1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
|
|
"""abydos.clustering. |
20
|
|
|
|
21
|
|
|
The clustering module implements clustering algorithms such as: |
22
|
|
|
- string fingerprint |
23
|
|
|
- q-gram fingerprint |
24
|
|
|
- phonetic fingerprint |
25
|
|
|
- skeleton key |
26
|
|
|
- omission key |
27
|
|
|
""" |
28
|
|
|
|
29
|
|
|
from __future__ import division, unicode_literals |
30
|
|
|
|
31
|
|
|
import unicodedata |
32
|
|
|
from collections import Counter |
33
|
|
|
|
34
|
|
|
from six import text_type |
35
|
|
|
from six.moves import range |
36
|
|
|
|
37
|
|
|
from .distance import sim |
38
|
|
|
from .phonetic import double_metaphone |
39
|
|
|
from .qgram import QGrams |
40
|
|
|
from .stats import hmean |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
def fingerprint(phrase): |
44
|
|
|
"""Return string fingerprint. |
45
|
|
|
|
46
|
|
|
The fingerprint of a string is a string consisting of all of the unique |
47
|
|
|
words in a string, alphabetized & concatenated with intervening spaces |
48
|
|
|
|
49
|
|
|
:param str phrase: the string from which to calculate the fingerprint |
50
|
|
|
:returns: the fingerprint of the phrase |
51
|
|
|
:rtype: str |
52
|
|
|
|
53
|
|
|
>>> fingerprint('The quick brown fox jumped over the lazy dog.') |
54
|
|
|
'brown dog fox jumped lazy over quick the' |
55
|
|
|
""" |
56
|
|
|
phrase = unicodedata.normalize('NFKD', text_type(phrase.strip().lower())) |
57
|
|
|
phrase = ''.join([c for c in phrase if c.isalnum() or c.isspace()]) |
58
|
|
|
phrase = ' '.join(sorted(list(set(phrase.split())))) |
59
|
|
|
return phrase |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
def qgram_fingerprint(phrase, qval=2, start_stop=''): |
63
|
|
|
"""Return Q-Gram fingerprint. |
64
|
|
|
|
65
|
|
|
A q-gram fingerprint is a string consisting of all of the unique q-grams |
66
|
|
|
in a string, alphabetized & concatenated. |
67
|
|
|
|
68
|
|
|
:param str phrase: the string from which to calculate the q-gram |
69
|
|
|
fingerprint |
70
|
|
|
:param int qval: the length of each q-gram (by default 2) |
71
|
|
|
:param str start_stop: the start & stop symbol(s) to concatenate on either |
72
|
|
|
end of the phrase, as defined in abydos.util.qgram() |
73
|
|
|
:returns: the q-gram fingerprint of the phrase |
74
|
|
|
:rtype: str |
75
|
|
|
|
76
|
|
|
>>> qgram_fingerprint('The quick brown fox jumped over the lazy dog.') |
77
|
|
|
'azbrckdoedeleqerfoheicjukblampnfogovowoxpequrortthuiumvewnxjydzy' |
78
|
|
|
>>> qgram_fingerprint('Christopher') |
79
|
|
|
'cherhehrisopphristto' |
80
|
|
|
>>> qgram_fingerprint('Niall') |
81
|
|
|
'aliallni' |
82
|
|
|
""" |
83
|
|
|
phrase = unicodedata.normalize('NFKD', text_type(phrase.strip().lower())) |
84
|
|
|
phrase = ''.join(c for c in phrase if c.isalnum()) |
85
|
|
|
phrase = QGrams(phrase, qval, start_stop) |
86
|
|
|
phrase = ''.join(sorted(phrase)) |
87
|
|
|
return phrase |
88
|
|
|
|
89
|
|
|
|
90
|
|
|
def phonetic_fingerprint(phrase, phonetic_algorithm=double_metaphone, *args): |
91
|
|
|
"""Return the phonetic fingerprint of a phrase. |
92
|
|
|
|
93
|
|
|
A phonetic fingerprint is identical to a standard string fingerprint, as |
94
|
|
|
implemented in abydos.clustering.fingerprint(), but performs the |
95
|
|
|
fingerprinting function after converting the string to its phonetic form, |
96
|
|
|
as determined by some phonetic algorithm. |
97
|
|
|
|
98
|
|
|
:param str phrase: the string from which to calculate the phonetic |
99
|
|
|
fingerprint |
100
|
|
|
:param function phonetic_algorithm: a phonetic algorithm that takes a |
101
|
|
|
string and returns a string (presumably a phonetic representation of |
102
|
|
|
the original string) By default, this function uses |
103
|
|
|
abydos.phonetic.double_metaphone() |
104
|
|
|
:param args: additional arguments to pass to the phonetic algorithm, |
105
|
|
|
along with the phrase itself |
106
|
|
|
:returns: the phonetic fingerprint of the phrase |
107
|
|
|
:rtype: str |
108
|
|
|
|
109
|
|
|
>>> phonetic_fingerprint('The quick brown fox jumped over the lazy dog.') |
110
|
|
|
'0 afr fks jmpt kk ls prn tk' |
111
|
|
|
>>> phonetic_fingerprint('The quick brown fox jumped over the lazy dog.', |
112
|
|
|
... phonetic_algorithm=soundex) |
113
|
|
|
'b650 d200 f200 j513 l200 o160 q200 t000' |
114
|
|
|
""" |
115
|
|
|
phonetic = '' |
116
|
|
|
for word in phrase.split(): |
117
|
|
|
word = phonetic_algorithm(word, *args) |
118
|
|
|
if not isinstance(word, text_type) and hasattr(word, '__iter__'): |
119
|
|
|
word = word[0] |
120
|
|
|
phonetic += word + ' ' |
121
|
|
|
phonetic = phonetic[:-1] |
122
|
|
|
return fingerprint(phonetic) |
123
|
|
|
|
124
|
|
|
|
125
|
|
|
def skeleton_key(word): |
126
|
|
|
"""Return the skeleton key. |
127
|
|
|
|
128
|
|
|
The skeleton key of a word is defined in: |
129
|
|
|
Pollock, Joseph J. and Antonio Zamora. 1984. "Automatic Spelling Correction |
130
|
|
|
in Scientific and Scholarly Text." Communications of the ACM, 27(4). |
131
|
|
|
358--368. <http://dl.acm.org/citation.cfm?id=358048> |
132
|
|
|
|
133
|
|
|
:param str word: the word to transform into its skeleton key |
134
|
|
|
:returns: the skeleton key |
135
|
|
|
:rtype: str |
136
|
|
|
|
137
|
|
|
>>> skeleton_key('The quick brown fox jumped over the lazy dog.') |
138
|
|
|
'THQCKBRWNFXJMPDVLZYGEUIOA' |
139
|
|
|
>>> skeleton_key('Christopher') |
140
|
|
|
'CHRSTPIOE' |
141
|
|
|
>>> skeleton_key('Niall') |
142
|
|
|
'NLIA' |
143
|
|
|
""" |
144
|
|
|
_vowels = {'A', 'E', 'I', 'O', 'U'} |
145
|
|
|
|
146
|
|
|
word = unicodedata.normalize('NFKD', text_type(word.upper())) |
147
|
|
|
word = ''.join(c for c in word if c in |
148
|
|
|
{'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', |
149
|
|
|
'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', |
150
|
|
|
'Y', 'Z'}) |
151
|
|
|
start = word[0:1] |
152
|
|
|
consonant_part = '' |
153
|
|
|
vowel_part = '' |
154
|
|
|
|
155
|
|
|
# add consonants & vowels to to separate strings |
156
|
|
|
# (omitting the first char & duplicates) |
157
|
|
|
for char in word[1:]: |
158
|
|
|
if char != start: |
159
|
|
|
if char in _vowels: |
160
|
|
|
if char not in vowel_part: |
161
|
|
|
vowel_part += char |
162
|
|
|
elif char not in consonant_part: |
163
|
|
|
consonant_part += char |
164
|
|
|
# return the first char followed by consonants followed by vowels |
165
|
|
|
return start + consonant_part + vowel_part |
166
|
|
|
|
167
|
|
|
|
168
|
|
|
def omission_key(word): |
169
|
|
|
"""Return the omission key. |
170
|
|
|
|
171
|
|
|
The omission key of a word is defined in: |
172
|
|
|
Pollock, Joseph J. and Antonio Zamora. 1984. "Automatic Spelling Correction |
173
|
|
|
in Scientific and Scholarly Text." Communications of the ACM, 27(4). |
174
|
|
|
358--368. <http://dl.acm.org/citation.cfm?id=358048> |
175
|
|
|
|
176
|
|
|
:param str word: the word to transform into its omission key |
177
|
|
|
:returns: the omission key |
178
|
|
|
:rtype: str |
179
|
|
|
|
180
|
|
|
>>> omission_key('The quick brown fox jumped over the lazy dog.') |
181
|
|
|
'JKQXZVWYBFMGPDHCLNTREUIOA' |
182
|
|
|
>>> omission_key('Christopher') |
183
|
|
|
'PHCTSRIOE' |
184
|
|
|
>>> omission_key('Niall') |
185
|
|
|
'LNIA' |
186
|
|
|
""" |
187
|
|
|
_consonants = ('J', 'K', 'Q', 'X', 'Z', 'V', 'W', 'Y', 'B', 'F', 'M', 'G', |
188
|
|
|
'P', 'D', 'H', 'C', 'L', 'N', 'T', 'S', 'R') |
189
|
|
|
|
190
|
|
|
word = unicodedata.normalize('NFKD', text_type(word.upper())) |
191
|
|
|
word = ''.join(c for c in word if c in |
192
|
|
|
{'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', |
193
|
|
|
'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', |
194
|
|
|
'Y', 'Z'}) |
195
|
|
|
|
196
|
|
|
key = '' |
197
|
|
|
|
198
|
|
|
# add consonants in order supplied by _consonants (no duplicates) |
199
|
|
|
for char in _consonants: |
200
|
|
|
if char in word: |
201
|
|
|
key += char |
202
|
|
|
|
203
|
|
|
# add vowels in order they appeared in the word (no duplicates) |
204
|
|
|
for char in word: |
205
|
|
|
if char not in _consonants and char not in key: |
206
|
|
|
key += char |
207
|
|
|
|
208
|
|
|
return key |
209
|
|
|
|
210
|
|
|
# TODO: Dump all these to a data file. |
211
|
|
|
# most common letters, as defined in Cisłak & Grabowski |
212
|
|
|
MOST_COMMON_LETTERS_CG = ('e', 't', 'a', 'o', 'i', 'n', 's', 'h', 'r', 'd', |
213
|
|
|
'l', 'c', 'u', 'm', 'w', 'f') |
214
|
|
|
|
215
|
|
|
# most common letters (case-folded to lowercase), as shown in Google Books |
216
|
|
|
# English n-grams, among letters a-z & digits 0-9 |
217
|
|
|
MOST_COMMON_LETTERS_EN_LC = ('e', 't', 'a', 'i', 'o', 'n', 's', 'r', 'h', 'l', |
218
|
|
|
'd', 'c', 'u', 'm', 'f', 'p', 'g', 'y', 'w', 'b', |
219
|
|
|
'v', 'k', 'x', 'j', 'q', 'z', '1', '2', '0', '9', |
220
|
|
|
'3', '4', '8', '5', '6', '7') |
221
|
|
|
|
222
|
|
|
# most common letters, as shown in Google Books English n-grams, among letters |
223
|
|
|
# A-Z, a-z & digits 0-9 |
224
|
|
|
MOST_COMMON_LETTERS = ('e', 't', 'a', 'o', 'i', 'n', 's', 'r', 'h', 'l', 'd', |
225
|
|
|
'c', 'u', 'm', 'f', 'p', 'g', 'y', 'w', 'b', 'v', 'k', |
226
|
|
|
'T', 'I', 'A', 'S', 'C', 'x', 'M', 'P', 'E', 'B', 'H', |
227
|
|
|
'R', 'N', 'D', 'L', 'F', 'W', 'O', 'q', 'G', 'z', 'j', |
228
|
|
|
'J', 'U', 'V', 'K', 'Y', '1', '2', '0', 'X', '9', 'Q', |
229
|
|
|
'3', 'Z', '4', '8', '5', '6', '7',) |
230
|
|
|
|
231
|
|
|
# most common letters (case-folded to lowercase), as shown in Google Books |
232
|
|
|
# German n-grams, among letters (a-z and umlauted vowels & eszett) & digits 0-9 |
233
|
|
|
MOST_COMMON_LETTERS_DE = ('e', 'n', 'i', 'r', 's', 't', 'a', 'd', 'h', 'u', |
234
|
|
|
'l', 'g', 'c', 'o', 'm', 'b', 'f', 'w', 'k', 'z', |
235
|
|
|
'v', 'p', 'ü', 'ä', 'ß', 'ö', 'j', 'y', 'x', 'q', |
236
|
|
|
'1', '2', '3', '4', '0', '5', '6', '9', '8', '7') |
237
|
|
|
|
238
|
|
|
# most common letters (case-folded to lowercase), as shown in Google Books |
239
|
|
|
# German n-grams, among letters (A-Z, a-z, umlauted vowels & eszett) & digits |
240
|
|
|
# 0-9 |
241
|
|
|
MOST_COMMON_LETTERS_DE_LC = ('e', 'n', 'i', 'r', 's', 't', 'a', 'd', 'h', 'u', |
242
|
|
|
'l', 'c', 'g', 'o', 'm', 'b', 'f', 'w', 'k', 'z', |
243
|
|
|
'v', 'p', 'ü', 'ä', 'S', 'A', 'D', 'B', 'E', 'G', |
244
|
|
|
'M', 'ß', 'V', 'K', 'ö', 'W', 'F', 'P', 'R', 'I', |
245
|
|
|
'H', 'L', 'T', 'N', 'Z', 'y', 'U', 'j', 'J', 'O', |
246
|
|
|
'C', 'x', 'q', 'Ü', 'Q', 'X', 'Ä', 'Ö', '1', '2', |
247
|
|
|
'Y', '3', '4', '0', '5', '6', '9', '8', '7') |
248
|
|
|
|
249
|
|
|
def occurrence_fingerprint(word, n_bits=16, |
250
|
|
|
most_common=MOST_COMMON_LETTERS_CG): |
251
|
|
|
"""Return the occurrence fingerprint. |
252
|
|
|
|
253
|
|
|
Based on the occurence fingerprint from: |
254
|
|
|
Cisłak, Aleksander and Szymon Grabowski. "Lightweight Fingerprints for |
255
|
|
|
Fast Approximate Keyword Matching Using Bitwise Operations." |
256
|
|
|
http://arxiv.org/abs/1711.08475 |
257
|
|
|
|
258
|
|
|
:param word: the word to fingerprint |
259
|
|
|
:param n_bits: number of bits in the fingerprint returned |
260
|
|
|
:param most_common: the most common tokens in the target language |
261
|
|
|
:return: the occurrence fingerprint |
262
|
|
|
:rtype: int |
263
|
|
|
""" |
264
|
|
|
word = set(word) |
265
|
|
|
fingerprint = 0 |
266
|
|
|
|
267
|
|
|
for letter in most_common: |
268
|
|
|
if letter in word: |
269
|
|
|
fingerprint += 1 |
270
|
|
|
n_bits -= 1 |
271
|
|
|
if n_bits: |
272
|
|
|
fingerprint <<= 1 |
273
|
|
|
else: |
274
|
|
|
break |
275
|
|
|
|
276
|
|
|
if n_bits: |
277
|
|
|
fingerprint <<= n_bits |
278
|
|
|
|
279
|
|
|
return fingerprint |
280
|
|
|
|
281
|
|
|
|
282
|
|
|
def occurrence_halved_fingerprint(word, n_bits=16, |
283
|
|
|
most_common=MOST_COMMON_LETTERS_CG): |
284
|
|
|
"""Return the occurrence halved fingerprint. |
285
|
|
|
|
286
|
|
|
Based on the occurence halved fingerprint from: |
287
|
|
|
Cisłak, Aleksander and Szymon Grabowski. "Lightweight Fingerprints for |
288
|
|
|
Fast Approximate Keyword Matching Using Bitwise Operations." |
289
|
|
|
http://arxiv.org/abs/1711.08475 |
290
|
|
|
|
291
|
|
|
:param word: the word to fingerprint |
292
|
|
|
:param n_bits: number of bits in the fingerprint returned |
293
|
|
|
:param most_common: the most common tokens in the target language |
294
|
|
|
:return: the occurrence halved fingerprint |
295
|
|
|
:rtype: int |
296
|
|
|
""" |
297
|
|
|
if n_bits % 2: |
298
|
|
|
n_bits += 1 |
299
|
|
|
|
300
|
|
|
w_len = len(word)//2 |
301
|
|
|
w_1 = set(word[:w_len]) |
302
|
|
|
w_2 = set(word[w_len:]) |
303
|
|
|
fingerprint = 0 |
304
|
|
|
|
305
|
|
|
for letter in most_common: |
306
|
|
|
if letter in w_1: |
307
|
|
|
fingerprint += 1 |
308
|
|
|
fingerprint <<= 1 |
309
|
|
|
if letter in w_2: |
310
|
|
|
fingerprint += 1 |
311
|
|
|
n_bits -= 2 |
312
|
|
|
if n_bits: |
313
|
|
|
fingerprint <<= 1 |
314
|
|
|
else: |
315
|
|
|
break |
316
|
|
|
|
317
|
|
|
if n_bits: |
318
|
|
|
fingerprint <<= n_bits |
319
|
|
|
|
320
|
|
|
return fingerprint |
321
|
|
|
|
322
|
|
|
|
323
|
|
|
def count_fingerprint(word, n_bits=16, |
324
|
|
|
most_common=MOST_COMMON_LETTERS_CG): |
325
|
|
|
"""Return the count fingerprint. |
326
|
|
|
|
327
|
|
|
Based on the count fingerprint from: |
328
|
|
|
Cisłak, Aleksander and Szymon Grabowski. "Lightweight Fingerprints for |
329
|
|
|
Fast Approximate Keyword Matching Using Bitwise Operations." |
330
|
|
|
http://arxiv.org/abs/1711.08475 |
331
|
|
|
|
332
|
|
|
:param word: the word to fingerprint |
333
|
|
|
:param n_bits: number of bits in the fingerprint returned |
334
|
|
|
:param most_common: the most common tokens in the target language |
335
|
|
|
:return: the count fingerprint |
336
|
|
|
:rtype: int |
337
|
|
|
""" |
338
|
|
|
if n_bits % 2: |
339
|
|
|
n_bits += 1 |
340
|
|
|
|
341
|
|
|
word = Counter(word) |
342
|
|
|
fingerprint = 0 |
343
|
|
|
|
344
|
|
|
for letter in most_common: |
345
|
|
|
fingerprint += (word[letter] & 3) |
346
|
|
|
n_bits -= 2 |
347
|
|
|
if n_bits: |
348
|
|
|
fingerprint <<= 2 |
349
|
|
|
else: |
350
|
|
|
break |
351
|
|
|
|
352
|
|
|
if n_bits: |
353
|
|
|
fingerprint <<= n_bits |
354
|
|
|
|
355
|
|
|
return fingerprint |
356
|
|
|
|
357
|
|
|
|
358
|
|
|
def position_fingerprint(word, n_bits=16, |
359
|
|
|
most_common=MOST_COMMON_LETTERS_CG, |
360
|
|
|
bits_per_letter=3): |
361
|
|
|
"""Return the position fingerprint. |
362
|
|
|
|
363
|
|
|
Based on the position fingerprint from: |
364
|
|
|
Cisłak, Aleksander and Szymon Grabowski. "Lightweight Fingerprints for |
365
|
|
|
Fast Approximate Keyword Matching Using Bitwise Operations." |
366
|
|
|
http://arxiv.org/abs/1711.08475 |
367
|
|
|
|
368
|
|
|
:param word: the word to fingerprint |
369
|
|
|
:param n_bits: number of bits in the fingerprint returned |
370
|
|
|
:param most_common: the most common tokens in the target language |
371
|
|
|
:param bits_per_letter: the bits to assign for letter position |
372
|
|
|
:return: the position fingerprint |
373
|
|
|
:rtype: int |
374
|
|
|
""" |
375
|
|
|
position = {} |
376
|
|
|
for pos, letter in enumerate(word): |
377
|
|
|
if letter not in position and letter in most_common: |
378
|
|
|
position[letter] = min(pos, 2**bits_per_letter-1) |
379
|
|
|
|
380
|
|
|
fingerprint = 0 |
381
|
|
|
for letter in most_common: |
382
|
|
|
if letter in position: |
383
|
|
|
fingerprint += min(position[letter], 2**n_bits-1) |
384
|
|
|
n_bits -= bits_per_letter |
385
|
|
|
if n_bits > 0: |
386
|
|
|
fingerprint <<= min(bits_per_letter, n_bits) |
387
|
|
|
else: |
388
|
|
|
break |
389
|
|
|
|
390
|
|
|
if n_bits > 0: |
391
|
|
|
fingerprint <<= n_bits |
392
|
|
|
|
393
|
|
|
return fingerprint |
394
|
|
|
|
395
|
|
|
|
396
|
|
|
def mean_pairwise_similarity(collection, metric=sim, |
397
|
|
|
meanfunc=hmean, symmetric=False): |
398
|
|
|
"""Calculate the mean pairwise similarity of a collection of strings. |
399
|
|
|
|
400
|
|
|
Takes the mean of the pairwise similarity between each member of a |
401
|
|
|
collection, optionally in both directions (for asymmetric similarity |
402
|
|
|
metrics. |
403
|
|
|
|
404
|
|
|
:param list collection: a collection of terms or a string that can be split |
405
|
|
|
:param function metric: a similarity metric function |
406
|
|
|
:param function mean: a mean function that takes a list of values and |
407
|
|
|
returns a float |
408
|
|
|
:param bool symmetric: set to True if all pairwise similarities should be |
409
|
|
|
calculated in both directions |
410
|
|
|
:returns: the mean pairwise similarity of a collection of strings |
411
|
|
|
:rtype: str |
412
|
|
|
|
413
|
|
|
>>> mean_pairwise_similarity(['Christopher', 'Kristof', 'Christobal']) |
414
|
|
|
0.51980198019801982 |
415
|
|
|
>>> mean_pairwise_similarity(['Niall', 'Neal', 'Neil']) |
416
|
|
|
0.54545454545454541 |
417
|
|
|
""" |
418
|
|
|
if hasattr(collection, 'split'): |
419
|
|
|
collection = collection.split() |
420
|
|
|
if not hasattr(collection, '__iter__'): |
421
|
|
|
raise ValueError('collection is neither a string nor iterable type') |
422
|
|
|
elif len(collection) < 2: |
423
|
|
|
raise ValueError('collection has fewer than two members') |
424
|
|
|
|
425
|
|
|
collection = list(collection) |
426
|
|
|
|
427
|
|
|
pairwise_values = [] |
428
|
|
|
|
429
|
|
|
for i in range(len(collection)): |
430
|
|
|
for j in range(i+1, len(collection)): |
431
|
|
|
pairwise_values.append(metric(collection[i], collection[j])) |
432
|
|
|
if symmetric: |
433
|
|
|
pairwise_values.append(metric(collection[j], collection[i])) |
434
|
|
|
|
435
|
|
|
if not callable(meanfunc): |
436
|
|
|
raise ValueError('meanfunc must be a function') |
437
|
|
|
return meanfunc(pairwise_values) |
438
|
|
|
|