|
1
|
|
|
# Copyright 2014-2020 by Christopher C. Little. |
|
2
|
|
|
# This file is part of Abydos. |
|
3
|
|
|
# |
|
4
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
|
5
|
|
|
# it under the terms of the GNU General Public License as published by |
|
6
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
|
7
|
|
|
# (at your option) any later version. |
|
8
|
|
|
# |
|
9
|
|
|
# Abydos is distributed in the hope that it will be useful, |
|
10
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
11
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
12
|
|
|
# GNU General Public License for more details. |
|
13
|
|
|
# |
|
14
|
|
|
# You should have received a copy of the GNU General Public License |
|
15
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
|
16
|
|
|
|
|
17
|
|
|
"""abydos.distance._jaro_winkler. |
|
18
|
|
|
|
|
19
|
1 |
|
The distance._JaroWinkler module implements distance metrics based on |
|
20
|
|
|
:cite:`Jaro:1989` and subsequent works: |
|
21
|
|
|
|
|
22
|
|
|
- Jaro distance |
|
23
|
|
|
- Jaro-Winkler distance |
|
24
|
|
|
""" |
|
25
|
|
|
|
|
26
|
|
|
from ._distance import _Distance |
|
27
|
|
|
from ..tokenizer import QGrams |
|
28
|
1 |
|
|
|
29
|
|
|
__all__ = ['JaroWinkler'] |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
class JaroWinkler(_Distance): |
|
33
|
|
|
"""Jaro-Winkler distance. |
|
34
|
|
|
|
|
35
|
1 |
|
Jaro(-Winkler) distance is a string edit distance initially proposed by |
|
36
|
|
|
Jaro and extended by Winkler :cite:`Jaro:1989,Winkler:1990`. |
|
37
|
1 |
|
|
|
38
|
|
|
This is Python based on the C code for strcmp95: |
|
39
|
1 |
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
|
40
|
1 |
|
:cite:`Winkler:1994`. The above file is a US Government publication and, |
|
41
|
1 |
|
accordingly, in the public domain. |
|
42
|
|
|
|
|
43
|
1 |
|
.. versionadded:: 0.3.6 |
|
44
|
|
|
""" |
|
45
|
|
|
|
|
46
|
1 |
|
def __init__( |
|
47
|
|
|
self, |
|
48
|
|
|
qval=1, |
|
49
|
|
|
mode='winkler', |
|
50
|
|
|
long_strings=False, |
|
51
|
|
|
boost_threshold=0.7, |
|
52
|
|
|
scaling_factor=0.1, |
|
53
|
|
|
**kwargs |
|
54
|
|
|
): |
|
55
|
|
|
"""Initialize JaroWinkler instance. |
|
56
|
|
|
|
|
57
|
|
|
Parameters |
|
58
|
|
|
---------- |
|
59
|
|
|
qval : int |
|
60
|
1 |
|
The length of each q-gram (defaults to 1: character-wise matching) |
|
61
|
|
|
mode : str |
|
62
|
|
|
Indicates which variant of this distance metric to compute: |
|
63
|
|
|
|
|
64
|
|
|
- ``winkler`` -- computes the Jaro-Winkler distance (default) |
|
65
|
|
|
which increases the score for matches near the start of the |
|
66
|
|
|
word |
|
67
|
|
|
- ``jaro`` -- computes the Jaro distance |
|
68
|
|
|
|
|
69
|
|
|
long_strings : bool |
|
70
|
|
|
Set to True to "Increase the probability of a match when the number |
|
71
|
|
|
of matched characters is large. This option allows for a little |
|
72
|
|
|
more tolerance when the strings are large. It is not an appropriate |
|
73
|
|
|
test when comparing fixed length fields such as phone and social |
|
74
|
|
|
security numbers." (Used in 'winkler' mode only.) |
|
75
|
|
|
boost_threshold : float |
|
76
|
|
|
A value between 0 and 1, below which the Winkler boost is not |
|
77
|
|
|
applied (defaults to 0.7). (Used in 'winkler' mode only.) |
|
78
|
|
|
scaling_factor : float |
|
79
|
|
|
A value between 0 and 0.25, indicating by how much to boost scores |
|
80
|
|
|
for matching prefixes (defaults to 0.1). (Used in 'winkler' mode |
|
81
|
|
|
only.) |
|
82
|
|
|
|
|
83
|
|
|
|
|
84
|
|
|
.. versionadded:: 0.4.0 |
|
85
|
|
|
|
|
86
|
|
|
""" |
|
87
|
|
|
super(JaroWinkler, self).__init__(**kwargs) |
|
88
|
|
|
self._qval = qval |
|
89
|
|
|
self._mode = mode |
|
90
|
|
|
self._long_strings = long_strings |
|
91
|
|
|
self._boost_threshold = boost_threshold |
|
92
|
|
|
self._scaling_factor = scaling_factor |
|
93
|
|
|
|
|
94
|
|
|
def sim(self, src, tar): |
|
95
|
|
|
"""Return the Jaro or Jaro-Winkler similarity of two strings. |
|
96
|
|
|
|
|
97
|
|
|
Parameters |
|
98
|
|
|
---------- |
|
99
|
|
|
src : str |
|
100
|
|
|
Source string for comparison |
|
101
|
1 |
|
tar : str |
|
102
|
1 |
|
Target string for comparison |
|
103
|
1 |
|
|
|
104
|
1 |
|
Returns |
|
105
|
1 |
|
------- |
|
106
|
1 |
|
float |
|
107
|
|
|
Jaro or Jaro-Winkler similarity |
|
108
|
1 |
|
|
|
109
|
|
|
Raises |
|
110
|
|
|
------ |
|
111
|
|
|
ValueError |
|
112
|
|
|
Unsupported boost_threshold assignment; boost_threshold must be |
|
113
|
|
|
between 0 and 1. |
|
114
|
|
|
ValueError |
|
115
|
|
|
Unsupported scaling_factor assignment; scaling_factor must be |
|
116
|
|
|
between 0 and 0.25.' |
|
117
|
|
|
|
|
118
|
|
|
Examples |
|
119
|
|
|
-------- |
|
120
|
|
|
>>> cmp = JaroWinkler() |
|
121
|
|
|
>>> round(cmp.sim('cat', 'hat'), 12) |
|
122
|
|
|
0.777777777778 |
|
123
|
|
|
>>> round(cmp.sim('Niall', 'Neil'), 12) |
|
124
|
|
|
0.805 |
|
125
|
|
|
>>> round(cmp.sim('aluminum', 'Catalan'), 12) |
|
126
|
|
|
0.60119047619 |
|
127
|
|
|
>>> round(cmp.sim('ATCG', 'TAGC'), 12) |
|
128
|
|
|
0.833333333333 |
|
129
|
|
|
|
|
130
|
|
|
>>> cmp = JaroWinkler(mode='jaro') |
|
131
|
|
|
>>> round(cmp.sim('cat', 'hat'), 12) |
|
132
|
|
|
0.777777777778 |
|
133
|
|
|
>>> round(cmp.sim('Niall', 'Neil'), 12) |
|
134
|
|
|
0.783333333333 |
|
135
|
|
|
>>> round(cmp.sim('aluminum', 'Catalan'), 12) |
|
136
|
|
|
0.60119047619 |
|
137
|
|
|
>>> round(cmp.sim('ATCG', 'TAGC'), 12) |
|
138
|
|
|
0.833333333333 |
|
139
|
|
|
|
|
140
|
|
|
|
|
141
|
|
|
.. versionadded:: 0.1.0 |
|
142
|
|
|
.. versionchanged:: 0.3.6 |
|
143
|
|
|
Encapsulated in class |
|
144
|
|
|
|
|
145
|
|
|
""" |
|
146
|
|
|
if self._mode == 'winkler': |
|
147
|
|
|
if self._boost_threshold > 1 or self._boost_threshold < 0: |
|
148
|
|
|
raise ValueError( |
|
149
|
|
|
'Unsupported boost_threshold assignment; ' |
|
150
|
|
|
+ 'boost_threshold must be between 0 and 1.' |
|
151
|
|
|
) |
|
152
|
|
|
if self._scaling_factor > 0.25 or self._scaling_factor < 0: |
|
153
|
|
|
raise ValueError( |
|
154
|
|
|
'Unsupported scaling_factor assignment; ' |
|
155
|
|
|
+ 'scaling_factor must be between 0 and 0.25.' |
|
156
|
|
|
) |
|
157
|
|
|
|
|
158
|
1 |
|
if src == tar: |
|
159
|
1 |
|
return 1.0 |
|
160
|
1 |
|
|
|
161
|
|
|
src = QGrams(self._qval).tokenize(src.strip()).get_list() |
|
162
|
|
|
tar = QGrams(self._qval).tokenize(tar.strip()).get_list() |
|
163
|
|
|
|
|
164
|
1 |
|
lens = len(src) |
|
165
|
1 |
|
lent = len(tar) |
|
166
|
|
|
|
|
167
|
|
|
# If either string is blank - return - added in Version 2 |
|
168
|
|
|
if lens == 0 or lent == 0: |
|
169
|
|
|
return 0.0 |
|
170
|
1 |
|
|
|
171
|
1 |
|
if lens > lent: |
|
172
|
|
|
search_range = lens |
|
173
|
1 |
|
minv = lent |
|
174
|
1 |
|
else: |
|
175
|
|
|
search_range = lent |
|
176
|
1 |
|
minv = lens |
|
177
|
1 |
|
|
|
178
|
|
|
# Zero out the flags |
|
179
|
|
|
src_flag = [0] * search_range |
|
180
|
1 |
|
tar_flag = [0] * search_range |
|
181
|
1 |
|
search_range = max(0, search_range // 2 - 1) |
|
182
|
|
|
|
|
183
|
1 |
|
# Looking only within the search range, |
|
184
|
1 |
|
# count and flag the matched pairs. |
|
185
|
1 |
|
num_com = 0 |
|
186
|
|
|
yl1 = lent - 1 |
|
187
|
1 |
|
for i in range(lens): |
|
188
|
1 |
|
low_lim = (i - search_range) if (i >= search_range) else 0 |
|
189
|
|
|
hi_lim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
|
190
|
|
|
for j in range(low_lim, hi_lim + 1): |
|
191
|
1 |
|
if (tar_flag[j] == 0) and (tar[j] == src[i]): |
|
192
|
1 |
|
tar_flag[j] = 1 |
|
193
|
1 |
|
src_flag[i] = 1 |
|
194
|
|
|
num_com += 1 |
|
195
|
|
|
break |
|
196
|
|
|
|
|
197
|
1 |
|
# If no characters in common - return |
|
198
|
1 |
|
if num_com == 0: |
|
199
|
1 |
|
return 0.0 |
|
200
|
1 |
|
|
|
201
|
1 |
|
# Count the number of transpositions |
|
202
|
1 |
|
k = n_trans = 0 |
|
203
|
1 |
|
for i in range(lens): |
|
204
|
1 |
|
if src_flag[i] != 0: |
|
205
|
1 |
|
j = 0 |
|
206
|
1 |
|
for j in range(k, lent): # pragma: no branch |
|
207
|
1 |
|
if tar_flag[j] != 0: |
|
208
|
|
|
k = j + 1 |
|
209
|
|
|
break |
|
210
|
1 |
|
if src[i] != tar[j]: |
|
211
|
1 |
|
n_trans += 1 |
|
212
|
|
|
n_trans //= 2 |
|
213
|
|
|
|
|
214
|
1 |
|
# Main weight computation for Jaro distance |
|
215
|
1 |
|
weight = ( |
|
216
|
1 |
|
num_com / lens + num_com / lent + (num_com - n_trans) / num_com |
|
217
|
1 |
|
) |
|
218
|
1 |
|
weight /= 3.0 |
|
219
|
1 |
|
|
|
220
|
1 |
|
# Continue to boost the weight if the strings are similar |
|
221
|
1 |
|
# This is the Winkler portion of Jaro-Winkler distance |
|
222
|
1 |
|
if self._mode == 'winkler' and weight > self._boost_threshold: |
|
223
|
1 |
|
|
|
224
|
1 |
|
# Adjust for having up to the first 4 characters in common |
|
225
|
|
|
j = 4 if (minv >= 4) else minv |
|
226
|
|
|
i = 0 |
|
227
|
1 |
|
while (i < j) and (src[i] == tar[i]): |
|
228
|
|
|
i += 1 |
|
229
|
|
|
weight += i * self._scaling_factor * (1.0 - weight) |
|
230
|
1 |
|
|
|
231
|
|
|
# Optionally adjust for long strings. |
|
232
|
|
|
|
|
233
|
|
|
# After agreeing beginning chars, at least two more must agree and |
|
234
|
1 |
|
# the agreeing characters must be > .5 of remaining characters. |
|
235
|
|
|
if ( |
|
236
|
|
|
self._long_strings |
|
237
|
1 |
|
and (minv > 4) |
|
238
|
1 |
|
and (num_com > i + 1) |
|
239
|
1 |
|
and (2 * num_com >= minv + i) |
|
240
|
1 |
|
): |
|
241
|
1 |
|
weight += (1.0 - weight) * ( |
|
242
|
|
|
(num_com - i - 1) / (lens + lent - i * 2 + 2) |
|
243
|
|
|
) |
|
244
|
|
|
|
|
245
|
|
|
return weight |
|
246
|
|
|
|
|
247
|
1 |
|
|
|
248
|
|
|
if __name__ == '__main__': |
|
249
|
|
|
import doctest |
|
250
|
|
|
|
|
251
|
|
|
doctest.testmod() |
|
252
|
|
|
|