(src) + 1): |
233
|
1 |
|
for j in range(1, len(tar) + 1): |
234
|
1 |
|
match = d_mat[i - 1, j - 1] + sim_func(src[i - 1], tar[j - 1]) |
235
|
1 |
|
delete = d_mat[i - 1, j] - gap_cost |
236
|
1 |
|
insert = d_mat[i, j - 1] - gap_cost |
237
|
1 |
|
d_mat[i, j] = max(0, match, delete, insert) |
238
|
1 |
|
return d_mat[d_mat.shape[0] - 1, d_mat.shape[1] - 1] |
239
|
|
|
|
240
|
|
|
|
241
|
1 |
|
def smith_waterman(src, tar, gap_cost=1, sim_func=sim_ident): |
242
|
|
|
"""Return the Smith-Waterman score of two strings. |
243
|
|
|
|
244
|
|
|
This is a wrapper for :py:meth:`SmithWaterman.dist_abs`. |
245
|
|
|
|
246
|
|
|
Args: |
247
|
|
|
src (str): Source string for comparison |
248
|
|
|
tar (str): Target string for comparison |
249
|
|
|
gap_cost (float): the cost of an alignment gap (1 by default) |
250
|
|
|
sim_func (function): a function that returns the similarity of two |
251
|
|
|
characters (identity similarity by default) |
252
|
|
|
|
253
|
|
|
Returns: |
254
|
|
|
float: Smith-Waterman score |
255
|
|
|
|
256
|
|
|
Examples: |
257
|
|
|
>>> smith_waterman('cat', 'hat') |
258
|
|
|
2.0 |
259
|
|
|
>>> smith_waterman('Niall', 'Neil') |
260
|
|
|
1.0 |
261
|
|
|
>>> smith_waterman('aluminum', 'Catalan') |
262
|
|
|
0.0 |
263
|
|
|
>>> smith_waterman('ATCG', 'TAGC') |
264
|
|
|
1.0 |
265
|
|
|
|
266
|
|
|
""" |
267
|
1 |
|
return SmithWaterman().dist_abs(src, tar, gap_cost, sim_func) |
268
|
|
|
|
269
|
|
|
|
270
|
1 |
|
class Gotoh(NeedlemanWunsch): |
|
|
|
|
271
|
|
|
"""Gotoh score. |
272
|
|
|
|
273
|
|
|
The Gotoh score :cite:`Gotoh:1982` is essentially Needleman-Wunsch with |
274
|
|
|
affine gap penalties. |
275
|
|
|
""" |
276
|
|
|
|
277
|
1 |
|
def dist_abs(self, src, tar, gap_open=1, gap_ext=0.4, sim_func=sim_ident): |
|
|
|
|
278
|
|
|
"""Return the Gotoh score of two strings. |
279
|
|
|
|
280
|
|
|
Args: |
281
|
|
|
src (str): Source string for comparison |
282
|
|
|
tar (str): Target string for comparison |
283
|
|
|
gap_open (float): the cost of an open alignment gap (1 by default) |
284
|
|
|
gap_ext (float): the cost of an alignment gap extension (0.4 by |
285
|
|
|
default) |
286
|
|
|
sim_func (function): a function that returns the similarity of two |
287
|
|
|
characters (identity similarity by default) |
288
|
|
|
|
289
|
|
|
Returns: |
290
|
|
|
float: Gotoh score |
291
|
|
|
|
292
|
|
|
Examples: |
293
|
|
|
>>> cmp = Gotoh() |
294
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
295
|
|
|
2.0 |
296
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
297
|
|
|
1.0 |
298
|
|
|
>>> round(cmp.dist_abs('aluminum', 'Catalan'), 12) |
299
|
|
|
-0.4 |
300
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
301
|
|
|
2.0 |
302
|
|
|
|
303
|
|
|
""" |
304
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
305
|
1 |
|
p_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
306
|
1 |
|
q_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
307
|
|
|
|
308
|
1 |
|
d_mat[0, 0] = 0 |
309
|
1 |
|
p_mat[0, 0] = float('-inf') |
310
|
1 |
|
q_mat[0, 0] = float('-inf') |
311
|
1 |
|
for i in range(1, len(src) + 1): |
312
|
1 |
|
d_mat[i, 0] = float('-inf') |
313
|
1 |
|
p_mat[i, 0] = -gap_open - gap_ext * (i - 1) |
314
|
1 |
|
q_mat[i, 0] = float('-inf') |
315
|
1 |
|
q_mat[i, 1] = -gap_open |
316
|
1 |
|
for j in range(1, len(tar) + 1): |
317
|
1 |
|
d_mat[0, j] = float('-inf') |
318
|
1 |
|
p_mat[0, j] = float('-inf') |
319
|
1 |
|
p_mat[1, j] = -gap_open |
320
|
1 |
|
q_mat[0, j] = -gap_open - gap_ext * (j - 1) |
321
|
|
|
|
322
|
1 |
|
for i in range(1, len(src) + 1): |
323
|
1 |
|
for j in range(1, len(tar) + 1): |
324
|
1 |
|
sim_val = sim_func(src[i - 1], tar[j - 1]) |
325
|
1 |
|
d_mat[i, j] = max( |
326
|
|
|
d_mat[i - 1, j - 1] + sim_val, |
327
|
|
|
p_mat[i - 1, j - 1] + sim_val, |
328
|
|
|
q_mat[i - 1, j - 1] + sim_val, |
329
|
|
|
) |
330
|
|
|
|
331
|
1 |
|
p_mat[i, j] = max( |
332
|
|
|
d_mat[i - 1, j] - gap_open, p_mat[i - 1, j] - gap_ext |
333
|
|
|
) |
334
|
|
|
|
335
|
1 |
|
q_mat[i, j] = max( |
336
|
|
|
d_mat[i, j - 1] - gap_open, q_mat[i, j - 1] - gap_ext |
337
|
|
|
) |
338
|
|
|
|
339
|
1 |
|
i, j = (n - 1 for n in d_mat.shape) |
|
|
|
|
340
|
1 |
|
return max(d_mat[i, j], p_mat[i, j], q_mat[i, j]) |
341
|
|
|
|
342
|
|
|
|
343
|
1 |
|
def gotoh(src, tar, gap_open=1, gap_ext=0.4, sim_func=sim_ident): |
344
|
|
|
"""Return the Gotoh score of two strings. |
345
|
|
|
|
346
|
|
|
This is a wrapper for :py:meth:`Gotoh.dist_abs`. |
347
|
|
|
|
348
|
|
|
Args: |
349
|
|
|
src (str): Source string for comparison |
350
|
|
|
tar (str): Target string for comparison |
351
|
|
|
gap_open (float): the cost of an open alignment gap (1 by default) |
352
|
|
|
gap_ext (float): the cost of an alignment gap extension (0.4 by |
353
|
|
|
default) |
354
|
|
|
sim_func (function): a function that returns the similarity of two |
355
|
|
|
characters (identity similarity by default) |
356
|
|
|
|
357
|
|
|
Returns: |
358
|
|
|
float: Gotoh score |
359
|
|
|
|
360
|
|
|
Examples: |
361
|
|
|
>>> gotoh('cat', 'hat') |
362
|
|
|
2.0 |
363
|
|
|
>>> gotoh('Niall', 'Neil') |
364
|
|
|
1.0 |
365
|
|
|
>>> round(gotoh('aluminum', 'Catalan'), 12) |
366
|
|
|
-0.4 |
367
|
|
|
>>> gotoh('cat', 'hat') |
368
|
|
|
2.0 |
369
|
|
|
|
370
|
|
|
""" |
371
|
1 |
|
return Gotoh().dist_abs(src, tar, gap_open, gap_ext, sim_func) |
372
|
|
|
|
373
|
|
|
|
374
|
|
|
if __name__ == '__main__': |
375
|
|
|
import doctest |
376
|
|
|
|
377
|
|
|
doctest.testmod() |
378
|
|
|
|