1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance.levenshtein. |
20
|
|
|
|
21
|
|
|
The distance.levenshtein module implements string edit distance functions |
22
|
|
|
based on Levenshtein distance, including: |
23
|
|
|
|
24
|
|
|
- Levenshtein distance |
25
|
|
|
- Optimal String Alignment distance |
26
|
|
|
- Levenshtein-Damerau distance |
27
|
|
|
- Indel distance |
28
|
|
|
""" |
29
|
|
|
|
30
|
1 |
|
from __future__ import division, unicode_literals |
31
|
|
|
|
32
|
1 |
|
from sys import maxsize |
33
|
|
|
|
34
|
1 |
|
from numpy import int as np_int |
35
|
1 |
|
from numpy import zeros as np_zeros |
36
|
|
|
|
37
|
1 |
|
from six.moves import range |
38
|
|
|
|
39
|
1 |
|
from ._distance import Distance |
40
|
|
|
|
41
|
1 |
|
__all__ = [ |
42
|
|
|
'DamerauLevenshtein', |
43
|
|
|
'Indel', |
44
|
|
|
'Levenshtein', |
45
|
|
|
'damerau_levenshtein', |
46
|
|
|
'dist_damerau', |
47
|
|
|
'dist_indel', |
48
|
|
|
'dist_levenshtein', |
49
|
|
|
'levenshtein', |
50
|
|
|
'sim_damerau', |
51
|
|
|
'sim_indel', |
52
|
|
|
'sim_levenshtein', |
53
|
|
|
] |
54
|
|
|
|
55
|
|
|
|
56
|
1 |
|
class Levenshtein(Distance): |
|
|
|
|
57
|
|
|
"""Levenshtein distance. |
58
|
|
|
|
59
|
|
|
This is the standard edit distance measure. Cf. |
60
|
|
|
:cite:`Levenshtein:1965,Levenshtein:1966`. |
61
|
|
|
|
62
|
|
|
Optimal string alignment (aka restricted |
63
|
|
|
Damerau-Levenshtein distance) :cite:`Boytsov:2011` is also supported. |
64
|
|
|
|
65
|
|
|
The ordinary Levenshtein & Optimal String Alignment distance both |
66
|
|
|
employ the Wagner-Fischer dynamic programming algorithm |
67
|
|
|
:cite:`Wagner:1974`. |
68
|
|
|
|
69
|
|
|
Levenshtein edit distance ordinarily has unit insertion, deletion, and |
70
|
|
|
substitution costs. |
71
|
|
|
""" |
72
|
|
|
|
73
|
1 |
|
def dist_abs(self, src, tar, mode='lev', cost=(1, 1, 1, 1)): |
|
|
|
|
74
|
|
|
"""Return the Levenshtein distance between two strings. |
75
|
|
|
|
76
|
|
|
Args: |
77
|
|
|
src (str): Source string for comparison |
78
|
|
|
tar (str): Target string for comparison |
79
|
|
|
mode (str): Specifies a mode for computing the Levenshtein |
80
|
|
|
distance: |
81
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein |
82
|
|
|
distance, in which edits may include inserts, deletes, |
83
|
|
|
and substitutions |
84
|
|
|
- ``osa`` computes the Optimal String Alignment distance, |
85
|
|
|
in which edits may include inserts, deletes, |
86
|
|
|
substitutions, and transpositions but substrings may only |
87
|
|
|
be edited once |
88
|
|
|
cost (tuple): A 4-tuple representing the cost of the four possible |
89
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
90
|
|
|
respectively (by default: (1, 1, 1, 1)) |
91
|
|
|
|
92
|
|
|
Returns: |
93
|
|
|
int (may return a float if cost has float values): The Levenshtein |
94
|
|
|
distance between src & tar |
95
|
|
|
|
96
|
|
|
Examples: |
97
|
|
|
>>> cmp = Levenshtein() |
98
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
99
|
|
|
1 |
100
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
101
|
|
|
3 |
102
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
103
|
|
|
7 |
104
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
105
|
|
|
3 |
106
|
|
|
|
107
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC', mode='osa') |
108
|
|
|
2 |
109
|
|
|
>>> cmp.dist_abs('ACTG', 'TAGC', mode='osa') |
110
|
|
|
4 |
111
|
|
|
|
112
|
|
|
""" |
113
|
1 |
|
ins_cost, del_cost, sub_cost, trans_cost = cost |
114
|
|
|
|
115
|
1 |
|
if src == tar: |
116
|
1 |
|
return 0 |
117
|
1 |
|
if not src: |
118
|
1 |
|
return len(tar) * ins_cost |
119
|
1 |
|
if not tar: |
120
|
1 |
|
return len(src) * del_cost |
121
|
|
|
|
122
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_int) |
123
|
1 |
|
for i in range(len(src) + 1): |
124
|
1 |
|
d_mat[i, 0] = i * del_cost |
125
|
1 |
|
for j in range(len(tar) + 1): |
126
|
1 |
|
d_mat[0, j] = j * ins_cost |
127
|
|
|
|
128
|
1 |
|
for i in range(len(src)): |
|
|
|
|
129
|
1 |
|
for j in range(len(tar)): |
|
|
|
|
130
|
1 |
|
d_mat[i + 1, j + 1] = min( |
131
|
|
|
d_mat[i + 1, j] + ins_cost, # ins |
132
|
|
|
d_mat[i, j + 1] + del_cost, # del |
133
|
|
|
d_mat[i, j] |
134
|
|
|
+ (sub_cost if src[i] != tar[j] else 0), # sub/== |
135
|
|
|
) |
136
|
|
|
|
137
|
1 |
|
if mode == 'osa': |
138
|
1 |
|
if ( |
139
|
|
|
i + 1 > 1 |
|
|
|
|
140
|
|
|
and j + 1 > 1 |
|
|
|
|
141
|
|
|
and src[i] == tar[j - 1] |
|
|
|
|
142
|
|
|
and src[i - 1] == tar[j] |
|
|
|
|
143
|
|
|
): |
144
|
|
|
# transposition |
145
|
1 |
|
d_mat[i + 1, j + 1] = min( |
146
|
|
|
d_mat[i + 1, j + 1], |
147
|
|
|
d_mat[i - 1, j - 1] + trans_cost, |
148
|
|
|
) |
149
|
|
|
|
150
|
1 |
|
return d_mat[len(src), len(tar)] |
151
|
|
|
|
152
|
1 |
|
def dist(self, src, tar, mode='lev', cost=(1, 1, 1, 1)): |
|
|
|
|
153
|
|
|
"""Return the normalized Levenshtein distance between two strings. |
154
|
|
|
|
155
|
|
|
The Levenshtein distance is normalized by dividing the Levenshtein |
156
|
|
|
distance (calculated by any of the three supported methods) by the |
157
|
|
|
greater of the number of characters in src times the cost of a delete |
158
|
|
|
and the number of characters in tar times the cost of an insert. |
159
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
160
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
161
|
|
|
|
162
|
|
|
Args: |
163
|
|
|
src (str): Source string for comparison |
164
|
|
|
tar (str): Target string for comparison |
165
|
|
|
mode (str): specifies a mode for computing the Levenshtein |
166
|
|
|
distance: |
167
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein |
168
|
|
|
distance, in which edits may include inserts, deletes, |
169
|
|
|
and substitutions |
170
|
|
|
- ``osa`` computes the Optimal String Alignment distance, |
171
|
|
|
in which edits may include inserts, deletes, |
172
|
|
|
substitutions, and transpositions but substrings may only |
173
|
|
|
be edited once |
174
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
175
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
176
|
|
|
respectively (by default: (1, 1, 1, 1)) |
177
|
|
|
|
178
|
|
|
Returns: |
179
|
|
|
float: The normalized Levenshtein distance between src & tar |
180
|
|
|
|
181
|
|
|
Examples: |
182
|
|
|
>>> cmp = Levenshtein() |
183
|
|
|
>>> round(cmp.dist('cat', 'hat'), 12) |
184
|
|
|
0.333333333333 |
185
|
|
|
>>> round(cmp.dist('Niall', 'Neil'), 12) |
186
|
|
|
0.6 |
187
|
|
|
>>> cmp.dist('aluminum', 'Catalan') |
188
|
|
|
0.875 |
189
|
|
|
>>> cmp.dist('ATCG', 'TAGC') |
190
|
|
|
0.75 |
191
|
|
|
|
192
|
|
|
""" |
193
|
1 |
|
if src == tar: |
194
|
1 |
|
return 0 |
195
|
1 |
|
ins_cost, del_cost = cost[:2] |
196
|
1 |
|
return levenshtein(src, tar, mode, cost) / ( |
197
|
|
|
max(len(src) * del_cost, len(tar) * ins_cost) |
198
|
|
|
) |
199
|
|
|
|
200
|
|
|
|
201
|
1 |
|
def levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
202
|
|
|
"""Return the Levenshtein distance between two strings. |
203
|
|
|
|
204
|
|
|
Args: |
205
|
|
|
src (str): Source string for comparison |
206
|
|
|
tar (str): Target string for comparison |
207
|
|
|
mode (str): specifies a mode for computing the Levenshtein |
208
|
|
|
distance: |
209
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, |
210
|
|
|
in which edits may include inserts, deletes, and |
211
|
|
|
substitutions |
212
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in |
213
|
|
|
which edits may include inserts, deletes, substitutions, and |
214
|
|
|
transpositions but substrings may only be edited once |
215
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
216
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
217
|
|
|
respectively (by default: (1, 1, 1, 1)) |
218
|
|
|
|
219
|
|
|
Returns: |
220
|
|
|
int (may return a float if cost has float values): The Levenshtein |
221
|
|
|
distance between src & tar |
222
|
|
|
|
223
|
|
|
Examples: |
224
|
|
|
>>> levenshtein('cat', 'hat') |
225
|
|
|
1 |
226
|
|
|
>>> levenshtein('Niall', 'Neil') |
227
|
|
|
3 |
228
|
|
|
>>> levenshtein('aluminum', 'Catalan') |
229
|
|
|
7 |
230
|
|
|
>>> levenshtein('ATCG', 'TAGC') |
231
|
|
|
3 |
232
|
|
|
|
233
|
|
|
>>> levenshtein('ATCG', 'TAGC', mode='osa') |
234
|
|
|
2 |
235
|
|
|
>>> levenshtein('ACTG', 'TAGC', mode='osa') |
236
|
|
|
4 |
237
|
|
|
|
238
|
|
|
""" |
239
|
1 |
|
return Levenshtein().dist_abs(src, tar, mode, cost) |
240
|
|
|
|
241
|
|
|
|
242
|
1 |
|
def dist_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
243
|
|
|
"""Return the normalized Levenshtein distance between two strings. |
244
|
|
|
|
245
|
|
|
The Levenshtein distance is normalized by dividing the Levenshtein distance |
246
|
|
|
(calculated by any of the three supported methods) by the greater of |
247
|
|
|
the number of characters in src times the cost of a delete and |
248
|
|
|
the number of characters in tar times the cost of an insert. |
249
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
250
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
251
|
|
|
|
252
|
|
|
Args: |
253
|
|
|
src (str): Source string for comparison |
254
|
|
|
tar (str): Target string for comparison |
255
|
|
|
mode (str): specifies a mode for computing the Levenshtein |
256
|
|
|
distance: |
257
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, |
258
|
|
|
in which edits may include inserts, deletes, and |
259
|
|
|
substitutions |
260
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in |
261
|
|
|
which edits may include inserts, deletes, substitutions, and |
262
|
|
|
transpositions but substrings may only be edited once |
263
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
264
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
265
|
|
|
respectively (by default: (1, 1, 1, 1)) |
266
|
|
|
|
267
|
|
|
Returns: |
268
|
|
|
float: The Levenshtein distance between src & tar |
269
|
|
|
|
270
|
|
|
Examples: |
271
|
|
|
>>> round(dist_levenshtein('cat', 'hat'), 12) |
272
|
|
|
0.333333333333 |
273
|
|
|
>>> round(dist_levenshtein('Niall', 'Neil'), 12) |
274
|
|
|
0.6 |
275
|
|
|
>>> dist_levenshtein('aluminum', 'Catalan') |
276
|
|
|
0.875 |
277
|
|
|
>>> dist_levenshtein('ATCG', 'TAGC') |
278
|
|
|
0.75 |
279
|
|
|
|
280
|
|
|
""" |
281
|
1 |
|
return Levenshtein().dist(src, tar, mode, cost) |
282
|
|
|
|
283
|
|
|
|
284
|
1 |
|
def sim_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
285
|
|
|
"""Return the Levenshtein similarity of two strings. |
286
|
|
|
|
287
|
|
|
Normalized Levenshtein similarity is the complement of normalized |
288
|
|
|
Levenshtein distance: |
289
|
|
|
:math:`sim_{Levenshtein} = 1 - dist_{Levenshtein}`. |
290
|
|
|
|
291
|
|
|
Args: |
292
|
|
|
src (str): Source string for comparison |
293
|
|
|
tar (str): Target string for comparison |
294
|
|
|
mode (str): specifies a mode for computing the Levenshtein |
295
|
|
|
distance: |
296
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, |
297
|
|
|
in which edits may include inserts, deletes, and |
298
|
|
|
substitutions |
299
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in |
300
|
|
|
which edits may include inserts, deletes, substitutions, and |
301
|
|
|
transpositions but substrings may only be edited once |
302
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
303
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
304
|
|
|
respectively (by default: (1, 1, 1, 1)) |
305
|
|
|
|
306
|
|
|
Returns: |
307
|
|
|
float: The Levenshtein similarity between src & tar |
308
|
|
|
|
309
|
|
|
Examples: |
310
|
|
|
>>> round(sim_levenshtein('cat', 'hat'), 12) |
311
|
|
|
0.666666666667 |
312
|
|
|
>>> round(sim_levenshtein('Niall', 'Neil'), 12) |
313
|
|
|
0.4 |
314
|
|
|
>>> sim_levenshtein('aluminum', 'Catalan') |
315
|
|
|
0.125 |
316
|
|
|
>>> sim_levenshtein('ATCG', 'TAGC') |
317
|
|
|
0.25 |
318
|
|
|
|
319
|
|
|
""" |
320
|
1 |
|
return Levenshtein().sim(src, tar, mode, cost) |
321
|
|
|
|
322
|
|
|
|
323
|
1 |
|
class DamerauLevenshtein(Distance): |
|
|
|
|
324
|
|
|
"""Damerau-Levenshtein distance. |
325
|
|
|
|
326
|
|
|
This computes the Damerau-Levenshtein distance :cite:`Damerau:1964`. |
327
|
|
|
Damerau-Levenshtein code is based on Java code by Kevin L. Stern |
328
|
|
|
:cite:`Stern:2014`, under the MIT license: |
329
|
|
|
https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/string/DamerauLevenshteinAlgorithm.java |
330
|
|
|
""" |
331
|
|
|
|
332
|
1 |
|
def dist_abs(self, src, tar, cost=(1, 1, 1, 1)): |
|
|
|
|
333
|
|
|
"""Return the Damerau-Levenshtein distance between two strings. |
334
|
|
|
|
335
|
|
|
Args: |
336
|
|
|
src (str): Source string for comparison |
337
|
|
|
tar (str): Target string for comparison |
338
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
339
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
340
|
|
|
respectively (by default: (1, 1, 1, 1)) |
341
|
|
|
|
342
|
|
|
Returns: |
343
|
|
|
int (may return a float if cost has float values): The |
344
|
|
|
Damerau-Levenshtein distance between src & tar |
345
|
|
|
|
346
|
|
|
Raises: |
347
|
|
|
ValueError: Unsupported cost assignment; the cost of two |
348
|
|
|
transpositions must not be less than the cost of an insert plus |
349
|
|
|
a delete. |
350
|
|
|
|
351
|
|
|
Examples: |
352
|
|
|
>>> cmp = DamerauLevenshtein() |
353
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
354
|
|
|
1 |
355
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
356
|
|
|
3 |
357
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
358
|
|
|
7 |
359
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
360
|
|
|
2 |
361
|
|
|
|
362
|
|
|
""" |
363
|
1 |
|
ins_cost, del_cost, sub_cost, trans_cost = cost |
364
|
|
|
|
365
|
1 |
|
if src == tar: |
366
|
1 |
|
return 0 |
367
|
1 |
|
if not src: |
368
|
1 |
|
return len(tar) * ins_cost |
369
|
1 |
|
if not tar: |
370
|
1 |
|
return len(src) * del_cost |
371
|
|
|
|
372
|
1 |
|
if 2 * trans_cost < ins_cost + del_cost: |
373
|
1 |
|
raise ValueError( |
374
|
|
|
'Unsupported cost assignment; the cost of two transpositions ' |
375
|
|
|
+ 'must not be less than the cost of an insert plus a delete.' |
376
|
|
|
) |
377
|
|
|
|
378
|
1 |
|
d_mat = np_zeros((len(src)) * (len(tar)), dtype=np_int).reshape( |
379
|
|
|
(len(src), len(tar)) |
380
|
|
|
) |
381
|
|
|
|
382
|
1 |
|
if src[0] != tar[0]: |
383
|
1 |
|
d_mat[0, 0] = min(sub_cost, ins_cost + del_cost) |
384
|
|
|
|
385
|
1 |
|
src_index_by_character = {src[0]: 0} |
386
|
1 |
|
for i in range(1, len(src)): |
387
|
1 |
|
del_distance = d_mat[i - 1, 0] + del_cost |
388
|
1 |
|
ins_distance = (i + 1) * del_cost + ins_cost |
389
|
1 |
|
match_distance = i * del_cost + ( |
390
|
|
|
0 if src[i] == tar[0] else sub_cost |
391
|
|
|
) |
392
|
1 |
|
d_mat[i, 0] = min(del_distance, ins_distance, match_distance) |
393
|
|
|
|
394
|
1 |
|
for j in range(1, len(tar)): |
395
|
1 |
|
del_distance = (j + 1) * ins_cost + del_cost |
396
|
1 |
|
ins_distance = d_mat[0, j - 1] + ins_cost |
397
|
1 |
|
match_distance = j * ins_cost + ( |
398
|
|
|
0 if src[0] == tar[j] else sub_cost |
399
|
|
|
) |
400
|
1 |
|
d_mat[0, j] = min(del_distance, ins_distance, match_distance) |
401
|
|
|
|
402
|
1 |
|
for i in range(1, len(src)): |
403
|
1 |
|
max_src_letter_match_index = 0 if src[i] == tar[0] else -1 |
404
|
1 |
|
for j in range(1, len(tar)): |
405
|
1 |
|
candidate_swap_index = ( |
406
|
|
|
-1 |
407
|
|
|
if tar[j] not in src_index_by_character |
408
|
|
|
else src_index_by_character[tar[j]] |
409
|
|
|
) |
410
|
1 |
|
j_swap = max_src_letter_match_index |
411
|
1 |
|
del_distance = d_mat[i - 1, j] + del_cost |
412
|
1 |
|
ins_distance = d_mat[i, j - 1] + ins_cost |
413
|
1 |
|
match_distance = d_mat[i - 1, j - 1] |
414
|
1 |
|
if src[i] != tar[j]: |
415
|
1 |
|
match_distance += sub_cost |
416
|
|
|
else: |
417
|
1 |
|
max_src_letter_match_index = j |
418
|
|
|
|
419
|
1 |
|
if candidate_swap_index != -1 and j_swap != -1: |
420
|
1 |
|
i_swap = candidate_swap_index |
421
|
|
|
|
422
|
1 |
|
if i_swap == 0 and j_swap == 0: |
423
|
1 |
|
pre_swap_cost = 0 |
424
|
|
|
else: |
425
|
1 |
|
pre_swap_cost = d_mat[ |
426
|
|
|
max(0, i_swap - 1), max(0, j_swap - 1) |
427
|
|
|
] |
428
|
1 |
|
swap_distance = ( |
429
|
|
|
pre_swap_cost |
430
|
|
|
+ (i - i_swap - 1) * del_cost |
431
|
|
|
+ (j - j_swap - 1) * ins_cost |
432
|
|
|
+ trans_cost |
433
|
|
|
) |
434
|
|
|
else: |
435
|
1 |
|
swap_distance = maxsize |
436
|
|
|
|
437
|
1 |
|
d_mat[i, j] = min( |
438
|
|
|
del_distance, ins_distance, match_distance, swap_distance |
439
|
|
|
) |
440
|
1 |
|
src_index_by_character[src[i]] = i |
441
|
|
|
|
442
|
1 |
|
return d_mat[len(src) - 1, len(tar) - 1] |
443
|
|
|
|
444
|
1 |
|
def dist(self, src, tar, cost=(1, 1, 1, 1)): |
|
|
|
|
445
|
|
|
"""Return the Damerau-Levenshtein similarity of two strings. |
446
|
|
|
|
447
|
|
|
Damerau-Levenshtein distance normalized to the interval [0, 1]. |
448
|
|
|
|
449
|
|
|
The Damerau-Levenshtein distance is normalized by dividing the |
450
|
|
|
Damerau-Levenshtein distance by the greater of |
451
|
|
|
the number of characters in src times the cost of a delete and |
452
|
|
|
the number of characters in tar times the cost of an insert. |
453
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
454
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
455
|
|
|
|
456
|
|
|
Args: |
457
|
|
|
src (str): Source string for comparison |
458
|
|
|
tar (str): Target string for comparison |
459
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
460
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
461
|
|
|
respectively (by default: (1, 1, 1, 1)) |
462
|
|
|
|
463
|
|
|
Returns: |
464
|
|
|
float: The normalized Damerau-Levenshtein distance |
465
|
|
|
|
466
|
|
|
Examples: |
467
|
|
|
>>> cmp = DamerauLevenshtein() |
468
|
|
|
>>> round(cmp.dist('cat', 'hat'), 12) |
469
|
|
|
0.333333333333 |
470
|
|
|
>>> round(cmp.dist('Niall', 'Neil'), 12) |
471
|
|
|
0.6 |
472
|
|
|
>>> cmp.dist('aluminum', 'Catalan') |
473
|
|
|
0.875 |
474
|
|
|
>>> cmp.dist('ATCG', 'TAGC') |
475
|
|
|
0.5 |
476
|
|
|
|
477
|
|
|
""" |
478
|
1 |
|
if src == tar: |
479
|
1 |
|
return 0.0 |
480
|
1 |
|
ins_cost, del_cost = cost[:2] |
481
|
1 |
|
return self.dist_abs(src, tar, cost) / ( |
482
|
|
|
max(len(src) * del_cost, len(tar) * ins_cost) |
483
|
|
|
) |
484
|
|
|
|
485
|
|
|
|
486
|
1 |
|
def damerau_levenshtein(src, tar, cost=(1, 1, 1, 1)): |
487
|
|
|
"""Return the Damerau-Levenshtein distance between two strings. |
488
|
|
|
|
489
|
|
|
Args: |
490
|
|
|
src (str): Source string for comparison |
491
|
|
|
tar (str): Target string for comparison |
492
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
493
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
494
|
|
|
respectively (by default: (1, 1, 1, 1)) |
495
|
|
|
|
496
|
|
|
Returns: |
497
|
|
|
int (may return a float if cost has float values): The |
498
|
|
|
Damerau-Levenshtein distance between src & tar |
499
|
|
|
|
500
|
|
|
Examples: |
501
|
|
|
>>> damerau_levenshtein('cat', 'hat') |
502
|
|
|
1 |
503
|
|
|
>>> damerau_levenshtein('Niall', 'Neil') |
504
|
|
|
3 |
505
|
|
|
>>> damerau_levenshtein('aluminum', 'Catalan') |
506
|
|
|
7 |
507
|
|
|
>>> damerau_levenshtein('ATCG', 'TAGC') |
508
|
|
|
2 |
509
|
|
|
|
510
|
|
|
""" |
511
|
1 |
|
return DamerauLevenshtein().dist_abs(src, tar, cost) |
512
|
|
|
|
513
|
|
|
|
514
|
1 |
|
def dist_damerau(src, tar, cost=(1, 1, 1, 1)): |
515
|
|
|
"""Return the Damerau-Levenshtein similarity of two strings. |
516
|
|
|
|
517
|
|
|
Damerau-Levenshtein distance normalized to the interval [0, 1]. |
518
|
|
|
|
519
|
|
|
The Damerau-Levenshtein distance is normalized by dividing the |
520
|
|
|
Damerau-Levenshtein distance by the greater of |
521
|
|
|
the number of characters in src times the cost of a delete and |
522
|
|
|
the number of characters in tar times the cost of an insert. |
523
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
524
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
525
|
|
|
|
526
|
|
|
Args: |
527
|
|
|
src (str): Source string for comparison |
528
|
|
|
tar (str): Target string for comparison |
529
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
530
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
531
|
|
|
respectively (by default: (1, 1, 1, 1)) |
532
|
|
|
|
533
|
|
|
Returns: |
534
|
|
|
float: The normalized Damerau-Levenshtein distance |
535
|
|
|
|
536
|
|
|
Examples: |
537
|
|
|
>>> round(dist_damerau('cat', 'hat'), 12) |
538
|
|
|
0.333333333333 |
539
|
|
|
>>> round(dist_damerau('Niall', 'Neil'), 12) |
540
|
|
|
0.6 |
541
|
|
|
>>> dist_damerau('aluminum', 'Catalan') |
542
|
|
|
0.875 |
543
|
|
|
>>> dist_damerau('ATCG', 'TAGC') |
544
|
|
|
0.5 |
545
|
|
|
|
546
|
|
|
""" |
547
|
1 |
|
return DamerauLevenshtein().dist(src, tar, cost) |
548
|
|
|
|
549
|
|
|
|
550
|
1 |
|
def sim_damerau(src, tar, cost=(1, 1, 1, 1)): |
551
|
|
|
"""Return the Damerau-Levenshtein similarity of two strings. |
552
|
|
|
|
553
|
|
|
Normalized Damerau-Levenshtein similarity the complement of normalized |
554
|
|
|
Damerau-Levenshtein distance: |
555
|
|
|
:math:`sim_{Damerau} = 1 - dist_{Damerau}`. |
556
|
|
|
|
557
|
|
|
Args: |
558
|
|
|
src (str): Source string for comparison |
559
|
|
|
tar (str): Target string for comparison |
560
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
561
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
562
|
|
|
respectively (by default: (1, 1, 1, 1)) |
563
|
|
|
|
564
|
|
|
Returns: |
565
|
|
|
float: The normalized Damerau-Levenshtein similarity |
566
|
|
|
|
567
|
|
|
Examples: |
568
|
|
|
>>> round(sim_damerau('cat', 'hat'), 12) |
569
|
|
|
0.666666666667 |
570
|
|
|
>>> round(sim_damerau('Niall', 'Neil'), 12) |
571
|
|
|
0.4 |
572
|
|
|
>>> sim_damerau('aluminum', 'Catalan') |
573
|
|
|
0.125 |
574
|
|
|
>>> sim_damerau('ATCG', 'TAGC') |
575
|
|
|
0.5 |
576
|
|
|
|
577
|
|
|
""" |
578
|
1 |
|
return DamerauLevenshtein().sim(src, tar, cost) |
579
|
|
|
|
580
|
|
|
|
581
|
1 |
|
class Indel(Distance): |
|
|
|
|
582
|
|
|
"""Indel distance. |
583
|
|
|
|
584
|
|
|
This is equivalent to Levenshtein distance, when only inserts and deletes |
585
|
|
|
are possible. |
586
|
|
|
""" |
587
|
|
|
|
588
|
1 |
|
_lev = Levenshtein() |
589
|
|
|
|
590
|
1 |
|
def dist_abs(self, src, tar): |
|
|
|
|
591
|
|
|
"""Return the indel distance between two strings. |
592
|
|
|
|
593
|
|
|
Args: |
594
|
|
|
src (str): Source string for comparison |
595
|
|
|
tar (str): Target string for comparison |
596
|
|
|
|
597
|
|
|
Returns: |
598
|
|
|
int: Indel distance |
599
|
|
|
|
600
|
|
|
Examples: |
601
|
|
|
>>> cmp = Indel() |
602
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
603
|
|
|
2 |
604
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
605
|
|
|
3 |
606
|
|
|
>>> cmp.dist_abs('Colin', 'Cuilen') |
607
|
|
|
5 |
608
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
609
|
|
|
4 |
610
|
|
|
|
611
|
|
|
""" |
612
|
1 |
|
return self._lev.dist_abs( |
613
|
|
|
src, tar, mode='lev', cost=(1, 1, 9999, 9999) |
614
|
|
|
) |
615
|
|
|
|
616
|
1 |
|
def dist(self, src, tar): |
|
|
|
|
617
|
|
|
"""Return the normalized indel distance between two strings. |
618
|
|
|
|
619
|
|
|
This is equivalent to normalized Levenshtein distance, when only |
620
|
|
|
inserts and deletes are possible. |
621
|
|
|
|
622
|
|
|
Args: |
623
|
|
|
src (str): Source string for comparison |
624
|
|
|
tar (str): Target string for comparison |
625
|
|
|
|
626
|
|
|
Returns: |
627
|
|
|
float: Normalized indel distance |
628
|
|
|
|
629
|
|
|
Examples: |
630
|
|
|
>>> cmp = Indel() |
631
|
|
|
>>> round(cmp.dist('cat', 'hat'), 12) |
632
|
|
|
0.333333333333 |
633
|
|
|
>>> round(cmp.dist('Niall', 'Neil'), 12) |
634
|
|
|
0.333333333333 |
635
|
|
|
>>> round(cmp.dist('Colin', 'Cuilen'), 12) |
636
|
|
|
0.454545454545 |
637
|
|
|
>>> cmp.dist('ATCG', 'TAGC') |
638
|
|
|
0.5 |
639
|
|
|
|
640
|
|
|
""" |
641
|
1 |
|
if src == tar: |
642
|
1 |
|
return 0.0 |
643
|
1 |
|
return self.dist_abs(src, tar) / (len(src) + len(tar)) |
644
|
|
|
|
645
|
|
|
|
646
|
1 |
|
def indel(src, tar): |
647
|
|
|
"""Return the indel distance between two strings. |
648
|
|
|
|
649
|
|
|
Args: |
650
|
|
|
src (str): Source string for comparison |
651
|
|
|
tar (str): Target string for comparison |
652
|
|
|
|
653
|
|
|
Returns: |
654
|
|
|
int: Indel distance |
655
|
|
|
|
656
|
|
|
Examples: |
657
|
|
|
>>> indel('cat', 'hat') |
658
|
|
|
2 |
659
|
|
|
>>> indel('Niall', 'Neil') |
660
|
|
|
3 |
661
|
|
|
>>> indel('Colin', 'Cuilen') |
662
|
|
|
5 |
663
|
|
|
>>> indel('ATCG', 'TAGC') |
664
|
|
|
4 |
665
|
|
|
|
666
|
|
|
""" |
667
|
|
|
return Indel().dist_abs(src, tar) |
668
|
|
|
|
669
|
|
|
|
670
|
1 |
|
def dist_indel(src, tar): |
671
|
|
|
"""Return the normalized indel distance between two strings. |
672
|
|
|
|
673
|
|
|
This is equivalent to normalized Levenshtein distance, when only inserts |
674
|
|
|
and deletes are possible. |
675
|
|
|
|
676
|
|
|
Args: |
677
|
|
|
src (str): Source string for comparison |
678
|
|
|
tar (str): Target string for comparison |
679
|
|
|
|
680
|
|
|
Returns: |
681
|
|
|
float: Normalized indel distance |
682
|
|
|
|
683
|
|
|
Examples: |
684
|
|
|
>>> round(dist_indel('cat', 'hat'), 12) |
685
|
|
|
0.333333333333 |
686
|
|
|
>>> round(dist_indel('Niall', 'Neil'), 12) |
687
|
|
|
0.333333333333 |
688
|
|
|
>>> round(dist_indel('Colin', 'Cuilen'), 12) |
689
|
|
|
0.454545454545 |
690
|
|
|
>>> dist_indel('ATCG', 'TAGC') |
691
|
|
|
0.5 |
692
|
|
|
|
693
|
|
|
""" |
694
|
1 |
|
return Indel().dist(src, tar) |
695
|
|
|
|
696
|
|
|
|
697
|
1 |
|
def sim_indel(src, tar): |
698
|
|
|
"""Return the normalized indel similarity of two strings. |
699
|
|
|
|
700
|
|
|
This is equivalent to normalized Levenshtein similarity, when only inserts |
701
|
|
|
and deletes are possible. |
702
|
|
|
|
703
|
|
|
Args: |
704
|
|
|
src (str): Source string for comparison |
705
|
|
|
tar (str): Target string for comparison |
706
|
|
|
|
707
|
|
|
Returns: |
708
|
|
|
float: Normalized indel similarity |
709
|
|
|
|
710
|
|
|
Examples: |
711
|
|
|
>>> round(sim_indel('cat', 'hat'), 12) |
712
|
|
|
0.666666666667 |
713
|
|
|
>>> round(sim_indel('Niall', 'Neil'), 12) |
714
|
|
|
0.666666666667 |
715
|
|
|
>>> round(sim_indel('Colin', 'Cuilen'), 12) |
716
|
|
|
0.545454545455 |
717
|
|
|
>>> sim_indel('ATCG', 'TAGC') |
718
|
|
|
0.5 |
719
|
|
|
|
720
|
|
|
""" |
721
|
1 |
|
return Indel().sim(src, tar) |
722
|
|
|
|
723
|
|
|
|
724
|
|
|
if __name__ == '__main__': |
725
|
|
|
import doctest |
726
|
|
|
|
727
|
|
|
doctest.testmod() |
728
|
|
|
|