Conditions | 13 |
Total Lines | 178 |
Code Lines | 64 |
Lines | 0 |
Ratio | 0 % |
Tests | 47 |
CRAP Score | 13 |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like abydos.distance._typo.Typo.dist_abs() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
94 | 1 | def dist_abs( |
|
95 | self, |
||
96 | src, |
||
97 | tar, |
||
98 | metric='euclidean', |
||
99 | cost=(1, 1, 0.5, 0.5), |
||
100 | layout='QWERTY', |
||
101 | ): |
||
102 | """Return the typo distance between two strings. |
||
103 | |||
104 | Parameters |
||
105 | ---------- |
||
106 | src : str |
||
107 | Source string for comparison |
||
108 | tar : str |
||
109 | Target string for comparison |
||
110 | metric : str |
||
111 | Supported values include: ``euclidean``, ``manhattan``, |
||
112 | ``log-euclidean``, and ``log-manhattan`` |
||
113 | cost : tuple |
||
114 | A 4-tuple representing the cost of the four possible edits: |
||
115 | inserts, deletes, substitutions, and shift, respectively (by |
||
116 | default: (1, 1, 0.5, 0.5)) The substitution & shift costs should be |
||
117 | significantly less than the cost of an insertion & deletion unless |
||
118 | a log metric is used. |
||
119 | layout : str |
||
120 | Name of the keyboard layout to use (Currently supported: |
||
121 | ``QWERTY``, ``Dvorak``, ``AZERTY``, ``QWERTZ``) |
||
122 | |||
123 | Returns |
||
124 | ------- |
||
125 | float |
||
126 | Typo distance |
||
127 | |||
128 | Raises |
||
129 | ------ |
||
130 | ValueError |
||
131 | char not found in any keyboard layouts |
||
132 | |||
133 | Examples |
||
134 | -------- |
||
135 | >>> cmp = Typo() |
||
136 | >>> cmp.dist_abs('cat', 'hat') |
||
137 | 1.5811388 |
||
138 | >>> cmp.dist_abs('Niall', 'Neil') |
||
139 | 2.8251407 |
||
140 | >>> cmp.dist_abs('Colin', 'Cuilen') |
||
141 | 3.4142137 |
||
142 | >>> cmp.dist_abs('ATCG', 'TAGC') |
||
143 | 2.5 |
||
144 | |||
145 | >>> cmp.dist_abs('cat', 'hat', metric='manhattan') |
||
146 | 2.0 |
||
147 | >>> cmp.dist_abs('Niall', 'Neil', metric='manhattan') |
||
148 | 3.0 |
||
149 | >>> cmp.dist_abs('Colin', 'Cuilen', metric='manhattan') |
||
150 | 3.5 |
||
151 | >>> cmp.dist_abs('ATCG', 'TAGC', metric='manhattan') |
||
152 | 2.5 |
||
153 | |||
154 | >>> cmp.dist_abs('cat', 'hat', metric='log-manhattan') |
||
155 | 0.804719 |
||
156 | >>> cmp.dist_abs('Niall', 'Neil', metric='log-manhattan') |
||
157 | 2.2424533 |
||
158 | >>> cmp.dist_abs('Colin', 'Cuilen', metric='log-manhattan') |
||
159 | 2.2424533 |
||
160 | >>> cmp.dist_abs('ATCG', 'TAGC', metric='log-manhattan') |
||
161 | 2.3465736 |
||
162 | |||
163 | """ |
||
164 | 1 | ins_cost, del_cost, sub_cost, shift_cost = cost |
|
165 | |||
166 | 1 | if src == tar: |
|
167 | 1 | return 0.0 |
|
168 | 1 | if not src: |
|
169 | 1 | return len(tar) * ins_cost |
|
170 | 1 | if not tar: |
|
171 | 1 | return len(src) * del_cost |
|
172 | |||
173 | 1 | keyboard = self._keyboard[layout] |
|
174 | 1 | lowercase = {item for sublist in keyboard[0] for item in sublist} |
|
175 | 1 | uppercase = {item for sublist in keyboard[1] for item in sublist} |
|
176 | |||
177 | 1 | def _kb_array_for_char(char): |
|
178 | """Return the keyboard layout that contains ch. |
||
179 | |||
180 | Parameters |
||
181 | ---------- |
||
182 | char : str |
||
183 | The character to lookup |
||
184 | |||
185 | Returns |
||
186 | ------- |
||
187 | tuple |
||
188 | A keyboard |
||
189 | |||
190 | Raises |
||
191 | ------ |
||
192 | ValueError |
||
193 | char not found in any keyboard layouts |
||
194 | |||
195 | """ |
||
196 | 1 | if char in lowercase: |
|
197 | 1 | return keyboard[0] |
|
198 | 1 | elif char in uppercase: |
|
199 | 1 | return keyboard[1] |
|
200 | 1 | raise ValueError(char + ' not found in any keyboard layouts') |
|
201 | |||
202 | 1 | def _substitution_cost(char1, char2): |
|
203 | 1 | cost = sub_cost |
|
204 | 1 | cost *= metric_dict[metric](char1, char2) + shift_cost * ( |
|
205 | _kb_array_for_char(char1) != _kb_array_for_char(char2) |
||
206 | ) |
||
207 | 1 | return cost |
|
208 | |||
209 | 1 | def _get_char_coord(char, kb_array): |
|
210 | """Return the row & column of char in the keyboard. |
||
211 | |||
212 | Parameters |
||
213 | ---------- |
||
214 | char : str |
||
215 | The character to search for |
||
216 | kb_array : tuple of tuples |
||
217 | The array of key positions |
||
218 | |||
219 | Returns |
||
220 | ------- |
||
221 | tuple |
||
222 | The row & column of the key |
||
223 | |||
224 | """ |
||
225 | 1 | for row in kb_array: # pragma: no branch |
|
226 | 1 | if char in row: |
|
227 | 1 | return kb_array.index(row), row.index(char) |
|
228 | |||
229 | 1 | def _euclidean_keyboard_distance(char1, char2): |
|
230 | 1 | row1, col1 = _get_char_coord(char1, _kb_array_for_char(char1)) |
|
231 | 1 | row2, col2 = _get_char_coord(char2, _kb_array_for_char(char2)) |
|
232 | 1 | return ((row1 - row2) ** 2 + (col1 - col2) ** 2) ** 0.5 |
|
233 | |||
234 | 1 | def _manhattan_keyboard_distance(char1, char2): |
|
235 | 1 | row1, col1 = _get_char_coord(char1, _kb_array_for_char(char1)) |
|
236 | 1 | row2, col2 = _get_char_coord(char2, _kb_array_for_char(char2)) |
|
237 | 1 | return abs(row1 - row2) + abs(col1 - col2) |
|
238 | |||
239 | 1 | def _log_euclidean_keyboard_distance(char1, char2): |
|
240 | 1 | return log(1 + _euclidean_keyboard_distance(char1, char2)) |
|
241 | |||
242 | 1 | def _log_manhattan_keyboard_distance(char1, char2): |
|
243 | 1 | return log(1 + _manhattan_keyboard_distance(char1, char2)) |
|
244 | |||
245 | 1 | metric_dict = { |
|
246 | 'euclidean': _euclidean_keyboard_distance, |
||
247 | 'manhattan': _manhattan_keyboard_distance, |
||
248 | 'log-euclidean': _log_euclidean_keyboard_distance, |
||
249 | 'log-manhattan': _log_manhattan_keyboard_distance, |
||
250 | } |
||
251 | |||
252 | 1 | d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
|
253 | 1 | for i in range(len(src) + 1): |
|
254 | 1 | d_mat[i, 0] = i * del_cost |
|
255 | 1 | for j in range(len(tar) + 1): |
|
256 | 1 | d_mat[0, j] = j * ins_cost |
|
257 | |||
258 | 1 | for i in range(len(src)): |
|
259 | 1 | for j in range(len(tar)): |
|
260 | 1 | d_mat[i + 1, j + 1] = min( |
|
261 | d_mat[i + 1, j] + ins_cost, # ins |
||
262 | d_mat[i, j + 1] + del_cost, # del |
||
263 | d_mat[i, j] |
||
264 | + ( |
||
265 | _substitution_cost(src[i], tar[j]) |
||
266 | if src[i] != tar[j] |
||
267 | else 0 |
||
268 | ), # sub/== |
||
269 | ) |
||
270 | |||
271 | 1 | return d_mat[len(src), len(tar)] |
|
272 | |||
488 |