1
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
|
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
|
|
"""abydos.distance. |
20
|
|
|
|
21
|
|
|
The distance module implements string edit distance functions including: |
22
|
|
|
|
23
|
|
|
- Levenshtein distance |
24
|
|
|
- Optimal String Alignment distance |
25
|
|
|
- Levenshtein-Damerau distance |
26
|
|
|
- Hamming distance |
27
|
|
|
- Tversky index |
28
|
|
|
- Sørensen–Dice coefficient & distance |
29
|
|
|
- Jaccard similarity coefficient & distance |
30
|
|
|
- overlap similarity & distance |
31
|
|
|
- Tanimoto coefficient & distance |
32
|
|
|
- Minkowski distance & similarity |
33
|
|
|
- Manhattan distance & similarity |
34
|
|
|
- Euclidean distance & similarity |
35
|
|
|
- Chebyshev distance & similarity |
36
|
|
|
- cosine similarity & distance |
37
|
|
|
- Jaro distance |
38
|
|
|
- Jaro-Winkler distance (incl. the strcmp95 algorithm variant) |
39
|
|
|
- Longest common substring |
40
|
|
|
- Ratcliff-Obershelp similarity & distance |
41
|
|
|
- Match Rating Algorithm similarity |
42
|
|
|
- Normalized Compression Distance (NCD) & similarity |
43
|
|
|
- Monge-Elkan similarity & distance |
44
|
|
|
- Matrix similarity |
45
|
|
|
- Needleman-Wunsch score |
46
|
|
|
- Smither-Waterman score |
47
|
|
|
- Gotoh score |
48
|
|
|
- Length similarity |
49
|
|
|
- Prefix, Suffix, and Identity similarity & distance |
50
|
|
|
- Modified Language-Independent Product Name Search (MLIPNS) similarity & |
51
|
|
|
distance |
52
|
|
|
- Bag distance |
53
|
|
|
- Editex distance |
54
|
|
|
- Eudex distances |
55
|
|
|
- Sift4 distance |
56
|
|
|
- Baystat distance & similarity |
57
|
|
|
- Typo distance |
58
|
|
|
- Indel distance |
59
|
|
|
- Synoname |
60
|
|
|
|
61
|
|
|
Functions beginning with the prefixes 'sim' and 'dist' are guaranteed to be |
62
|
|
|
in the range [0, 1], and sim_X = 1 - dist_X since the two are complements. |
63
|
|
|
If a sim_X function is supplied identical src & tar arguments, it is guaranteed |
64
|
|
|
to return 1; the corresponding dist_X function is guaranteed to return 0. |
65
|
|
|
""" |
66
|
|
|
|
67
|
|
|
from __future__ import division, unicode_literals |
68
|
|
|
|
69
|
|
|
from codecs import encode |
70
|
|
|
from collections import Counter, Iterable, defaultdict |
71
|
|
|
from math import log, sqrt |
72
|
|
|
from numbers import Number |
73
|
|
|
from sys import maxsize, modules |
74
|
|
|
from types import GeneratorType |
75
|
|
|
from unicodedata import normalize |
76
|
|
|
|
77
|
|
|
from numpy import float32 as np_float32 |
|
|
|
|
78
|
|
|
from numpy import int as np_int |
|
|
|
|
79
|
|
|
from numpy import zeros as np_zeros |
|
|
|
|
80
|
|
|
|
81
|
|
|
from six import text_type |
|
|
|
|
82
|
|
|
from six.moves import range |
|
|
|
|
83
|
|
|
|
84
|
|
|
from .compression import ac_encode, ac_train, rle_encode |
85
|
|
|
from .fingerprint import _synoname_special_table, synoname_toolcode |
86
|
|
|
from .phonetic import eudex, mra |
87
|
|
|
from .qgram import QGrams |
88
|
|
|
|
89
|
|
|
try: |
90
|
|
|
import lzma |
91
|
|
|
except ImportError: # pragma: no cover |
92
|
|
|
# If the system lacks the lzma library, that's fine, but lzma comrpession |
93
|
|
|
# similarity won't be supported. |
94
|
|
|
pass |
95
|
|
|
|
96
|
|
|
__all__ = ['bag', 'chebyshev', 'damerau_levenshtein', 'dist', 'dist_bag', |
97
|
|
|
'dist_baystat', 'dist_chebyshev', 'dist_compression', 'dist_cosine', |
98
|
|
|
'dist_damerau', 'dist_dice', 'dist_editex', 'dist_euclidean', |
99
|
|
|
'dist_eudex', 'dist_hamming', 'dist_ident', 'dist_indel', |
100
|
|
|
'dist_jaccard', 'dist_jaro_winkler', 'dist_lcsseq', 'dist_lcsstr', |
101
|
|
|
'dist_length', 'dist_levenshtein', 'dist_manhattan', |
102
|
|
|
'dist_minkowski', 'dist_mlipns', 'dist_monge_elkan', 'dist_mra', |
103
|
|
|
'dist_overlap', 'dist_prefix', 'dist_ratcliff_obershelp', |
104
|
|
|
'dist_sift4', 'dist_strcmp95', 'dist_suffix', 'dist_tversky', |
105
|
|
|
'dist_typo', 'editex', 'euclidean', 'eudex', 'eudex_hamming', |
106
|
|
|
'gotoh', 'hamming', 'lcsseq', 'lcsstr', 'levenshtein', 'manhattan', |
107
|
|
|
'minkowski', 'mra_compare', 'needleman_wunsch', 'sift4_common', |
108
|
|
|
'sift4_simplest', 'sim', 'sim_bag', 'sim_baystat', 'sim_chebyshev', |
109
|
|
|
'sim_compression', 'sim_cosine', 'sim_damerau', 'sim_dice', |
110
|
|
|
'sim_editex', 'sim_euclidean', 'sim_eudex', 'sim_hamming', |
111
|
|
|
'sim_ident', 'sim_indel', 'sim_jaccard', 'sim_jaro_winkler', |
112
|
|
|
'sim_lcsseq', 'sim_lcsstr', 'sim_length', 'sim_levenshtein', |
113
|
|
|
'sim_manhattan', 'sim_matrix', 'sim_minkowski', 'sim_mlipns', |
114
|
|
|
'sim_monge_elkan', 'sim_mra', 'sim_overlap', 'sim_prefix', |
115
|
|
|
'sim_ratcliff_obershelp', 'sim_sift4', 'sim_strcmp95', 'sim_suffix', |
116
|
|
|
'sim_tanimoto', 'sim_tversky', 'sim_typo', 'smith_waterman', |
117
|
|
|
'synoname', 'synoname_word_approximation', 'tanimoto', 'typo'] |
118
|
|
|
|
119
|
|
|
|
120
|
|
|
def levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
121
|
|
|
"""Return the Levenshtein distance between two strings. |
122
|
|
|
|
123
|
|
|
This is the standard edit distance measure. Cf. |
124
|
|
|
:cite:`Levenshtein:1965,Levenshtein:1966`. |
125
|
|
|
|
126
|
|
|
Two additional variants: optimal string alignment (aka restricted |
127
|
|
|
Damerau-Levenshtein distance) :cite:`Boytsov:2011` and the |
128
|
|
|
Damerau-Levenshtein :cite:`Damerau:1964` distance are also supported. |
129
|
|
|
|
130
|
|
|
The ordinary Levenshtein & Optimal String Alignment distance both |
131
|
|
|
employ the Wagner-Fischer dynamic programming algorithm |
132
|
|
|
:cite:`Wagner:1974`. |
133
|
|
|
|
134
|
|
|
Levenshtein edit distance ordinarily has unit insertion, deletion, and |
135
|
|
|
substitution costs. |
136
|
|
|
|
137
|
|
|
:param str src, tar: two strings to be compared |
138
|
|
|
:param str mode: specifies a mode for computing the Levenshtein distance: |
139
|
|
|
|
140
|
|
|
- 'lev' (default) computes the ordinary Levenshtein distance, |
141
|
|
|
in which edits may include inserts, deletes, and substitutions |
142
|
|
|
- 'osa' computes the Optimal String Alignment distance, in which |
143
|
|
|
edits may include inserts, deletes, substitutions, and |
144
|
|
|
transpositions but substrings may only be edited once |
145
|
|
|
- 'dam' computes the Damerau-Levenshtein distance, in which |
146
|
|
|
edits may include inserts, deletes, substitutions, and |
147
|
|
|
transpositions and substrings may undergo repeated edits |
148
|
|
|
|
149
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
150
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
151
|
|
|
respectively (by default: (1, 1, 1, 1)) |
152
|
|
|
:returns: the Levenshtein distance between src & tar |
153
|
|
|
:rtype: int (may return a float if cost has float values) |
154
|
|
|
|
155
|
|
|
>>> levenshtein('cat', 'hat') |
156
|
|
|
1 |
157
|
|
|
>>> levenshtein('Niall', 'Neil') |
158
|
|
|
3 |
159
|
|
|
>>> levenshtein('aluminum', 'Catalan') |
160
|
|
|
7 |
161
|
|
|
>>> levenshtein('ATCG', 'TAGC') |
162
|
|
|
3 |
163
|
|
|
|
164
|
|
|
>>> levenshtein('ATCG', 'TAGC', mode='osa') |
165
|
|
|
2 |
166
|
|
|
>>> levenshtein('ACTG', 'TAGC', mode='osa') |
167
|
|
|
4 |
168
|
|
|
|
169
|
|
|
>>> levenshtein('ATCG', 'TAGC', mode='dam') |
170
|
|
|
2 |
171
|
|
|
>>> levenshtein('ACTG', 'TAGC', mode='dam') |
172
|
|
|
3 |
173
|
|
|
""" |
174
|
|
|
ins_cost, del_cost, sub_cost, trans_cost = cost |
175
|
|
|
|
176
|
|
|
if src == tar: |
177
|
|
|
return 0 |
178
|
|
|
if not src: |
179
|
|
|
return len(tar) * ins_cost |
180
|
|
|
if not tar: |
181
|
|
|
return len(src) * del_cost |
182
|
|
|
|
183
|
|
|
if 'dam' in mode: |
184
|
|
|
return damerau_levenshtein(src, tar, cost) |
185
|
|
|
|
186
|
|
|
d_mat = np_zeros((len(src)+1, len(tar)+1), dtype=np_int) |
187
|
|
|
for i in range(len(src)+1): |
188
|
|
|
d_mat[i, 0] = i * del_cost |
189
|
|
|
for j in range(len(tar)+1): |
190
|
|
|
d_mat[0, j] = j * ins_cost |
191
|
|
|
|
192
|
|
|
for i in range(len(src)): |
|
|
|
|
193
|
|
|
for j in range(len(tar)): |
|
|
|
|
194
|
|
|
d_mat[i+1, j+1] = min( |
195
|
|
|
d_mat[i+1, j] + ins_cost, # ins |
196
|
|
|
d_mat[i, j+1] + del_cost, # del |
197
|
|
|
d_mat[i, j] + (sub_cost if src[i] != tar[j] else 0) # sub/== |
198
|
|
|
) |
199
|
|
|
|
200
|
|
|
if mode == 'osa': |
201
|
|
|
if ((i+1 > 1 and j+1 > 1 and src[i] == tar[j-1] and |
202
|
|
|
src[i-1] == tar[j])): |
203
|
|
|
# transposition |
204
|
|
|
d_mat[i+1, j+1] = min(d_mat[i+1, j+1], |
205
|
|
|
d_mat[i-1, j-1] + trans_cost) |
206
|
|
|
|
207
|
|
|
return d_mat[len(src), len(tar)] |
208
|
|
|
|
209
|
|
|
|
210
|
|
|
def dist_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
211
|
|
|
"""Return the normalized Levenshtein distance between two strings. |
212
|
|
|
|
213
|
|
|
The Levenshtein distance is normalized by dividing the Levenshtein distance |
214
|
|
|
(calculated by any of the three supported methods) by the greater of |
215
|
|
|
the number of characters in src times the cost of a delete and |
216
|
|
|
the number of characters in tar times the cost of an insert. |
217
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
218
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
219
|
|
|
|
220
|
|
|
:param str src, tar: two strings to be compared |
221
|
|
|
:param str mode: specifies a mode for computing the Levenshtein distance: |
222
|
|
|
|
223
|
|
|
- 'lev' (default) computes the ordinary Levenshtein distance, |
224
|
|
|
in which edits may include inserts, deletes, and substitutions |
225
|
|
|
- 'osa' computes the Optimal String Alignment distance, in which |
226
|
|
|
edits may include inserts, deletes, substitutions, and |
227
|
|
|
transpositions but substrings may only be edited once |
228
|
|
|
- 'dam' computes the Damerau-Levenshtein distance, in which |
229
|
|
|
edits may include inserts, deletes, substitutions, and |
230
|
|
|
transpositions and substrings may undergo repeated edits |
231
|
|
|
|
232
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
233
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
234
|
|
|
respectively (by default: (1, 1, 1, 1)) |
235
|
|
|
:returns: normalized Levenshtein distance |
236
|
|
|
:rtype: float |
237
|
|
|
|
238
|
|
|
>>> round(dist_levenshtein('cat', 'hat'), 12) |
239
|
|
|
0.333333333333 |
240
|
|
|
>>> round(dist_levenshtein('Niall', 'Neil'), 12) |
241
|
|
|
0.6 |
242
|
|
|
>>> dist_levenshtein('aluminum', 'Catalan') |
243
|
|
|
0.875 |
244
|
|
|
>>> dist_levenshtein('ATCG', 'TAGC') |
245
|
|
|
0.75 |
246
|
|
|
""" |
247
|
|
|
if src == tar: |
248
|
|
|
return 0 |
249
|
|
|
ins_cost, del_cost = cost[:2] |
250
|
|
|
return (levenshtein(src, tar, mode, cost) / |
251
|
|
|
(max(len(src)*del_cost, len(tar)*ins_cost))) |
252
|
|
|
|
253
|
|
|
|
254
|
|
|
def sim_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
255
|
|
|
"""Return the Levenshtein similarity of two strings. |
256
|
|
|
|
257
|
|
|
Normalized Levenshtein similarity is the complement of normalized |
258
|
|
|
Levenshtein distance: |
259
|
|
|
:math:`sim_{Levenshtein} = 1 - dist_{Levenshtein}`. |
260
|
|
|
|
261
|
|
|
:param str src, tar: two strings to be compared |
262
|
|
|
:param str mode: specifies a mode for computing the Levenshtein distance: |
263
|
|
|
|
264
|
|
|
- 'lev' (default) computes the ordinary Levenshtein distance, |
265
|
|
|
in which edits may include inserts, deletes, and substitutions |
266
|
|
|
- 'osa' computes the Optimal String Alignment distance, in which |
267
|
|
|
edits may include inserts, deletes, substitutions, and |
268
|
|
|
transpositions but substrings may only be edited once |
269
|
|
|
- 'dam' computes the Damerau-Levenshtein distance, in which |
270
|
|
|
edits may include inserts, deletes, substitutions, and |
271
|
|
|
transpositions and substrings may undergo repeated edits |
272
|
|
|
|
273
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
274
|
|
|
edits: |
275
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
276
|
|
|
(by default: (1, 1, 1, 1)) |
277
|
|
|
:returns: normalized Levenshtein similarity |
278
|
|
|
:rtype: float |
279
|
|
|
|
280
|
|
|
>>> round(sim_levenshtein('cat', 'hat'), 12) |
281
|
|
|
0.666666666667 |
282
|
|
|
>>> round(sim_levenshtein('Niall', 'Neil'), 12) |
283
|
|
|
0.4 |
284
|
|
|
>>> sim_levenshtein('aluminum', 'Catalan') |
285
|
|
|
0.125 |
286
|
|
|
>>> sim_levenshtein('ATCG', 'TAGC') |
287
|
|
|
0.25 |
288
|
|
|
""" |
289
|
|
|
return 1 - dist_levenshtein(src, tar, mode, cost) |
290
|
|
|
|
291
|
|
|
|
292
|
|
|
def damerau_levenshtein(src, tar, cost=(1, 1, 1, 1)): |
|
|
|
|
293
|
|
|
"""Return the Damerau-Levenshtein distance between two strings. |
294
|
|
|
|
295
|
|
|
This computes the Damerau-Levenshtein distance :cite:`Damerau:1964`. |
296
|
|
|
Damerau-Levenshtein code is based on Java code by Kevin L. Stern |
297
|
|
|
:cite:`Stern:2014`, under the MIT license: |
298
|
|
|
https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/string/DamerauLevenshteinAlgorithm.java |
299
|
|
|
|
300
|
|
|
:param str src, tar: two strings to be compared |
301
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
302
|
|
|
edits: |
303
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
304
|
|
|
(by default: (1, 1, 1, 1)) |
305
|
|
|
:returns: the Damerau-Levenshtein distance between src & tar |
306
|
|
|
:rtype: int (may return a float if cost has float values) |
307
|
|
|
|
308
|
|
|
>>> damerau_levenshtein('cat', 'hat') |
309
|
|
|
1 |
310
|
|
|
>>> damerau_levenshtein('Niall', 'Neil') |
311
|
|
|
3 |
312
|
|
|
>>> damerau_levenshtein('aluminum', 'Catalan') |
313
|
|
|
7 |
314
|
|
|
>>> damerau_levenshtein('ATCG', 'TAGC') |
315
|
|
|
2 |
316
|
|
|
""" |
317
|
|
|
ins_cost, del_cost, sub_cost, trans_cost = cost |
318
|
|
|
|
319
|
|
|
if src == tar: |
320
|
|
|
return 0 |
321
|
|
|
if not src: |
322
|
|
|
return len(tar) * ins_cost |
323
|
|
|
if not tar: |
324
|
|
|
return len(src) * del_cost |
325
|
|
|
|
326
|
|
|
if 2*trans_cost < ins_cost + del_cost: |
327
|
|
|
raise ValueError('Unsupported cost assignment; the cost of two ' + |
328
|
|
|
'transpositions must not be less than the cost of ' + |
329
|
|
|
'an insert plus a delete.') |
330
|
|
|
|
331
|
|
|
d_mat = (np_zeros((len(src))*(len(tar)), dtype=np_int). |
332
|
|
|
reshape((len(src), len(tar)))) |
333
|
|
|
|
334
|
|
|
if src[0] != tar[0]: |
335
|
|
|
d_mat[0, 0] = min(sub_cost, ins_cost + del_cost) |
336
|
|
|
|
337
|
|
|
src_index_by_character = {} |
338
|
|
|
src_index_by_character[src[0]] = 0 |
339
|
|
|
for i in range(1, len(src)): |
340
|
|
|
del_distance = d_mat[i-1, 0] + del_cost |
341
|
|
|
ins_distance = (i+1) * del_cost + ins_cost |
342
|
|
|
match_distance = (i * del_cost + |
343
|
|
|
(0 if src[i] == tar[0] else sub_cost)) |
344
|
|
|
d_mat[i, 0] = min(del_distance, ins_distance, match_distance) |
345
|
|
|
|
346
|
|
|
for j in range(1, len(tar)): |
347
|
|
|
del_distance = (j+1) * ins_cost + del_cost |
348
|
|
|
ins_distance = d_mat[0, j-1] + ins_cost |
349
|
|
|
match_distance = (j * ins_cost + |
350
|
|
|
(0 if src[0] == tar[j] else sub_cost)) |
351
|
|
|
d_mat[0, j] = min(del_distance, ins_distance, match_distance) |
352
|
|
|
|
353
|
|
|
for i in range(1, len(src)): |
354
|
|
|
max_src_letter_match_index = (0 if src[i] == tar[0] else -1) |
355
|
|
|
for j in range(1, len(tar)): |
356
|
|
|
candidate_swap_index = (-1 if tar[j] not in |
357
|
|
|
src_index_by_character else |
358
|
|
|
src_index_by_character[tar[j]]) |
359
|
|
|
j_swap = max_src_letter_match_index |
360
|
|
|
del_distance = d_mat[i-1, j] + del_cost |
361
|
|
|
ins_distance = d_mat[i, j-1] + ins_cost |
362
|
|
|
match_distance = d_mat[i-1, j-1] |
363
|
|
|
if src[i] != tar[j]: |
364
|
|
|
match_distance += sub_cost |
365
|
|
|
else: |
366
|
|
|
max_src_letter_match_index = j |
367
|
|
|
|
368
|
|
|
if candidate_swap_index != -1 and j_swap != -1: |
369
|
|
|
i_swap = candidate_swap_index |
370
|
|
|
|
371
|
|
|
if i_swap == 0 and j_swap == 0: |
372
|
|
|
pre_swap_cost = 0 |
373
|
|
|
else: |
374
|
|
|
pre_swap_cost = d_mat[max(0, i_swap-1), max(0, j_swap-1)] |
375
|
|
|
swap_distance = (pre_swap_cost + (i - i_swap - 1) * |
376
|
|
|
del_cost + (j - j_swap - 1) * ins_cost + |
377
|
|
|
trans_cost) |
378
|
|
|
else: |
379
|
|
|
swap_distance = maxsize |
380
|
|
|
|
381
|
|
|
d_mat[i, j] = min(del_distance, ins_distance, |
382
|
|
|
match_distance, swap_distance) |
383
|
|
|
src_index_by_character[src[i]] = i |
384
|
|
|
|
385
|
|
|
return d_mat[len(src)-1, len(tar)-1] |
386
|
|
|
|
387
|
|
|
|
388
|
|
|
def dist_damerau(src, tar, cost=(1, 1, 1, 1)): |
389
|
|
|
"""Return the Damerau-Levenshtein similarity of two strings. |
390
|
|
|
|
391
|
|
|
Damerau-Levenshtein distance normalized to the interval [0, 1]. |
392
|
|
|
|
393
|
|
|
The Damerau-Levenshtein distance is normalized by dividing the |
394
|
|
|
Damerau-Levenshtein distance by the greater of |
395
|
|
|
the number of characters in src times the cost of a delete and |
396
|
|
|
the number of characters in tar times the cost of an insert. |
397
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
398
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
399
|
|
|
|
400
|
|
|
The arguments are identical to those of the levenshtein() function. |
401
|
|
|
|
402
|
|
|
:param str src, tar: two strings to be compared |
403
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
404
|
|
|
edits: |
405
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
406
|
|
|
(by default: (1, 1, 1, 1)) |
407
|
|
|
:returns: normalized Damerau-Levenshtein distance |
408
|
|
|
:rtype: float |
409
|
|
|
|
410
|
|
|
>>> round(dist_damerau('cat', 'hat'), 12) |
411
|
|
|
0.333333333333 |
412
|
|
|
>>> round(dist_damerau('Niall', 'Neil'), 12) |
413
|
|
|
0.6 |
414
|
|
|
>>> dist_damerau('aluminum', 'Catalan') |
415
|
|
|
0.875 |
416
|
|
|
>>> dist_damerau('ATCG', 'TAGC') |
417
|
|
|
0.5 |
418
|
|
|
""" |
419
|
|
|
if src == tar: |
420
|
|
|
return 0 |
421
|
|
|
ins_cost, del_cost = cost[:2] |
422
|
|
|
return (damerau_levenshtein(src, tar, cost) / |
423
|
|
|
(max(len(src)*del_cost, len(tar)*ins_cost))) |
424
|
|
|
|
425
|
|
|
|
426
|
|
|
def sim_damerau(src, tar, cost=(1, 1, 1, 1)): |
427
|
|
|
"""Return the Damerau-Levenshtein similarity of two strings. |
428
|
|
|
|
429
|
|
|
Normalized Damerau-Levenshtein similarity the complement of normalized |
430
|
|
|
Damerau-Levenshtein distance: |
431
|
|
|
:math:`sim_{Damerau} = 1 - dist_{Damerau}`. |
432
|
|
|
|
433
|
|
|
The arguments are identical to those of the levenshtein() function. |
434
|
|
|
|
435
|
|
|
:param str src, tar: two strings to be compared |
436
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
437
|
|
|
edits: |
438
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
439
|
|
|
(by default: (1, 1, 1, 1)) |
440
|
|
|
:returns: normalized Damerau-Levenshtein similarity |
441
|
|
|
:rtype: float |
442
|
|
|
|
443
|
|
|
>>> round(sim_damerau('cat', 'hat'), 12) |
444
|
|
|
0.666666666667 |
445
|
|
|
>>> round(sim_damerau('Niall', 'Neil'), 12) |
446
|
|
|
0.4 |
447
|
|
|
>>> sim_damerau('aluminum', 'Catalan') |
448
|
|
|
0.125 |
449
|
|
|
>>> sim_damerau('ATCG', 'TAGC') |
450
|
|
|
0.5 |
451
|
|
|
""" |
452
|
|
|
return 1 - dist_damerau(src, tar, cost) |
453
|
|
|
|
454
|
|
|
|
455
|
|
|
def hamming(src, tar, difflens=True): |
456
|
|
|
"""Return the Hamming distance between two strings. |
457
|
|
|
|
458
|
|
|
Hamming distance :cite:`Hamming:1950` equals the number of character |
459
|
|
|
positions at which two strings differ. For strings of unequal lengths, |
460
|
|
|
it is not normally defined. By default, this implementation calculates the |
461
|
|
|
Hamming distance of the first n characters where n is the lesser of the two |
462
|
|
|
strings' lengths and adds to this the difference in string lengths. |
463
|
|
|
|
464
|
|
|
:param str src, tar: two strings to be compared |
465
|
|
|
:param bool allow_different_lengths: |
466
|
|
|
If True (default), this returns the Hamming distance for those |
467
|
|
|
characters that have a matching character in both strings plus the |
468
|
|
|
difference in the strings' lengths. This is equivalent to extending |
469
|
|
|
the shorter string with obligatorily non-matching characters. |
470
|
|
|
If False, an exception is raised in the case of strings of unequal |
471
|
|
|
lengths. |
472
|
|
|
:returns: the Hamming distance between src & tar |
473
|
|
|
:rtype: int |
474
|
|
|
|
475
|
|
|
>>> hamming('cat', 'hat') |
476
|
|
|
1 |
477
|
|
|
>>> hamming('Niall', 'Neil') |
478
|
|
|
3 |
479
|
|
|
>>> hamming('aluminum', 'Catalan') |
480
|
|
|
8 |
481
|
|
|
>>> hamming('ATCG', 'TAGC') |
482
|
|
|
4 |
483
|
|
|
""" |
484
|
|
|
if not difflens and len(src) != len(tar): |
485
|
|
|
raise ValueError('Undefined for sequences of unequal length; set ' + |
486
|
|
|
'difflens to True for Hamming distance between ' + |
487
|
|
|
'strings of unequal lengths.') |
488
|
|
|
|
489
|
|
|
hdist = 0 |
490
|
|
|
if difflens: |
491
|
|
|
hdist += abs(len(src)-len(tar)) |
492
|
|
|
hdist += sum(c1 != c2 for c1, c2 in zip(src, tar)) |
493
|
|
|
|
494
|
|
|
return hdist |
495
|
|
|
|
496
|
|
|
|
497
|
|
|
def dist_hamming(src, tar, difflens=True): |
498
|
|
|
"""Return the normalized Hamming distance between two strings. |
499
|
|
|
|
500
|
|
|
Hamming distance normalized to the interval [0, 1]. |
501
|
|
|
|
502
|
|
|
The Hamming distance is normalized by dividing it |
503
|
|
|
by the greater of the number of characters in src & tar (unless difflens is |
504
|
|
|
set to False, in which case an exception is raised). |
505
|
|
|
|
506
|
|
|
The arguments are identical to those of the hamming() function. |
507
|
|
|
|
508
|
|
|
:param str src, tar: two strings to be compared |
509
|
|
|
:param bool allow_different_lengths: |
510
|
|
|
If True (default), this returns the Hamming distance for those |
511
|
|
|
characters that have a matching character in both strings plus the |
512
|
|
|
difference in the strings' lengths. This is equivalent to extending |
513
|
|
|
the shorter string with obligatorily non-matching characters. |
514
|
|
|
If False, an exception is raised in the case of strings of unequal |
515
|
|
|
lengths. |
516
|
|
|
:returns: normalized Hamming distance |
517
|
|
|
:rtype: float |
518
|
|
|
|
519
|
|
|
>>> round(dist_hamming('cat', 'hat'), 12) |
520
|
|
|
0.333333333333 |
521
|
|
|
>>> dist_hamming('Niall', 'Neil') |
522
|
|
|
0.6 |
523
|
|
|
>>> dist_hamming('aluminum', 'Catalan') |
524
|
|
|
1.0 |
525
|
|
|
>>> dist_hamming('ATCG', 'TAGC') |
526
|
|
|
1.0 |
527
|
|
|
""" |
528
|
|
|
if src == tar: |
529
|
|
|
return 0 |
530
|
|
|
return hamming(src, tar, difflens) / max(len(src), len(tar)) |
531
|
|
|
|
532
|
|
|
|
533
|
|
|
def sim_hamming(src, tar, difflens=True): |
534
|
|
|
"""Return the normalized Hamming similarity of two strings. |
535
|
|
|
|
536
|
|
|
Hamming similarity normalized to the interval [0, 1]. |
537
|
|
|
|
538
|
|
|
Hamming similarity is the complement of normalized Hamming distance: |
539
|
|
|
:math:`sim_{Hamming} = 1 - dist{Hamming}`. |
540
|
|
|
|
541
|
|
|
Provided that difflens==True, the Hamming similarity is identical to the |
542
|
|
|
Language-Independent Product Name Search (LIPNS) similarity score. For |
543
|
|
|
further information, see the sim_mlipns documentation. |
544
|
|
|
|
545
|
|
|
The arguments are identical to those of the hamming() function. |
546
|
|
|
|
547
|
|
|
:param str src, tar: two strings to be compared |
548
|
|
|
:param bool allow_different_lengths: |
549
|
|
|
If True (default), this returns the Hamming distance for those |
550
|
|
|
characters that have a matching character in both strings plus the |
551
|
|
|
difference in the strings' lengths. This is equivalent to extending |
552
|
|
|
the shorter string with obligatorily non-matching characters. |
553
|
|
|
If False, an exception is raised in the case of strings of unequal |
554
|
|
|
lengths. |
555
|
|
|
:returns: normalized Hamming similarity |
556
|
|
|
:rtype: float |
557
|
|
|
|
558
|
|
|
>>> round(sim_hamming('cat', 'hat'), 12) |
559
|
|
|
0.666666666667 |
560
|
|
|
>>> sim_hamming('Niall', 'Neil') |
561
|
|
|
0.4 |
562
|
|
|
>>> sim_hamming('aluminum', 'Catalan') |
563
|
|
|
0.0 |
564
|
|
|
>>> sim_hamming('ATCG', 'TAGC') |
565
|
|
|
0.0 |
566
|
|
|
""" |
567
|
|
|
return 1 - dist_hamming(src, tar, difflens) |
568
|
|
|
|
569
|
|
|
|
570
|
|
|
def _get_qgrams(src, tar, qval=0, skip=0): |
571
|
|
|
"""Return the Q-Grams in src & tar. |
572
|
|
|
|
573
|
|
|
:param str src, tar: two strings to be compared |
574
|
|
|
(or QGrams/Counter objects) |
575
|
|
|
:param int qval: the length of each q-gram; 0 for non-q-gram version |
576
|
|
|
:param int skip: the number of characters to skip (only works when |
577
|
|
|
src and tar are strings |
578
|
|
|
:return: Q-Grams |
579
|
|
|
""" |
580
|
|
|
if isinstance(src, Counter) and isinstance(tar, Counter): |
581
|
|
|
return src, tar |
582
|
|
|
if qval > 0: |
583
|
|
|
return (QGrams(src, qval, '$#', skip), |
584
|
|
|
QGrams(tar, qval, '$#', skip)) |
585
|
|
|
return Counter(src.strip().split()), Counter(tar.strip().split()) |
586
|
|
|
|
587
|
|
|
|
588
|
|
|
def sim_tversky(src, tar, qval=2, alpha=1, beta=1, bias=None): |
|
|
|
|
589
|
|
|
r"""Return the Tversky index of two strings. |
590
|
|
|
|
591
|
|
|
The Tversky index :cite:`Tversky:1977` is defined as: |
592
|
|
|
For two sets X and Y: |
593
|
|
|
:math:`sim_{Tversky}(X, Y) = \\frac{|X \\cap Y|} |
594
|
|
|
{|X \\cap Y| + \\alpha|X - Y| + \\beta|Y - X|}`. |
595
|
|
|
|
596
|
|
|
:math:`\\alpha = \\beta = 1` is equivalent to the Jaccard & Tanimoto |
597
|
|
|
similarity coefficients. |
598
|
|
|
|
599
|
|
|
:math:`\\alpha = \\beta = 0.5` is equivalent to the Sørensen-Dice |
600
|
|
|
similarity coefficient :cite:`Dice:1945,Sorensen:1948`. |
601
|
|
|
|
602
|
|
|
Unequal α and β will tend to emphasize one or the other set's |
603
|
|
|
contributions: |
604
|
|
|
|
605
|
|
|
- :math:`\\alpha > \\beta` emphasizes the contributions of X over Y |
606
|
|
|
- :math:`\\alpha < \\beta` emphasizes the contributions of Y over X) |
607
|
|
|
|
608
|
|
|
Parameter values' relation to 1 emphasizes different types of |
609
|
|
|
contributions: |
610
|
|
|
|
611
|
|
|
- :math:`\\alpha and \\beta > 1` emphsize unique contributions over the |
612
|
|
|
intersection |
613
|
|
|
- :math:`\\alpha and \\beta < 1` emphsize the intersection over unique |
614
|
|
|
contributions |
615
|
|
|
|
616
|
|
|
The symmetric variant is defined in :cite:`Jiminez:2013`. This is activated |
617
|
|
|
by specifying a bias parameter. |
618
|
|
|
|
619
|
|
|
:param str src, tar: two strings to be compared |
620
|
|
|
(or QGrams/Counter objects) |
621
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
622
|
|
|
version |
623
|
|
|
:param float alpha, beta: two Tversky index parameters as indicated in the |
624
|
|
|
description below |
625
|
|
|
:returns: Tversky similarity |
626
|
|
|
:rtype: float |
627
|
|
|
|
628
|
|
|
>>> sim_tversky('cat', 'hat') |
629
|
|
|
0.3333333333333333 |
630
|
|
|
>>> sim_tversky('Niall', 'Neil') |
631
|
|
|
0.2222222222222222 |
632
|
|
|
>>> sim_tversky('aluminum', 'Catalan') |
633
|
|
|
0.0625 |
634
|
|
|
>>> sim_tversky('ATCG', 'TAGC') |
635
|
|
|
0.0 |
636
|
|
|
""" |
637
|
|
|
if alpha < 0 or beta < 0: |
638
|
|
|
raise ValueError('Unsupported weight assignment; alpha and beta ' + |
639
|
|
|
'must be greater than or equal to 0.') |
640
|
|
|
|
641
|
|
|
if src == tar: |
|
|
|
|
642
|
|
|
return 1.0 |
643
|
|
|
elif not src or not tar: |
644
|
|
|
return 0.0 |
645
|
|
|
|
646
|
|
|
q_src, q_tar = _get_qgrams(src, tar, qval) |
647
|
|
|
q_src_mag = sum(q_src.values()) |
648
|
|
|
q_tar_mag = sum(q_tar.values()) |
649
|
|
|
q_intersection_mag = sum((q_src & q_tar).values()) |
650
|
|
|
|
651
|
|
|
if not q_src or not q_tar: |
652
|
|
|
return 0.0 |
653
|
|
|
|
654
|
|
|
if bias is None: |
655
|
|
|
return q_intersection_mag / (q_intersection_mag + alpha * |
656
|
|
|
(q_src_mag - q_intersection_mag) + |
657
|
|
|
beta * (q_tar_mag - q_intersection_mag)) |
658
|
|
|
|
659
|
|
|
a_val = min(q_src_mag - q_intersection_mag, |
660
|
|
|
q_tar_mag - q_intersection_mag) |
661
|
|
|
b_val = max(q_src_mag - q_intersection_mag, |
662
|
|
|
q_tar_mag - q_intersection_mag) |
663
|
|
|
c_val = q_intersection_mag + bias |
664
|
|
|
return c_val / (beta * (alpha * a_val + (1 - alpha) * b_val) + c_val) |
665
|
|
|
|
666
|
|
|
|
667
|
|
|
def dist_tversky(src, tar, qval=2, alpha=1, beta=1, bias=None): |
|
|
|
|
668
|
|
|
"""Return the Tverssky distance between two strings. |
669
|
|
|
|
670
|
|
|
Tversky distance is the complement of the Tvesrsky index (similarity): |
671
|
|
|
:math:`dist_{Tversky} = 1-sim_{Tversky}`. |
672
|
|
|
|
673
|
|
|
:param str src, tar: two strings to be compared |
674
|
|
|
(or QGrams/Counter objects) |
675
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
676
|
|
|
version |
677
|
|
|
:param float alpha, beta: two Tversky index parameters as indicated in the |
678
|
|
|
description below |
679
|
|
|
:returns: Tversky distance |
680
|
|
|
:rtype: float |
681
|
|
|
|
682
|
|
|
>>> dist_tversky('cat', 'hat') |
683
|
|
|
0.6666666666666667 |
684
|
|
|
>>> dist_tversky('Niall', 'Neil') |
685
|
|
|
0.7777777777777778 |
686
|
|
|
>>> dist_tversky('aluminum', 'Catalan') |
687
|
|
|
0.9375 |
688
|
|
|
>>> dist_tversky('ATCG', 'TAGC') |
689
|
|
|
1.0 |
690
|
|
|
""" |
691
|
|
|
return 1 - sim_tversky(src, tar, qval, alpha, beta, bias) |
692
|
|
|
|
693
|
|
|
|
694
|
|
|
def sim_dice(src, tar, qval=2): |
695
|
|
|
r"""Return the Sørensen–Dice coefficient of two strings. |
696
|
|
|
|
697
|
|
|
For two sets X and Y, the Sørensen–Dice coefficient |
698
|
|
|
:cite:`Dice:1945,Sorensen:1948` is |
699
|
|
|
:math:`sim_{dice}(X, Y) = \\frac{2 \\cdot |X \\cap Y|}{|X| + |Y|}`. |
700
|
|
|
|
701
|
|
|
This is identical to the Tanimoto similarity coefficient |
702
|
|
|
:cite:`Tanimoto:1958` and the Tversky index :cite:`Tversky:1977` for |
703
|
|
|
:math:`\\alpha = \\beta = 0.5`. |
704
|
|
|
|
705
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
706
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
707
|
|
|
version |
708
|
|
|
:returns: Sørensen–Dice similarity |
709
|
|
|
:rtype: float |
710
|
|
|
|
711
|
|
|
>>> sim_dice('cat', 'hat') |
712
|
|
|
0.5 |
713
|
|
|
>>> sim_dice('Niall', 'Neil') |
714
|
|
|
0.36363636363636365 |
715
|
|
|
>>> sim_dice('aluminum', 'Catalan') |
716
|
|
|
0.11764705882352941 |
717
|
|
|
>>> sim_dice('ATCG', 'TAGC') |
718
|
|
|
0.0 |
719
|
|
|
""" |
720
|
|
|
return sim_tversky(src, tar, qval, 0.5, 0.5) |
721
|
|
|
|
722
|
|
|
|
723
|
|
|
def dist_dice(src, tar, qval=2): |
724
|
|
|
"""Return the Sørensen–Dice distance between two strings. |
725
|
|
|
|
726
|
|
|
Sørensen–Dice distance is the complemenjt of the Sørensen–Dice coefficient: |
727
|
|
|
:math:`dist_{dice} = 1 - sim_{dice}`. |
728
|
|
|
|
729
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
730
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
731
|
|
|
version |
732
|
|
|
:returns: Sørensen–Dice distance |
733
|
|
|
:rtype: float |
734
|
|
|
|
735
|
|
|
>>> dist_dice('cat', 'hat') |
736
|
|
|
0.5 |
737
|
|
|
>>> dist_dice('Niall', 'Neil') |
738
|
|
|
0.6363636363636364 |
739
|
|
|
>>> dist_dice('aluminum', 'Catalan') |
740
|
|
|
0.8823529411764706 |
741
|
|
|
>>> dist_dice('ATCG', 'TAGC') |
742
|
|
|
1.0 |
743
|
|
|
""" |
744
|
|
|
return 1 - sim_dice(src, tar, qval) |
745
|
|
|
|
746
|
|
|
|
747
|
|
|
def sim_jaccard(src, tar, qval=2): |
748
|
|
|
r"""Return the Jaccard similarity of two strings. |
749
|
|
|
|
750
|
|
|
For two sets X and Y, the Jaccard similarity coefficient |
751
|
|
|
:cite:`Jaccard:1901` is :math:`sim_{jaccard}(X, Y) = |
752
|
|
|
\\frac{|X \\cap Y|}{|X \\cup Y|}`. |
753
|
|
|
|
754
|
|
|
This is identical to the Tanimoto similarity coefficient |
755
|
|
|
:cite:`Tanimoto:1958` |
756
|
|
|
and the Tversky index :cite:`Tversky:1977` for |
757
|
|
|
:math:`\\alpha = \\beta = 1`. |
758
|
|
|
|
759
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
760
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
761
|
|
|
version |
762
|
|
|
:returns: Jaccard similarity |
763
|
|
|
:rtype: float |
764
|
|
|
|
765
|
|
|
>>> sim_jaccard('cat', 'hat') |
766
|
|
|
0.3333333333333333 |
767
|
|
|
>>> sim_jaccard('Niall', 'Neil') |
768
|
|
|
0.2222222222222222 |
769
|
|
|
>>> sim_jaccard('aluminum', 'Catalan') |
770
|
|
|
0.0625 |
771
|
|
|
>>> sim_jaccard('ATCG', 'TAGC') |
772
|
|
|
0.0 |
773
|
|
|
""" |
774
|
|
|
return sim_tversky(src, tar, qval, 1, 1) |
775
|
|
|
|
776
|
|
|
|
777
|
|
|
def dist_jaccard(src, tar, qval=2): |
778
|
|
|
"""Return the Jaccard distance between two strings. |
779
|
|
|
|
780
|
|
|
Jaccard distance is the complement of the Jaccard similarity coefficient: |
781
|
|
|
:math:`dist_{Jaccard} = 1 - sim_{Jaccard}`. |
782
|
|
|
|
783
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
784
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
785
|
|
|
version |
786
|
|
|
:returns: Jaccard distance |
787
|
|
|
:rtype: float |
788
|
|
|
|
789
|
|
|
>>> dist_jaccard('cat', 'hat') |
790
|
|
|
0.6666666666666667 |
791
|
|
|
>>> dist_jaccard('Niall', 'Neil') |
792
|
|
|
0.7777777777777778 |
793
|
|
|
>>> dist_jaccard('aluminum', 'Catalan') |
794
|
|
|
0.9375 |
795
|
|
|
>>> dist_jaccard('ATCG', 'TAGC') |
796
|
|
|
1.0 |
797
|
|
|
""" |
798
|
|
|
return 1 - sim_jaccard(src, tar, qval) |
799
|
|
|
|
800
|
|
|
|
801
|
|
|
def sim_overlap(src, tar, qval=2): |
802
|
|
|
r"""Return the overlap coefficient of two strings. |
803
|
|
|
|
804
|
|
|
For two sets X and Y, the overlap coefficient |
805
|
|
|
:cite:`Szymkiewicz:1934,Simpson:1949`, also called the |
806
|
|
|
Szymkiewicz-Simpson coefficient, is |
807
|
|
|
:math:`sim_{overlap}(X, Y) = \\frac{|X \\cap Y|}{min(|X|, |Y|)}`. |
808
|
|
|
|
809
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
810
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
811
|
|
|
version |
812
|
|
|
:returns: overlap similarity |
813
|
|
|
:rtype: float |
814
|
|
|
|
815
|
|
|
>>> sim_overlap('cat', 'hat') |
816
|
|
|
0.5 |
817
|
|
|
>>> sim_overlap('Niall', 'Neil') |
818
|
|
|
0.4 |
819
|
|
|
>>> sim_overlap('aluminum', 'Catalan') |
820
|
|
|
0.125 |
821
|
|
|
>>> sim_overlap('ATCG', 'TAGC') |
822
|
|
|
0.0 |
823
|
|
|
""" |
824
|
|
|
if src == tar: |
|
|
|
|
825
|
|
|
return 1.0 |
826
|
|
|
elif not src or not tar: |
827
|
|
|
return 0.0 |
828
|
|
|
|
829
|
|
|
q_src, q_tar = _get_qgrams(src, tar, qval) |
830
|
|
|
q_src_mag = sum(q_src.values()) |
831
|
|
|
q_tar_mag = sum(q_tar.values()) |
832
|
|
|
q_intersection_mag = sum((q_src & q_tar).values()) |
833
|
|
|
|
834
|
|
|
return q_intersection_mag / min(q_src_mag, q_tar_mag) |
835
|
|
|
|
836
|
|
|
|
837
|
|
|
def dist_overlap(src, tar, qval=2): |
838
|
|
|
"""Return the overlap distance between two strings. |
839
|
|
|
|
840
|
|
|
Overlap distance is the complement of the overlap coefficient: |
841
|
|
|
:math:`sim_{overlap} = 1 - dist_{overlap}`. |
842
|
|
|
|
843
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
844
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
845
|
|
|
version |
846
|
|
|
:returns: overlap distance |
847
|
|
|
:rtype: float |
848
|
|
|
|
849
|
|
|
>>> dist_overlap('cat', 'hat') |
850
|
|
|
0.5 |
851
|
|
|
>>> dist_overlap('Niall', 'Neil') |
852
|
|
|
0.6 |
853
|
|
|
>>> dist_overlap('aluminum', 'Catalan') |
854
|
|
|
0.875 |
855
|
|
|
>>> dist_overlap('ATCG', 'TAGC') |
856
|
|
|
1.0 |
857
|
|
|
""" |
858
|
|
|
return 1 - sim_overlap(src, tar, qval) |
859
|
|
|
|
860
|
|
|
|
861
|
|
|
def sim_tanimoto(src, tar, qval=2): |
862
|
|
|
r"""Return the Tanimoto similarity of two strings. |
863
|
|
|
|
864
|
|
|
For two sets X and Y, the Tanimoto similarity coefficient |
865
|
|
|
:cite:`Tanimoto:1958` is |
866
|
|
|
:math:`sim_{Tanimoto}(X, Y) = \\frac{|X \\cap Y|}{|X \\cup Y|}`. |
867
|
|
|
|
868
|
|
|
This is identical to the Jaccard similarity coefficient |
869
|
|
|
:cite:`Jaccard:1901` and the Tversky index :cite:`Tversky:1977` for |
870
|
|
|
:math:`\\alpha = \\beta = 1`. |
871
|
|
|
|
872
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
873
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
874
|
|
|
version |
875
|
|
|
:returns: Tanimoto similarity |
876
|
|
|
:rtype: float |
877
|
|
|
|
878
|
|
|
>>> sim_tanimoto('cat', 'hat') |
879
|
|
|
0.3333333333333333 |
880
|
|
|
>>> sim_tanimoto('Niall', 'Neil') |
881
|
|
|
0.2222222222222222 |
882
|
|
|
>>> sim_tanimoto('aluminum', 'Catalan') |
883
|
|
|
0.0625 |
884
|
|
|
>>> sim_tanimoto('ATCG', 'TAGC') |
885
|
|
|
0.0 |
886
|
|
|
""" |
887
|
|
|
return sim_jaccard(src, tar, qval) |
888
|
|
|
|
889
|
|
|
|
890
|
|
|
def tanimoto(src, tar, qval=2): |
891
|
|
|
"""Return the Tanimoto distance between two strings. |
892
|
|
|
|
893
|
|
|
Tanimoto distance is :math:`-log_{2}sim_{Tanimoto}`. |
894
|
|
|
|
895
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
896
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
897
|
|
|
version |
898
|
|
|
:returns: Tanimoto distance |
899
|
|
|
:rtype: float |
900
|
|
|
|
901
|
|
|
>>> tanimoto('cat', 'hat') |
902
|
|
|
-1.5849625007211563 |
903
|
|
|
>>> tanimoto('Niall', 'Neil') |
904
|
|
|
-2.1699250014423126 |
905
|
|
|
>>> tanimoto('aluminum', 'Catalan') |
906
|
|
|
-4.0 |
907
|
|
|
>>> tanimoto('ATCG', 'TAGC') |
908
|
|
|
-inf |
909
|
|
|
""" |
910
|
|
|
coeff = sim_jaccard(src, tar, qval) |
911
|
|
|
if coeff != 0: |
912
|
|
|
return log(coeff, 2) |
913
|
|
|
|
914
|
|
|
return float('-inf') |
915
|
|
|
|
916
|
|
|
|
917
|
|
|
def minkowski(src, tar, qval=2, pval=1, normalize=False, alphabet=None): |
|
|
|
|
918
|
|
|
"""Return the Minkowski distance (:math:`L^p-norm`) of two strings. |
919
|
|
|
|
920
|
|
|
The Minkowsky distance :cite:`Minkowski:1910` is a distance metric in |
921
|
|
|
:math:`L^p-space`. |
922
|
|
|
|
923
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
924
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
925
|
|
|
version |
926
|
|
|
:param pval: the :math:`p`-value of the :math:`L^p`-space. |
927
|
|
|
:param normalize: normalizes to [0, 1] if True |
928
|
|
|
:param collection or int alphabet: the values or size of the alphabet |
929
|
|
|
:returns: the Minkowski distance |
930
|
|
|
:rtype: float |
931
|
|
|
""" |
932
|
|
|
q_src, q_tar = _get_qgrams(src, tar, qval) |
933
|
|
|
diffs = ((q_src - q_tar) + (q_tar - q_src)).values() |
934
|
|
|
|
935
|
|
|
normalizer = 1 |
936
|
|
|
if normalize: |
937
|
|
|
totals = (q_src + q_tar).values() |
938
|
|
|
if alphabet is not None: |
939
|
|
|
normalizer = (alphabet if isinstance(alphabet, Number) else |
940
|
|
|
len(alphabet)) |
941
|
|
|
elif pval == 0: |
942
|
|
|
normalizer = len(totals) |
943
|
|
|
else: |
944
|
|
|
normalizer = sum(_**pval for _ in totals)**(1 / pval) |
945
|
|
|
|
946
|
|
|
if len(diffs) == 0: |
|
|
|
|
947
|
|
|
return 0.0 |
948
|
|
|
if pval == float('inf'): |
949
|
|
|
# Chebyshev distance |
950
|
|
|
return max(diffs)/normalizer |
951
|
|
|
if pval == 0: |
952
|
|
|
# This is the l_0 "norm" as developed by David Donoho |
953
|
|
|
return len(diffs)/normalizer |
954
|
|
|
return sum(_**pval for _ in diffs)**(1 / pval)/normalizer |
955
|
|
|
|
956
|
|
|
|
957
|
|
|
def dist_minkowski(src, tar, qval=2, pval=1, alphabet=None): |
958
|
|
|
"""Return Minkowski distance of two strings, normalized to [0, 1]. |
959
|
|
|
|
960
|
|
|
The normalized Minkowsky distance :cite:`Minkowski:1910` is a distance |
961
|
|
|
metric in :math:`L^p-space`, normalized to [0, 1]. |
962
|
|
|
|
963
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
964
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
965
|
|
|
version |
966
|
|
|
:param pval: the :math:`p`-value of the :math:`L^p`-space. |
967
|
|
|
:param collection or int alphabet: the values or size of the alphabet |
968
|
|
|
:returns: the normalized Minkowski distance |
969
|
|
|
:rtype: float |
970
|
|
|
""" |
971
|
|
|
return minkowski(src, tar, qval, pval, True, alphabet) |
972
|
|
|
|
973
|
|
|
|
974
|
|
|
def sim_minkowski(src, tar, qval=2, pval=1, alphabet=None): |
975
|
|
|
"""Return Minkowski similarity of two strings, normalized to [0, 1]. |
976
|
|
|
|
977
|
|
|
Minkowski similarity is the complement of Minkowski distance: |
978
|
|
|
:math:`sim_{Minkowski} = 1 - dist_{Minkowski}`. |
979
|
|
|
|
980
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
981
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
982
|
|
|
version |
983
|
|
|
:param pval: the :math:`p`-value of the :math:`L^p`-space. |
984
|
|
|
:param collection or int alphabet: the values or size of the alphabet |
985
|
|
|
:returns: the normalized Minkowski similarity |
986
|
|
|
:rtype: float |
987
|
|
|
""" |
988
|
|
|
return 1-minkowski(src, tar, qval, pval, True, alphabet) |
989
|
|
|
|
990
|
|
|
|
991
|
|
|
def manhattan(src, tar, qval=2, normalize=False, alphabet=None): |
|
|
|
|
992
|
|
|
"""Return the Manhattan distance between two strings. |
993
|
|
|
|
994
|
|
|
Manhattan distance is the city-block or taxi-cab distance, equivalent |
995
|
|
|
to Minkowski distance in :math:`L^1`-space. |
996
|
|
|
|
997
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
998
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
999
|
|
|
version |
1000
|
|
|
:param pval: the :math:`p`-value of the :math:`L^p`-space. |
1001
|
|
|
:param normalize: normalizes to [0, 1] if True |
1002
|
|
|
:param collection or int alphabet: the values or size of the alphabet |
1003
|
|
|
:returns: the Manhattan distance |
1004
|
|
|
:rtype: float |
1005
|
|
|
""" |
1006
|
|
|
return minkowski(src, tar, qval, 1, normalize, alphabet) |
1007
|
|
|
|
1008
|
|
|
|
1009
|
|
|
def dist_manhattan(src, tar, qval=2, alphabet=None): |
1010
|
|
|
"""Return the Manhattan distance between two strings, normalized to [0, 1]. |
1011
|
|
|
|
1012
|
|
|
The normalized Manhattan distance is a distance |
1013
|
|
|
metric in :math:`L^1-space`, normalized to [0, 1]. |
1014
|
|
|
|
1015
|
|
|
This is identical to Canberra distance. |
1016
|
|
|
|
1017
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
1018
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
1019
|
|
|
version |
1020
|
|
|
:param pval: the :math:`p`-value of the :math:`L^p`-space. |
1021
|
|
|
:param collection or int alphabet: the values or size of the alphabet |
1022
|
|
|
:returns: the normalized Manhattan distance |
1023
|
|
|
:rtype: float |
1024
|
|
|
""" |
1025
|
|
|
return manhattan(src, tar, qval, True, alphabet) |
1026
|
|
|
|
1027
|
|
|
|
1028
|
|
|
def sim_manhattan(src, tar, qval=2, alphabet=None): |
1029
|
|
|
"""Return the Manhattan similarity of two strings, normalized to [0, 1]. |
1030
|
|
|
|
1031
|
|
|
Manhattan similarity is the complement of Manhattan distance: |
1032
|
|
|
:math:`sim_{Manhattan} = 1 - dist_{Manhattan}`. |
1033
|
|
|
|
1034
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
1035
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
1036
|
|
|
version |
1037
|
|
|
:param pval: the :math:`p`-value of the :math:`L^p`-space. |
1038
|
|
|
:param collection or int alphabet: the values or size of the alphabet |
1039
|
|
|
:returns: the normalized Manhattan similarity |
1040
|
|
|
:rtype: float |
1041
|
|
|
""" |
1042
|
|
|
return 1-manhattan(src, tar, qval, True, alphabet) |
1043
|
|
|
|
1044
|
|
|
|
1045
|
|
|
def euclidean(src, tar, qval=2, normalize=False, alphabet=None): |
|
|
|
|
1046
|
|
|
"""Return the Euclidean distance between two strings. |
1047
|
|
|
|
1048
|
|
|
Euclidean distance is the straigh-line or as-the-crow-flies distance, |
1049
|
|
|
equivalent to Minkowski distance in :math:`L^2`-space. |
1050
|
|
|
|
1051
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
1052
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
1053
|
|
|
version |
1054
|
|
|
:param pval: the :math:`p`-value of the :math:`L^p`-space. |
1055
|
|
|
:param normalize: normalizes to [0, 1] if True |
1056
|
|
|
:param collection or int alphabet: the values or size of the alphabet |
1057
|
|
|
:returns: the Euclidean distance |
1058
|
|
|
:rtype: float |
1059
|
|
|
""" |
1060
|
|
|
return minkowski(src, tar, qval, 2, normalize, alphabet) |
1061
|
|
|
|
1062
|
|
|
|
1063
|
|
|
def dist_euclidean(src, tar, qval=2, alphabet=None): |
1064
|
|
|
"""Return the Euclidean distance between two strings, normalized to [0, 1]. |
1065
|
|
|
|
1066
|
|
|
The normalized Euclidean distance is a distance |
1067
|
|
|
metric in :math:`L^2-space`, normalized to [0, 1]. |
1068
|
|
|
|
1069
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
1070
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
1071
|
|
|
version |
1072
|
|
|
:param pval: the :math:`p`-value of the :math:`L^p`-space. |
1073
|
|
|
:param collection or int alphabet: the values or size of the alphabet |
1074
|
|
|
:returns: the normalized Euclidean distance |
1075
|
|
|
:rtype: float |
1076
|
|
|
""" |
1077
|
|
|
return euclidean(src, tar, qval, True, alphabet) |
1078
|
|
|
|
1079
|
|
|
|
1080
|
|
|
def sim_euclidean(src, tar, qval=2, alphabet=None): |
1081
|
|
|
"""Return the Euclidean similarity of two strings, normalized to [0, 1]. |
1082
|
|
|
|
1083
|
|
|
Euclidean similarity is the complement of Euclidean distance: |
1084
|
|
|
:math:`sim_{Euclidean} = 1 - dist_{Euclidean}`. |
1085
|
|
|
|
1086
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
1087
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
1088
|
|
|
version |
1089
|
|
|
:param pval: the :math:`p`-value of the :math:`L^p`-space. |
1090
|
|
|
:param collection or int alphabet: the values or size of the alphabet |
1091
|
|
|
:returns: the normalized Euclidean similarity |
1092
|
|
|
:rtype: float |
1093
|
|
|
""" |
1094
|
|
|
return 1-euclidean(src, tar, qval, True, alphabet) |
1095
|
|
|
|
1096
|
|
|
|
1097
|
|
|
def chebyshev(src, tar, qval=2, normalize=False, alphabet=None): |
|
|
|
|
1098
|
|
|
r"""Return the Chebyshev distance between two strings. |
1099
|
|
|
|
1100
|
|
|
Euclidean distance is the chessboard distance, |
1101
|
|
|
equivalent to Minkowski distance in :math:`L^\infty`-space. |
1102
|
|
|
|
1103
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
1104
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
1105
|
|
|
version |
1106
|
|
|
:param pval: the :math:`p`-value of the :math:`L^p`-space. |
1107
|
|
|
:param normalize: normalizes to [0, 1] if True |
1108
|
|
|
:param collection or int alphabet: the values or size of the alphabet |
1109
|
|
|
:returns: the Chebyshev distance |
1110
|
|
|
:rtype: float |
1111
|
|
|
""" |
1112
|
|
|
return minkowski(src, tar, qval, float('inf'), normalize, alphabet) |
1113
|
|
|
|
1114
|
|
|
|
1115
|
|
|
def dist_chebyshev(src, tar, qval=2, alphabet=None): |
1116
|
|
|
"""Return the Chebyshev distance between two strings, normalized to [0, 1]. |
1117
|
|
|
|
1118
|
|
|
The normalized Chebyshev distance :cite:`Minkowski:1910` is a distance |
1119
|
|
|
metric in :math:`L^p-space`, normalized to [0, 1]. |
1120
|
|
|
|
1121
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
1122
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
1123
|
|
|
version |
1124
|
|
|
:param pval: the :math:`p`-value of the :math:`L^p`-space. |
1125
|
|
|
:param collection or int alphabet: the values or size of the alphabet |
1126
|
|
|
:returns: the normalized Chebyshev distance |
1127
|
|
|
:rtype: float |
1128
|
|
|
""" |
1129
|
|
|
return chebyshev(src, tar, qval, True, alphabet) |
1130
|
|
|
|
1131
|
|
|
|
1132
|
|
|
def sim_chebyshev(src, tar, qval=2, alphabet=None): |
1133
|
|
|
"""Return the Chebyshev similarity of two strings, normalized to [0, 1]. |
1134
|
|
|
|
1135
|
|
|
Chebyshev similarity is the complement of Chebyshev distance: |
1136
|
|
|
:math:`sim_{Chebyshev} = 1 - dist_{Chebyshev}`. |
1137
|
|
|
|
1138
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
1139
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
1140
|
|
|
version |
1141
|
|
|
:param pval: the :math:`p`-value of the :math:`L^p`-space. |
1142
|
|
|
:param collection or int alphabet: the values or size of the alphabet |
1143
|
|
|
:returns: the normalized Chebyshev similarity |
1144
|
|
|
:rtype: float |
1145
|
|
|
""" |
1146
|
|
|
return 1 - chebyshev(src, tar, qval, True, alphabet) |
1147
|
|
|
|
1148
|
|
|
|
1149
|
|
|
def sim_cosine(src, tar, qval=2): |
1150
|
|
|
r"""Return the cosine similarity of two strings. |
1151
|
|
|
|
1152
|
|
|
For two sets X and Y, the cosine similarity, Otsuka-Ochiai coefficient, or |
1153
|
|
|
Ochiai coefficient :cite:`Otsuka:1936,Ochiai:1957` is: |
1154
|
|
|
:math:`sim_{cosine}(X, Y) = \\frac{|X \\cap Y|}{\\sqrt{|X| \\cdot |Y|}}`. |
1155
|
|
|
|
1156
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
1157
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
1158
|
|
|
version |
1159
|
|
|
:returns: cosine similarity |
1160
|
|
|
:rtype: float |
1161
|
|
|
|
1162
|
|
|
>>> sim_cosine('cat', 'hat') |
1163
|
|
|
0.5 |
1164
|
|
|
>>> sim_cosine('Niall', 'Neil') |
1165
|
|
|
0.3651483716701107 |
1166
|
|
|
>>> sim_cosine('aluminum', 'Catalan') |
1167
|
|
|
0.11785113019775793 |
1168
|
|
|
>>> sim_cosine('ATCG', 'TAGC') |
1169
|
|
|
0.0 |
1170
|
|
|
""" |
1171
|
|
|
if src == tar: |
1172
|
|
|
return 1.0 |
1173
|
|
|
if not src or not tar: |
1174
|
|
|
return 0.0 |
1175
|
|
|
|
1176
|
|
|
q_src, q_tar = _get_qgrams(src, tar, qval) |
1177
|
|
|
q_src_mag = sum(q_src.values()) |
1178
|
|
|
q_tar_mag = sum(q_tar.values()) |
1179
|
|
|
q_intersection_mag = sum((q_src & q_tar).values()) |
1180
|
|
|
|
1181
|
|
|
return q_intersection_mag / sqrt(q_src_mag * q_tar_mag) |
1182
|
|
|
|
1183
|
|
|
|
1184
|
|
|
def dist_cosine(src, tar, qval=2): |
1185
|
|
|
"""Return the cosine distance between two strings. |
1186
|
|
|
|
1187
|
|
|
Cosine distance is the complement of cosine similarity: |
1188
|
|
|
:math:`dist_{cosine} = 1 - sim_{cosine}`. |
1189
|
|
|
|
1190
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
1191
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
1192
|
|
|
version |
1193
|
|
|
:returns: cosine distance |
1194
|
|
|
:rtype: float |
1195
|
|
|
|
1196
|
|
|
>>> dist_cosine('cat', 'hat') |
1197
|
|
|
0.5 |
1198
|
|
|
>>> dist_cosine('Niall', 'Neil') |
1199
|
|
|
0.6348516283298893 |
1200
|
|
|
>>> dist_cosine('aluminum', 'Catalan') |
1201
|
|
|
0.882148869802242 |
1202
|
|
|
>>> dist_cosine('ATCG', 'TAGC') |
1203
|
|
|
1.0 |
1204
|
|
|
""" |
1205
|
|
|
return 1 - sim_cosine(src, tar, qval) |
1206
|
|
|
|
1207
|
|
|
|
1208
|
|
|
def sim_strcmp95(src, tar, long_strings=False): |
|
|
|
|
1209
|
|
|
"""Return the strcmp95 similarity of two strings. |
1210
|
|
|
|
1211
|
|
|
This is a Python translation of the C code for strcmp95: |
1212
|
|
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
1213
|
|
|
:cite:`Winkler:1994`. |
1214
|
|
|
The above file is a US Government publication and, accordingly, |
1215
|
|
|
in the public domain. |
1216
|
|
|
|
1217
|
|
|
This is based on the Jaro-Winkler distance, but also attempts to correct |
1218
|
|
|
for some common typos and frequently confused characters. It is also |
1219
|
|
|
limited to uppercase ASCII characters, so it is appropriate to American |
1220
|
|
|
names, but not much else. |
1221
|
|
|
|
1222
|
|
|
:param str src, tar: two strings to be compared |
1223
|
|
|
:param bool long_strings: set to True to "Increase the probability of a |
1224
|
|
|
match when the number of matched characters is large. This option |
1225
|
|
|
allows for a little more tolerance when the strings are large. It is |
1226
|
|
|
not an appropriate test when comparing fixed length fields such as |
1227
|
|
|
phone and social security numbers." |
1228
|
|
|
:returns: strcmp95 similarity |
1229
|
|
|
:rtype: float |
1230
|
|
|
|
1231
|
|
|
>>> sim_strcmp95('cat', 'hat') |
1232
|
|
|
0.7777777777777777 |
1233
|
|
|
>>> sim_strcmp95('Niall', 'Neil') |
1234
|
|
|
0.8454999999999999 |
1235
|
|
|
>>> sim_strcmp95('aluminum', 'Catalan') |
1236
|
|
|
0.6547619047619048 |
1237
|
|
|
>>> sim_strcmp95('ATCG', 'TAGC') |
1238
|
|
|
0.8333333333333334 |
1239
|
|
|
""" |
1240
|
|
|
def _inrange(char): |
1241
|
|
|
"""Return True if char is in the range (0, 91).""" |
1242
|
|
|
return ord(char) > 0 and ord(char) < 91 |
1243
|
|
|
|
1244
|
|
|
ying = src.strip().upper() |
1245
|
|
|
yang = tar.strip().upper() |
1246
|
|
|
|
1247
|
|
|
if ying == yang: |
1248
|
|
|
return 1.0 |
1249
|
|
|
# If either string is blank - return - added in Version 2 |
1250
|
|
|
if not ying or not yang: |
1251
|
|
|
return 0.0 |
1252
|
|
|
|
1253
|
|
|
adjwt = defaultdict(int) |
1254
|
|
|
sp_mx = ( |
1255
|
|
|
('A', 'E'), ('A', 'I'), ('A', 'O'), ('A', 'U'), ('B', 'V'), ('E', 'I'), |
1256
|
|
|
('E', 'O'), ('E', 'U'), ('I', 'O'), ('I', 'U'), ('O', 'U'), ('I', 'Y'), |
1257
|
|
|
('E', 'Y'), ('C', 'G'), ('E', 'F'), ('W', 'U'), ('W', 'V'), ('X', 'K'), |
1258
|
|
|
('S', 'Z'), ('X', 'S'), ('Q', 'C'), ('U', 'V'), ('M', 'N'), ('L', 'I'), |
1259
|
|
|
('Q', 'O'), ('P', 'R'), ('I', 'J'), ('2', 'Z'), ('5', 'S'), ('8', 'B'), |
1260
|
|
|
('1', 'I'), ('1', 'L'), ('0', 'O'), ('0', 'Q'), ('C', 'K'), ('G', 'J') |
1261
|
|
|
) |
1262
|
|
|
|
1263
|
|
|
# Initialize the adjwt array on the first call to the function only. |
1264
|
|
|
# The adjwt array is used to give partial credit for characters that |
1265
|
|
|
# may be errors due to known phonetic or character recognition errors. |
1266
|
|
|
# A typical example is to match the letter "O" with the number "0" |
1267
|
|
|
for i in sp_mx: |
1268
|
|
|
adjwt[(i[0], i[1])] = 3 |
1269
|
|
|
adjwt[(i[1], i[0])] = 3 |
1270
|
|
|
|
1271
|
|
|
if len(ying) > len(yang): |
1272
|
|
|
search_range = len(ying) |
1273
|
|
|
minv = len(yang) |
1274
|
|
|
else: |
1275
|
|
|
search_range = len(yang) |
1276
|
|
|
minv = len(ying) |
1277
|
|
|
|
1278
|
|
|
# Blank out the flags |
1279
|
|
|
ying_flag = [0] * search_range |
1280
|
|
|
yang_flag = [0] * search_range |
1281
|
|
|
search_range = max(0, search_range // 2 - 1) |
1282
|
|
|
|
1283
|
|
|
# Looking only within the search range, count and flag the matched pairs. |
1284
|
|
|
num_com = 0 |
1285
|
|
|
yl1 = len(yang) - 1 |
1286
|
|
|
for i in range(len(ying)): |
|
|
|
|
1287
|
|
|
lowlim = (i - search_range) if (i >= search_range) else 0 |
1288
|
|
|
hilim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
1289
|
|
|
for j in range(lowlim, hilim+1): |
1290
|
|
|
if (yang_flag[j] == 0) and (yang[j] == ying[i]): |
1291
|
|
|
yang_flag[j] = 1 |
1292
|
|
|
ying_flag[i] = 1 |
1293
|
|
|
num_com += 1 |
1294
|
|
|
break |
1295
|
|
|
|
1296
|
|
|
# If no characters in common - return |
1297
|
|
|
if num_com == 0: |
1298
|
|
|
return 0.0 |
1299
|
|
|
|
1300
|
|
|
# Count the number of transpositions |
1301
|
|
|
k = n_trans = 0 |
1302
|
|
|
for i in range(len(ying)): |
|
|
|
|
1303
|
|
|
if ying_flag[i] != 0: |
1304
|
|
|
for j in range(k, len(yang)): |
1305
|
|
|
if yang_flag[j] != 0: |
1306
|
|
|
k = j + 1 |
1307
|
|
|
break |
1308
|
|
|
if ying[i] != yang[j]: |
|
|
|
|
1309
|
|
|
n_trans += 1 |
1310
|
|
|
n_trans = n_trans // 2 |
1311
|
|
|
|
1312
|
|
|
# Adjust for similarities in unmatched characters |
1313
|
|
|
n_simi = 0 |
1314
|
|
|
if minv > num_com: |
|
|
|
|
1315
|
|
|
for i in range(len(ying)): |
|
|
|
|
1316
|
|
|
if ying_flag[i] == 0 and _inrange(ying[i]): |
1317
|
|
|
for j in range(len(yang)): |
|
|
|
|
1318
|
|
|
if yang_flag[j] == 0 and _inrange(yang[j]): |
1319
|
|
|
if (ying[i], yang[j]) in adjwt: |
1320
|
|
|
n_simi += adjwt[(ying[i], yang[j])] |
1321
|
|
|
yang_flag[j] = 2 |
1322
|
|
|
break |
1323
|
|
|
num_sim = n_simi/10.0 + num_com |
1324
|
|
|
|
1325
|
|
|
# Main weight computation |
1326
|
|
|
weight = num_sim / len(ying) + num_sim / len(yang) + \ |
1327
|
|
|
(num_com - n_trans) / num_com |
1328
|
|
|
weight = weight / 3.0 |
1329
|
|
|
|
1330
|
|
|
# Continue to boost the weight if the strings are similar |
1331
|
|
|
if weight > 0.7: |
1332
|
|
|
|
1333
|
|
|
# Adjust for having up to the first 4 characters in common |
1334
|
|
|
j = 4 if (minv >= 4) else minv |
1335
|
|
|
i = 0 |
1336
|
|
|
while (i < j) and (ying[i] == yang[i]) and (not ying[i].isdigit()): |
1337
|
|
|
i += 1 |
1338
|
|
|
if i: |
1339
|
|
|
weight += i * 0.1 * (1.0 - weight) |
1340
|
|
|
|
1341
|
|
|
# Optionally adjust for long strings. |
1342
|
|
|
|
1343
|
|
|
# After agreeing beginning chars, at least two more must agree and |
1344
|
|
|
# the agreeing characters must be > .5 of remaining characters. |
1345
|
|
|
if (((long_strings) and (minv > 4) and (num_com > i+1) and |
1346
|
|
|
(2*num_com >= minv+i))): |
1347
|
|
|
if not ying[0].isdigit(): |
1348
|
|
|
weight += (1.0-weight) * ((num_com-i-1) / |
1349
|
|
|
(len(ying)+len(yang)-i*2+2)) |
1350
|
|
|
|
1351
|
|
|
return weight |
1352
|
|
|
|
1353
|
|
|
|
1354
|
|
|
def dist_strcmp95(src, tar, long_strings=False): |
1355
|
|
|
"""Return the strcmp95 distance between two strings. |
1356
|
|
|
|
1357
|
|
|
strcmp95 distance is the complement of strcmp95 similarity: |
1358
|
|
|
:math:`dist_{strcmp95} = 1 - sim_{strcmp95}`. |
1359
|
|
|
|
1360
|
|
|
:param str src, tar: two strings to be compared |
1361
|
|
|
:param bool long_strings: set to True to "Increase the probability of a |
1362
|
|
|
match when the number of matched characters is large. This option |
1363
|
|
|
allows for a little more tolerance when the strings are large. It is |
1364
|
|
|
not an appropriate test when comparing fixed length fields such as |
1365
|
|
|
phone and social security numbers." |
1366
|
|
|
:returns: strcmp95 distance |
1367
|
|
|
:rtype: float |
1368
|
|
|
|
1369
|
|
|
>>> round(dist_strcmp95('cat', 'hat'), 12) |
1370
|
|
|
0.222222222222 |
1371
|
|
|
>>> round(dist_strcmp95('Niall', 'Neil'), 12) |
1372
|
|
|
0.1545 |
1373
|
|
|
>>> round(dist_strcmp95('aluminum', 'Catalan'), 12) |
1374
|
|
|
0.345238095238 |
1375
|
|
|
>>> round(dist_strcmp95('ATCG', 'TAGC'), 12) |
1376
|
|
|
0.166666666667 |
1377
|
|
|
""" |
1378
|
|
|
return 1 - sim_strcmp95(src, tar, long_strings) |
1379
|
|
|
|
1380
|
|
|
|
1381
|
|
|
def sim_jaro_winkler(src, tar, qval=1, mode='winkler', long_strings=False, |
|
|
|
|
1382
|
|
|
boost_threshold=0.7, scaling_factor=0.1): |
1383
|
|
|
"""Return the Jaro or Jaro-Winkler similarity of two strings. |
1384
|
|
|
|
1385
|
|
|
Jaro(-Winkler) distance is a string edit distance initially proposed by |
1386
|
|
|
Jaro and extended by Winkler :cite:`Jaro:1989,Winkler:1990`. |
1387
|
|
|
|
1388
|
|
|
This is Python based on the C code for strcmp95: |
1389
|
|
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
1390
|
|
|
:cite:`Winkler:1994`. The above file is a US Government publication and, |
1391
|
|
|
accordingly, in the public domain. |
1392
|
|
|
|
1393
|
|
|
:param str src, tar: two strings to be compared |
1394
|
|
|
:param int qval: the length of each q-gram (defaults to 1: character-wise |
1395
|
|
|
matching) |
1396
|
|
|
:param str mode: indicates which variant of this distance metric to |
1397
|
|
|
compute: |
1398
|
|
|
|
1399
|
|
|
- 'winkler' -- computes the Jaro-Winkler distance (default) which |
1400
|
|
|
increases the score for matches near the start of the word |
1401
|
|
|
- 'jaro' -- computes the Jaro distance |
1402
|
|
|
|
1403
|
|
|
The following arguments apply only when mode is 'winkler': |
1404
|
|
|
|
1405
|
|
|
:param bool long_strings: set to True to "Increase the probability of a |
1406
|
|
|
match when the number of matched characters is large. This option |
1407
|
|
|
allows for a little more tolerance when the strings are large. It is |
1408
|
|
|
not an appropriate test when comparing fixed length fields such as |
1409
|
|
|
phone and social security numbers." |
1410
|
|
|
:param float boost_threshold: a value between 0 and 1, below which the |
1411
|
|
|
Winkler boost is not applied (defaults to 0.7) |
1412
|
|
|
:param float scaling_factor: a value between 0 and 0.25, indicating by how |
1413
|
|
|
much to boost scores for matching prefixes (defaults to 0.1) |
1414
|
|
|
|
1415
|
|
|
:returns: Jaro or Jaro-Winkler similarity |
1416
|
|
|
:rtype: float |
1417
|
|
|
|
1418
|
|
|
>>> round(sim_jaro_winkler('cat', 'hat'), 12) |
1419
|
|
|
0.777777777778 |
1420
|
|
|
>>> round(sim_jaro_winkler('Niall', 'Neil'), 12) |
1421
|
|
|
0.805 |
1422
|
|
|
>>> round(sim_jaro_winkler('aluminum', 'Catalan'), 12) |
1423
|
|
|
0.60119047619 |
1424
|
|
|
>>> round(sim_jaro_winkler('ATCG', 'TAGC'), 12) |
1425
|
|
|
0.833333333333 |
1426
|
|
|
|
1427
|
|
|
>>> round(sim_jaro_winkler('cat', 'hat', mode='jaro'), 12) |
1428
|
|
|
0.777777777778 |
1429
|
|
|
>>> round(sim_jaro_winkler('Niall', 'Neil', mode='jaro'), 12) |
1430
|
|
|
0.783333333333 |
1431
|
|
|
>>> round(sim_jaro_winkler('aluminum', 'Catalan', mode='jaro'), 12) |
1432
|
|
|
0.60119047619 |
1433
|
|
|
>>> round(sim_jaro_winkler('ATCG', 'TAGC', mode='jaro'), 12) |
1434
|
|
|
0.833333333333 |
1435
|
|
|
""" |
1436
|
|
|
if mode == 'winkler': |
1437
|
|
|
if boost_threshold > 1 or boost_threshold < 0: |
1438
|
|
|
raise ValueError('Unsupported boost_threshold assignment; ' + |
1439
|
|
|
'boost_threshold must be between 0 and 1.') |
1440
|
|
|
if scaling_factor > 0.25 or scaling_factor < 0: |
1441
|
|
|
raise ValueError('Unsupported scaling_factor assignment; ' + |
1442
|
|
|
'scaling_factor must be between 0 and 0.25.') |
1443
|
|
|
|
1444
|
|
|
if src == tar: |
1445
|
|
|
return 1.0 |
1446
|
|
|
|
1447
|
|
|
src = QGrams(src.strip(), qval).ordered_list |
1448
|
|
|
tar = QGrams(tar.strip(), qval).ordered_list |
1449
|
|
|
|
1450
|
|
|
lens = len(src) |
1451
|
|
|
lent = len(tar) |
1452
|
|
|
|
1453
|
|
|
# If either string is blank - return - added in Version 2 |
1454
|
|
|
if lens == 0 or lent == 0: |
1455
|
|
|
return 0.0 |
1456
|
|
|
|
1457
|
|
|
if lens > lent: |
1458
|
|
|
search_range = lens |
1459
|
|
|
minv = lent |
1460
|
|
|
else: |
1461
|
|
|
search_range = lent |
1462
|
|
|
minv = lens |
1463
|
|
|
|
1464
|
|
|
# Zero out the flags |
1465
|
|
|
src_flag = [0] * search_range |
1466
|
|
|
tar_flag = [0] * search_range |
1467
|
|
|
search_range = max(0, search_range//2 - 1) |
1468
|
|
|
|
1469
|
|
|
# Looking only within the search range, count and flag the matched pairs. |
1470
|
|
|
num_com = 0 |
1471
|
|
|
yl1 = lent - 1 |
1472
|
|
|
for i in range(lens): |
1473
|
|
|
lowlim = (i - search_range) if (i >= search_range) else 0 |
1474
|
|
|
hilim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
1475
|
|
|
for j in range(lowlim, hilim+1): |
1476
|
|
|
if (tar_flag[j] == 0) and (tar[j] == src[i]): |
1477
|
|
|
tar_flag[j] = 1 |
1478
|
|
|
src_flag[i] = 1 |
1479
|
|
|
num_com += 1 |
1480
|
|
|
break |
1481
|
|
|
|
1482
|
|
|
# If no characters in common - return |
1483
|
|
|
if num_com == 0: |
1484
|
|
|
return 0.0 |
1485
|
|
|
|
1486
|
|
|
# Count the number of transpositions |
1487
|
|
|
k = n_trans = 0 |
1488
|
|
|
for i in range(lens): |
1489
|
|
|
if src_flag[i] != 0: |
1490
|
|
|
for j in range(k, lent): |
1491
|
|
|
if tar_flag[j] != 0: |
1492
|
|
|
k = j + 1 |
1493
|
|
|
break |
1494
|
|
|
if src[i] != tar[j]: |
|
|
|
|
1495
|
|
|
n_trans += 1 |
1496
|
|
|
n_trans = n_trans // 2 |
1497
|
|
|
|
1498
|
|
|
# Main weight computation for Jaro distance |
1499
|
|
|
weight = num_com / lens + num_com / lent + (num_com - n_trans) / num_com |
1500
|
|
|
weight = weight / 3.0 |
1501
|
|
|
|
1502
|
|
|
# Continue to boost the weight if the strings are similar |
1503
|
|
|
# This is the Winkler portion of Jaro-Winkler distance |
1504
|
|
|
if mode == 'winkler' and weight > boost_threshold: |
1505
|
|
|
|
1506
|
|
|
# Adjust for having up to the first 4 characters in common |
1507
|
|
|
j = 4 if (minv >= 4) else minv |
1508
|
|
|
i = 0 |
1509
|
|
|
while (i < j) and (src[i] == tar[i]): |
1510
|
|
|
i += 1 |
1511
|
|
|
if i: |
1512
|
|
|
weight += i * scaling_factor * (1.0 - weight) |
1513
|
|
|
|
1514
|
|
|
# Optionally adjust for long strings. |
1515
|
|
|
|
1516
|
|
|
# After agreeing beginning chars, at least two more must agree and |
1517
|
|
|
# the agreeing characters must be > .5 of remaining characters. |
1518
|
|
|
if (((long_strings) and (minv > 4) and (num_com > i+1) and |
1519
|
|
|
(2*num_com >= minv+i))): |
1520
|
|
|
weight += (1.0-weight) * ((num_com-i-1) / (lens+lent-i*2+2)) |
1521
|
|
|
|
1522
|
|
|
return weight |
1523
|
|
|
|
1524
|
|
|
|
1525
|
|
|
def dist_jaro_winkler(src, tar, qval=1, mode='winkler', long_strings=False, |
|
|
|
|
1526
|
|
|
boost_threshold=0.7, scaling_factor=0.1): |
1527
|
|
|
"""Return the Jaro or Jaro-Winkler distance between two strings. |
1528
|
|
|
|
1529
|
|
|
Jaro(-Winkler) similarity is the complement of Jaro(-Winkler) distance: |
1530
|
|
|
:math:`sim_{Jaro(-Winkler)} = 1 - dist_{Jaro(-Winkler)}`. |
1531
|
|
|
|
1532
|
|
|
:param str src, tar: two strings to be compared |
1533
|
|
|
:param int qval: the length of each q-gram (defaults to 1: character-wise |
1534
|
|
|
matching) |
1535
|
|
|
:param str mode: indicates which variant of this distance metric to |
1536
|
|
|
compute: |
1537
|
|
|
|
1538
|
|
|
- 'winkler' -- computes the Jaro-Winkler distance (default) which |
1539
|
|
|
increases the score for matches near the start of the word |
1540
|
|
|
- 'jaro' -- computes the Jaro distance |
1541
|
|
|
|
1542
|
|
|
The following arguments apply only when mode is 'winkler': |
1543
|
|
|
|
1544
|
|
|
:param bool long_strings: set to True to "Increase the probability of a |
1545
|
|
|
match when the number of matched characters is large. This option |
1546
|
|
|
allows for a little more tolerance when the strings are large. It is |
1547
|
|
|
not an appropriate test when comparing fixed length fields such as |
1548
|
|
|
phone and social security numbers." |
1549
|
|
|
:param float boost_threshold: a value between 0 and 1, below which the |
1550
|
|
|
Winkler boost is not applied (defaults to 0.7) |
1551
|
|
|
:param float scaling_factor: a value between 0 and 0.25, indicating by how |
1552
|
|
|
much to boost scores for matching prefixes (defaults to 0.1) |
1553
|
|
|
|
1554
|
|
|
:returns: Jaro or Jaro-Winkler distance |
1555
|
|
|
:rtype: float |
1556
|
|
|
|
1557
|
|
|
>>> round(dist_jaro_winkler('cat', 'hat'), 12) |
1558
|
|
|
0.222222222222 |
1559
|
|
|
>>> round(dist_jaro_winkler('Niall', 'Neil'), 12) |
1560
|
|
|
0.195 |
1561
|
|
|
>>> round(dist_jaro_winkler('aluminum', 'Catalan'), 12) |
1562
|
|
|
0.39880952381 |
1563
|
|
|
>>> round(dist_jaro_winkler('ATCG', 'TAGC'), 12) |
1564
|
|
|
0.166666666667 |
1565
|
|
|
|
1566
|
|
|
>>> round(dist_jaro_winkler('cat', 'hat', mode='jaro'), 12) |
1567
|
|
|
0.222222222222 |
1568
|
|
|
>>> round(dist_jaro_winkler('Niall', 'Neil', mode='jaro'), 12) |
1569
|
|
|
0.216666666667 |
1570
|
|
|
>>> round(dist_jaro_winkler('aluminum', 'Catalan', mode='jaro'), 12) |
1571
|
|
|
0.39880952381 |
1572
|
|
|
>>> round(dist_jaro_winkler('ATCG', 'TAGC', mode='jaro'), 12) |
1573
|
|
|
0.166666666667 |
1574
|
|
|
""" |
1575
|
|
|
return 1 - sim_jaro_winkler(src, tar, qval, mode, long_strings, |
1576
|
|
|
boost_threshold, scaling_factor) |
1577
|
|
|
|
1578
|
|
|
|
1579
|
|
|
def lcsseq(src, tar): |
1580
|
|
|
"""Return the longest common subsequence of two strings. |
1581
|
|
|
|
1582
|
|
|
Longest common subsequence (LCSseq) is the longest subsequence of |
1583
|
|
|
characters that two strings have in common. |
1584
|
|
|
|
1585
|
|
|
Based on the dynamic programming algorithm from |
1586
|
|
|
http://rosettacode.org/wiki/Longest_common_subsequence#Dynamic_Programming_6 |
1587
|
|
|
:cite:`rosettacode:2018b`. This is licensed GFDL 1.2. |
1588
|
|
|
|
1589
|
|
|
Modifications include: |
1590
|
|
|
conversion to a numpy array in place of a list of lists |
1591
|
|
|
|
1592
|
|
|
:param str src, tar: two strings to be compared |
1593
|
|
|
:returns: the longes common subsequence |
1594
|
|
|
:rtype: str |
1595
|
|
|
|
1596
|
|
|
>>> lcsseq('cat', 'hat') |
1597
|
|
|
'at' |
1598
|
|
|
>>> lcsseq('Niall', 'Neil') |
1599
|
|
|
'Nil' |
1600
|
|
|
>>> lcsseq('aluminum', 'Catalan') |
1601
|
|
|
'aln' |
1602
|
|
|
>>> lcsseq('ATCG', 'TAGC') |
1603
|
|
|
'AC' |
1604
|
|
|
""" |
1605
|
|
|
lengths = np_zeros((len(src)+1, len(tar)+1), dtype=np_int) |
1606
|
|
|
|
1607
|
|
|
# row 0 and column 0 are initialized to 0 already |
1608
|
|
|
for i, src_char in enumerate(src): |
1609
|
|
|
for j, tar_char in enumerate(tar): |
1610
|
|
|
if src_char == tar_char: |
1611
|
|
|
lengths[i+1, j+1] = lengths[i, j] + 1 |
1612
|
|
|
else: |
1613
|
|
|
lengths[i+1, j+1] = max(lengths[i+1, j], lengths[i, j+1]) |
1614
|
|
|
|
1615
|
|
|
# read the substring out from the matrix |
1616
|
|
|
result = '' |
1617
|
|
|
i, j = len(src), len(tar) |
1618
|
|
|
while i != 0 and j != 0: |
1619
|
|
|
if lengths[i, j] == lengths[i-1, j]: |
1620
|
|
|
i -= 1 |
1621
|
|
|
elif lengths[i, j] == lengths[i, j-1]: |
1622
|
|
|
j -= 1 |
1623
|
|
|
else: |
1624
|
|
|
result = src[i-1] + result |
1625
|
|
|
i -= 1 |
1626
|
|
|
j -= 1 |
1627
|
|
|
return result |
1628
|
|
|
|
1629
|
|
|
|
1630
|
|
|
def sim_lcsseq(src, tar): |
1631
|
|
|
r"""Return the longest common subsequence similarity of two strings. |
1632
|
|
|
|
1633
|
|
|
Longest common subsequence similarity (:math:`sim_{LCSseq}`). |
1634
|
|
|
|
1635
|
|
|
This employs the LCSseq function to derive a similarity metric: |
1636
|
|
|
:math:`sim_{LCSseq}(s,t) = \\frac{|LCSseq(s,t)|}{max(|s|, |t|)}` |
1637
|
|
|
|
1638
|
|
|
:param str src, tar: two strings to be compared |
1639
|
|
|
:returns: LCSseq similarity |
1640
|
|
|
:rtype: float |
1641
|
|
|
|
1642
|
|
|
>>> sim_lcsseq('cat', 'hat') |
1643
|
|
|
0.6666666666666666 |
1644
|
|
|
>>> sim_lcsseq('Niall', 'Neil') |
1645
|
|
|
0.6 |
1646
|
|
|
>>> sim_lcsseq('aluminum', 'Catalan') |
1647
|
|
|
0.375 |
1648
|
|
|
>>> sim_lcsseq('ATCG', 'TAGC') |
1649
|
|
|
0.5 |
1650
|
|
|
""" |
1651
|
|
|
if src == tar: |
|
|
|
|
1652
|
|
|
return 1.0 |
1653
|
|
|
elif not src or not tar: |
1654
|
|
|
return 0.0 |
1655
|
|
|
return len(lcsseq(src, tar)) / max(len(src), len(tar)) |
1656
|
|
|
|
1657
|
|
|
|
1658
|
|
|
def dist_lcsseq(src, tar): |
1659
|
|
|
"""Return the longest common subsequence distance between two strings. |
1660
|
|
|
|
1661
|
|
|
Longest common subsequence distance (:math:`dist_{LCSseq}`). |
1662
|
|
|
|
1663
|
|
|
This employs the LCSseq function to derive a similarity metric: |
1664
|
|
|
:math:`dist_{LCSseq}(s,t) = 1 - sim_{LCSseq}(s,t)` |
1665
|
|
|
|
1666
|
|
|
:param str src, tar: two strings to be compared |
1667
|
|
|
:returns: LCSseq distance |
1668
|
|
|
:rtype: float |
1669
|
|
|
|
1670
|
|
|
>>> dist_lcsseq('cat', 'hat') |
1671
|
|
|
0.33333333333333337 |
1672
|
|
|
>>> dist_lcsseq('Niall', 'Neil') |
1673
|
|
|
0.4 |
1674
|
|
|
>>> dist_lcsseq('aluminum', 'Catalan') |
1675
|
|
|
0.625 |
1676
|
|
|
>>> dist_lcsseq('ATCG', 'TAGC') |
1677
|
|
|
0.5 |
1678
|
|
|
""" |
1679
|
|
|
return 1 - sim_lcsseq(src, tar) |
1680
|
|
|
|
1681
|
|
|
|
1682
|
|
|
def lcsstr(src, tar): |
1683
|
|
|
"""Return the longest common substring of two strings. |
1684
|
|
|
|
1685
|
|
|
Longest common substring (LCSstr). |
1686
|
|
|
|
1687
|
|
|
Based on the code from |
1688
|
|
|
https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Longest_common_substring#Python |
1689
|
|
|
:cite:`Wikibooks:2018`. |
1690
|
|
|
This is licensed Creative Commons: Attribution-ShareAlike 3.0. |
1691
|
|
|
|
1692
|
|
|
Modifications include: |
1693
|
|
|
|
1694
|
|
|
- conversion to a numpy array in place of a list of lists |
1695
|
|
|
- conversion to Python 2/3-safe range from xrange via six |
1696
|
|
|
|
1697
|
|
|
:param str src, tar: two strings to be compared |
1698
|
|
|
:returns: the longes common substring |
1699
|
|
|
:rtype: float |
1700
|
|
|
|
1701
|
|
|
>>> lcsstr('cat', 'hat') |
1702
|
|
|
'at' |
1703
|
|
|
>>> lcsstr('Niall', 'Neil') |
1704
|
|
|
'N' |
1705
|
|
|
>>> lcsstr('aluminum', 'Catalan') |
1706
|
|
|
'al' |
1707
|
|
|
>>> lcsstr('ATCG', 'TAGC') |
1708
|
|
|
'A' |
1709
|
|
|
""" |
1710
|
|
|
lengths = np_zeros((len(src)+1, len(tar)+1), dtype=np_int) |
1711
|
|
|
longest, i_longest = 0, 0 |
1712
|
|
|
for i in range(1, len(src)+1): |
1713
|
|
|
for j in range(1, len(tar)+1): |
1714
|
|
|
if src[i-1] == tar[j-1]: |
1715
|
|
|
lengths[i, j] = lengths[i-1, j-1] + 1 |
1716
|
|
|
if lengths[i, j] > longest: |
1717
|
|
|
longest = lengths[i, j] |
1718
|
|
|
i_longest = i |
1719
|
|
|
else: |
1720
|
|
|
lengths[i, j] = 0 |
1721
|
|
|
return src[i_longest - longest:i_longest] |
1722
|
|
|
|
1723
|
|
|
|
1724
|
|
|
def sim_lcsstr(src, tar): |
1725
|
|
|
r"""Return the longest common substring similarity of two strings. |
1726
|
|
|
|
1727
|
|
|
Longest common substring similarity (:math:`sim_{LCSstr}`). |
1728
|
|
|
|
1729
|
|
|
This employs the LCS function to derive a similarity metric: |
1730
|
|
|
:math:`sim_{LCSstr}(s,t) = \\frac{|LCSstr(s,t)|}{max(|s|, |t|)}` |
1731
|
|
|
|
1732
|
|
|
:param str src, tar: two strings to be compared |
1733
|
|
|
:returns: LCSstr similarity |
1734
|
|
|
:rtype: float |
1735
|
|
|
|
1736
|
|
|
>>> sim_lcsstr('cat', 'hat') |
1737
|
|
|
0.6666666666666666 |
1738
|
|
|
>>> sim_lcsstr('Niall', 'Neil') |
1739
|
|
|
0.2 |
1740
|
|
|
>>> sim_lcsstr('aluminum', 'Catalan') |
1741
|
|
|
0.25 |
1742
|
|
|
>>> sim_lcsstr('ATCG', 'TAGC') |
1743
|
|
|
0.25 |
1744
|
|
|
""" |
1745
|
|
|
if src == tar: |
|
|
|
|
1746
|
|
|
return 1.0 |
1747
|
|
|
elif not src or not tar: |
1748
|
|
|
return 0.0 |
1749
|
|
|
return len(lcsstr(src, tar)) / max(len(src), len(tar)) |
1750
|
|
|
|
1751
|
|
|
|
1752
|
|
|
def dist_lcsstr(src, tar): |
1753
|
|
|
"""Return the longest common substring distance between two strings. |
1754
|
|
|
|
1755
|
|
|
Longest common substring distance (:math:`dist_{LCSstr}`). |
1756
|
|
|
|
1757
|
|
|
This employs the LCS function to derive a similarity metric: |
1758
|
|
|
:math:`dist_{LCSstr}(s,t) = 1 - sim_{LCSstr}(s,t)` |
1759
|
|
|
|
1760
|
|
|
:param str src, tar: two strings to be compared |
1761
|
|
|
:returns: LCSstr distance |
1762
|
|
|
:rtype: float |
1763
|
|
|
|
1764
|
|
|
>>> dist_lcsstr('cat', 'hat') |
1765
|
|
|
0.33333333333333337 |
1766
|
|
|
>>> dist_lcsstr('Niall', 'Neil') |
1767
|
|
|
0.8 |
1768
|
|
|
>>> dist_lcsstr('aluminum', 'Catalan') |
1769
|
|
|
0.75 |
1770
|
|
|
>>> dist_lcsstr('ATCG', 'TAGC') |
1771
|
|
|
0.75 |
1772
|
|
|
""" |
1773
|
|
|
return 1 - sim_lcsstr(src, tar) |
1774
|
|
|
|
1775
|
|
|
|
1776
|
|
|
def sim_ratcliff_obershelp(src, tar): |
1777
|
|
|
"""Return the Ratcliff-Obershelp similarity of two strings. |
1778
|
|
|
|
1779
|
|
|
This follows the Ratcliff-Obershelp algorithm :cite:`Ratcliff:1988` to |
1780
|
|
|
derive a similarity measure: |
1781
|
|
|
|
1782
|
|
|
1. Find the length of the longest common substring in src & tar. |
1783
|
|
|
2. Recurse on the strings to the left & right of each this substring |
1784
|
|
|
in src & tar. The base case is a 0 length common substring, in which |
1785
|
|
|
case, return 0. Otherwise, return the sum of the current longest |
1786
|
|
|
common substring and the left & right recursed sums. |
1787
|
|
|
3. Multiply this length by 2 and divide by the sum of the lengths of |
1788
|
|
|
src & tar. |
1789
|
|
|
|
1790
|
|
|
Cf. |
1791
|
|
|
http://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970 |
1792
|
|
|
|
1793
|
|
|
:param str src, tar: two strings to be compared |
1794
|
|
|
:returns: Ratcliff-Obserhelp similarity |
1795
|
|
|
:rtype: float |
1796
|
|
|
|
1797
|
|
|
>>> round(sim_ratcliff_obershelp('cat', 'hat'), 12) |
1798
|
|
|
0.666666666667 |
1799
|
|
|
>>> round(sim_ratcliff_obershelp('Niall', 'Neil'), 12) |
1800
|
|
|
0.666666666667 |
1801
|
|
|
>>> round(sim_ratcliff_obershelp('aluminum', 'Catalan'), 12) |
1802
|
|
|
0.4 |
1803
|
|
|
>>> sim_ratcliff_obershelp('ATCG', 'TAGC') |
1804
|
|
|
0.5 |
1805
|
|
|
""" |
1806
|
|
|
def _lcsstr_stl(src, tar): |
1807
|
|
|
"""Return start positions & length for Ratcliff-Obershelp. |
1808
|
|
|
|
1809
|
|
|
Return the start position in the source string, start position in |
1810
|
|
|
the target string, and length of the longest common substring of |
1811
|
|
|
strings src and tar. |
1812
|
|
|
""" |
1813
|
|
|
lengths = np_zeros((len(src)+1, len(tar)+1), dtype=np_int) |
1814
|
|
|
longest, src_longest, tar_longest = 0, 0, 0 |
1815
|
|
|
for i in range(1, len(src)+1): |
1816
|
|
|
for j in range(1, len(tar)+1): |
1817
|
|
|
if src[i-1] == tar[j-1]: |
1818
|
|
|
lengths[i, j] = lengths[i-1, j-1] + 1 |
1819
|
|
|
if lengths[i, j] > longest: |
1820
|
|
|
longest = lengths[i, j] |
1821
|
|
|
src_longest = i |
1822
|
|
|
tar_longest = j |
1823
|
|
|
else: |
1824
|
|
|
lengths[i, j] = 0 |
1825
|
|
|
return (src_longest-longest, tar_longest-longest, longest) |
1826
|
|
|
|
1827
|
|
|
def _sstr_matches(src, tar): |
1828
|
|
|
"""Return the sum of substring match lengths. |
1829
|
|
|
|
1830
|
|
|
This follows the Ratcliff-Obershelp algorithm :cite:`Ratcliff:1988`: |
1831
|
|
|
1. Find the length of the longest common substring in src & tar. |
1832
|
|
|
2. Recurse on the strings to the left & right of each this |
1833
|
|
|
substring in src & tar. |
1834
|
|
|
3. Base case is a 0 length common substring, in which case, |
1835
|
|
|
return 0. |
1836
|
|
|
4. Return the sum. |
1837
|
|
|
""" |
1838
|
|
|
src_start, tar_start, length = _lcsstr_stl(src, tar) |
1839
|
|
|
if length == 0: |
1840
|
|
|
return 0 |
1841
|
|
|
return (_sstr_matches(src[:src_start], tar[:tar_start]) + |
1842
|
|
|
length + |
1843
|
|
|
_sstr_matches(src[src_start+length:], tar[tar_start+length:])) |
1844
|
|
|
|
1845
|
|
|
if src == tar: |
|
|
|
|
1846
|
|
|
return 1.0 |
1847
|
|
|
elif not src or not tar: |
1848
|
|
|
return 0.0 |
1849
|
|
|
return 2*_sstr_matches(src, tar)/(len(src)+len(tar)) |
1850
|
|
|
|
1851
|
|
|
|
1852
|
|
|
def dist_ratcliff_obershelp(src, tar): |
1853
|
|
|
"""Return the Ratcliff-Obershelp distance between two strings. |
1854
|
|
|
|
1855
|
|
|
Ratcliff-Obsershelp distance the complement of Ratcliff-Obershelp |
1856
|
|
|
similarity: |
1857
|
|
|
:math:`dist_{Ratcliff-Obershelp} = 1 - sim_{Ratcliff-Obershelp}`. |
1858
|
|
|
|
1859
|
|
|
:param str src, tar: two strings to be compared |
1860
|
|
|
:returns: Ratcliffe-Obershelp distance |
1861
|
|
|
:rtype: float |
1862
|
|
|
|
1863
|
|
|
>>> round(dist_ratcliff_obershelp('cat', 'hat'), 12) |
1864
|
|
|
0.333333333333 |
1865
|
|
|
>>> round(dist_ratcliff_obershelp('Niall', 'Neil'), 12) |
1866
|
|
|
0.333333333333 |
1867
|
|
|
>>> round(dist_ratcliff_obershelp('aluminum', 'Catalan'), 12) |
1868
|
|
|
0.6 |
1869
|
|
|
>>> dist_ratcliff_obershelp('ATCG', 'TAGC') |
1870
|
|
|
0.5 |
1871
|
|
|
""" |
1872
|
|
|
return 1 - sim_ratcliff_obershelp(src, tar) |
1873
|
|
|
|
1874
|
|
|
|
1875
|
|
|
def mra_compare(src, tar): |
1876
|
|
|
"""Return the MRA comparison rating of two strings. |
1877
|
|
|
|
1878
|
|
|
The Western Airlines Surname Match Rating Algorithm comparison rating, as |
1879
|
|
|
presented on page 18 of :cite:`Moore:1977`. |
1880
|
|
|
|
1881
|
|
|
:param str src, tar: two strings to be compared |
1882
|
|
|
:returns: MRA comparison rating |
1883
|
|
|
:rtype: int |
1884
|
|
|
|
1885
|
|
|
>>> mra_compare('cat', 'hat') |
1886
|
|
|
5 |
1887
|
|
|
>>> mra_compare('Niall', 'Neil') |
1888
|
|
|
6 |
1889
|
|
|
>>> mra_compare('aluminum', 'Catalan') |
1890
|
|
|
0 |
1891
|
|
|
>>> mra_compare('ATCG', 'TAGC') |
1892
|
|
|
5 |
1893
|
|
|
""" |
1894
|
|
|
if src == tar: |
1895
|
|
|
return 6 |
1896
|
|
|
if src == '' or tar == '': |
1897
|
|
|
return 0 |
1898
|
|
|
src = list(mra(src)) |
1899
|
|
|
tar = list(mra(tar)) |
1900
|
|
|
|
1901
|
|
|
if abs(len(src)-len(tar)) > 2: |
1902
|
|
|
return 0 |
1903
|
|
|
|
1904
|
|
|
length_sum = len(src) + len(tar) |
1905
|
|
|
if length_sum < 5: |
1906
|
|
|
min_rating = 5 |
1907
|
|
|
elif length_sum < 8: |
1908
|
|
|
min_rating = 4 |
1909
|
|
|
elif length_sum < 12: |
1910
|
|
|
min_rating = 3 |
1911
|
|
|
else: |
1912
|
|
|
min_rating = 2 |
1913
|
|
|
|
1914
|
|
|
for _ in range(2): |
1915
|
|
|
new_src = [] |
1916
|
|
|
new_tar = [] |
1917
|
|
|
minlen = min(len(src), len(tar)) |
1918
|
|
|
for i in range(minlen): |
1919
|
|
|
if src[i] != tar[i]: |
1920
|
|
|
new_src.append(src[i]) |
1921
|
|
|
new_tar.append(tar[i]) |
1922
|
|
|
src = new_src+src[minlen:] |
1923
|
|
|
tar = new_tar+tar[minlen:] |
1924
|
|
|
src.reverse() |
1925
|
|
|
tar.reverse() |
1926
|
|
|
|
1927
|
|
|
similarity = 6 - max(len(src), len(tar)) |
1928
|
|
|
|
1929
|
|
|
if similarity >= min_rating: |
1930
|
|
|
return similarity |
1931
|
|
|
return 0 |
1932
|
|
|
|
1933
|
|
|
|
1934
|
|
|
def sim_mra(src, tar): |
1935
|
|
|
"""Return the normalized MRA similarity of two strings. |
1936
|
|
|
|
1937
|
|
|
This is the MRA normalized to :math:`[0, 1]`, given that MRA itself is |
1938
|
|
|
constrained to the range :math:`[0, 6]`. |
1939
|
|
|
|
1940
|
|
|
:param str src, tar: two strings to be compared |
1941
|
|
|
:returns: normalized MRA similarity |
1942
|
|
|
:rtype: float |
1943
|
|
|
|
1944
|
|
|
>>> sim_mra('cat', 'hat') |
1945
|
|
|
0.8333333333333334 |
1946
|
|
|
>>> sim_mra('Niall', 'Neil') |
1947
|
|
|
1.0 |
1948
|
|
|
>>> sim_mra('aluminum', 'Catalan') |
1949
|
|
|
0.0 |
1950
|
|
|
>>> sim_mra('ATCG', 'TAGC') |
1951
|
|
|
0.8333333333333334 |
1952
|
|
|
""" |
1953
|
|
|
return mra_compare(src, tar)/6 |
1954
|
|
|
|
1955
|
|
|
|
1956
|
|
|
def dist_mra(src, tar): |
1957
|
|
|
"""Return the normalized MRA distance between two strings. |
1958
|
|
|
|
1959
|
|
|
MRA distance is the complement of MRA similarity: |
1960
|
|
|
:math:`dist_{MRA} = 1 - sim_{MRA}`. |
1961
|
|
|
|
1962
|
|
|
:param str src, tar: two strings to be compared |
1963
|
|
|
:returns: normalized MRA distance |
1964
|
|
|
:rtype: float |
1965
|
|
|
|
1966
|
|
|
>>> dist_mra('cat', 'hat') |
1967
|
|
|
0.16666666666666663 |
1968
|
|
|
>>> dist_mra('Niall', 'Neil') |
1969
|
|
|
0.0 |
1970
|
|
|
>>> dist_mra('aluminum', 'Catalan') |
1971
|
|
|
1.0 |
1972
|
|
|
>>> dist_mra('ATCG', 'TAGC') |
1973
|
|
|
0.16666666666666663 |
1974
|
|
|
""" |
1975
|
|
|
return 1 - sim_mra(src, tar) |
1976
|
|
|
|
1977
|
|
|
|
1978
|
|
|
def dist_compression(src, tar, compressor='bz2', probs=None): |
1979
|
|
|
"""Return the normalized compression distance between two strings. |
1980
|
|
|
|
1981
|
|
|
Normalized compression distance (NCD) :cite:`Cilibrasi:2005`. |
1982
|
|
|
|
1983
|
|
|
:param str src, tar: two strings to be compared |
1984
|
|
|
:param str compressor: a compression scheme to use for the similarity |
1985
|
|
|
calculation, from the following: |
1986
|
|
|
|
1987
|
|
|
- `zlib` -- standard zlib/gzip |
1988
|
|
|
- `bz2` -- bzip2 (default) |
1989
|
|
|
- `lzma` -- Lempel–Ziv–Markov chain algorithm |
1990
|
|
|
- `arith` -- arithmetic coding |
1991
|
|
|
- `rle` -- run-length encoding |
1992
|
|
|
- `bwtrle` -- Burrows-Wheeler transform followed by run-length |
1993
|
|
|
encoding |
1994
|
|
|
|
1995
|
|
|
:param doct probs: a dictionary trained with ac_train (for the arith |
1996
|
|
|
compressor only) |
1997
|
|
|
:returns: compression distance |
1998
|
|
|
:rtype: float |
1999
|
|
|
|
2000
|
|
|
>>> dist_compression('cat', 'hat') |
2001
|
|
|
0.08 |
2002
|
|
|
>>> dist_compression('Niall', 'Neil') |
2003
|
|
|
0.037037037037037035 |
2004
|
|
|
>>> dist_compression('aluminum', 'Catalan') |
2005
|
|
|
0.20689655172413793 |
2006
|
|
|
>>> dist_compression('ATCG', 'TAGC') |
2007
|
|
|
0.037037037037037035 |
2008
|
|
|
|
2009
|
|
|
>>> dist_compression('Niall', 'Neil', compressor='zlib') |
2010
|
|
|
0.45454545454545453 |
2011
|
|
|
>>> dist_compression('Niall', 'Neil', compressor='bz2') |
2012
|
|
|
0.037037037037037035 |
2013
|
|
|
>>> dist_compression('Niall', 'Neil', compressor='lzma') |
2014
|
|
|
0.16 |
2015
|
|
|
>>> dist_compression('Niall', 'Neil', compressor='arith') |
2016
|
|
|
0.6875 |
2017
|
|
|
>>> dist_compression('Niall', 'Neil', compressor='rle') |
2018
|
|
|
1.0 |
2019
|
|
|
>>> dist_compression('Niall', 'Neil', compressor='bwtrle') |
2020
|
|
|
0.8333333333333334 |
2021
|
|
|
""" |
2022
|
|
|
if src == tar: |
2023
|
|
|
return 0.0 |
2024
|
|
|
|
2025
|
|
|
if compressor not in {'arith', 'rle', 'bwtrle'}: |
2026
|
|
|
src = src.encode('utf-8') |
2027
|
|
|
tar = tar.encode('utf-8') |
2028
|
|
|
|
2029
|
|
|
if compressor == 'bz2': |
2030
|
|
|
src_comp = encode(src, 'bz2_codec')[15:] |
2031
|
|
|
tar_comp = encode(tar, 'bz2_codec')[15:] |
2032
|
|
|
concat_comp = encode(src+tar, 'bz2_codec')[15:] |
2033
|
|
|
concat_comp2 = encode(tar+src, 'bz2_codec')[15:] |
2034
|
|
|
elif compressor == 'lzma': |
2035
|
|
|
if 'lzma' in modules: |
2036
|
|
|
src_comp = lzma.compress(src)[14:] |
2037
|
|
|
tar_comp = lzma.compress(tar)[14:] |
2038
|
|
|
concat_comp = lzma.compress(src+tar)[14:] |
2039
|
|
|
concat_comp2 = lzma.compress(tar+src)[14:] |
2040
|
|
|
else: |
2041
|
|
|
raise ValueError('Install the PylibLZMA module in order to use ' + |
2042
|
|
|
'lzma compression similarity') |
2043
|
|
|
elif compressor == 'arith': |
2044
|
|
|
if probs is None: |
2045
|
|
|
# lacking a reasonable dictionary, train on the strings themselves |
2046
|
|
|
probs = ac_train(src+tar) |
2047
|
|
|
src_comp = ac_encode(src, probs)[1] |
2048
|
|
|
tar_comp = ac_encode(tar, probs)[1] |
2049
|
|
|
concat_comp = ac_encode(src+tar, probs)[1] |
2050
|
|
|
concat_comp2 = ac_encode(tar+src, probs)[1] |
2051
|
|
|
return ((min(concat_comp, concat_comp2) - min(src_comp, tar_comp)) / |
2052
|
|
|
max(src_comp, tar_comp)) |
2053
|
|
|
elif compressor in {'rle', 'bwtrle'}: |
2054
|
|
|
src_comp = rle_encode(src, (compressor == 'bwtrle')) |
2055
|
|
|
tar_comp = rle_encode(tar, (compressor == 'bwtrle')) |
2056
|
|
|
concat_comp = rle_encode(src+tar, (compressor == 'bwtrle')) |
2057
|
|
|
concat_comp2 = rle_encode(tar+src, (compressor == 'bwtrle')) |
2058
|
|
|
else: # zlib |
2059
|
|
|
src_comp = encode(src, 'zlib_codec')[2:] |
2060
|
|
|
tar_comp = encode(tar, 'zlib_codec')[2:] |
2061
|
|
|
concat_comp = encode(src+tar, 'zlib_codec')[2:] |
2062
|
|
|
concat_comp2 = encode(tar+src, 'zlib_codec')[2:] |
2063
|
|
|
return ((min(len(concat_comp), len(concat_comp2)) - |
2064
|
|
|
min(len(src_comp), len(tar_comp))) / |
2065
|
|
|
max(len(src_comp), len(tar_comp))) |
2066
|
|
|
|
2067
|
|
|
|
2068
|
|
|
def sim_compression(src, tar, compressor='bz2', probs=None): |
2069
|
|
|
"""Return the normalized compression similarity of two strings. |
2070
|
|
|
|
2071
|
|
|
Normalized compression similarity is the complement of normalized |
2072
|
|
|
compression distance: |
2073
|
|
|
:math:`sim_{NCS} = 1 - dist_{NCD}`. |
2074
|
|
|
|
2075
|
|
|
:param str src, tar: two strings to be compared |
2076
|
|
|
:param str compressor: a compression scheme to use for the similarity |
2077
|
|
|
calculation: |
2078
|
|
|
|
2079
|
|
|
- `zlib` -- standard zlib/gzip |
2080
|
|
|
- `bz2` -- bzip2 (default) |
2081
|
|
|
- `lzma` -- Lempel–Ziv–Markov chain algorithm |
2082
|
|
|
- `arith` -- arithmetic coding |
2083
|
|
|
- `rle` -- run-length encoding |
2084
|
|
|
- `bwtrle` -- Burrows-Wheeler transform followed by run-length |
2085
|
|
|
encoding |
2086
|
|
|
|
2087
|
|
|
:param dict probs: a dictionary trained with ac_train (for the arith |
2088
|
|
|
compressor only) |
2089
|
|
|
:returns: compression similarity |
2090
|
|
|
:rtype: float |
2091
|
|
|
|
2092
|
|
|
>>> sim_compression('cat', 'hat') |
2093
|
|
|
0.92 |
2094
|
|
|
>>> sim_compression('Niall', 'Neil') |
2095
|
|
|
0.962962962962963 |
2096
|
|
|
>>> sim_compression('aluminum', 'Catalan') |
2097
|
|
|
0.7931034482758621 |
2098
|
|
|
>>> sim_compression('ATCG', 'TAGC') |
2099
|
|
|
0.962962962962963 |
2100
|
|
|
|
2101
|
|
|
>>> sim_compression('Niall', 'Neil', compressor='zlib') |
2102
|
|
|
0.5454545454545454 |
2103
|
|
|
>>> sim_compression('Niall', 'Neil', compressor='bz2') |
2104
|
|
|
0.962962962962963 |
2105
|
|
|
>>> sim_compression('Niall', 'Neil', compressor='lzma') |
2106
|
|
|
0.84 |
2107
|
|
|
>>> sim_compression('Niall', 'Neil', compressor='arith') |
2108
|
|
|
0.3125 |
2109
|
|
|
>>> sim_compression('Niall', 'Neil', compressor='rle') |
2110
|
|
|
0.0 |
2111
|
|
|
>>> sim_compression('Niall', 'Neil', compressor='bwtrle') |
2112
|
|
|
0.16666666666666663 |
2113
|
|
|
""" |
2114
|
|
|
return 1 - dist_compression(src, tar, compressor, probs) |
2115
|
|
|
|
2116
|
|
|
|
2117
|
|
|
def sim_monge_elkan(src, tar, sim_func=sim_levenshtein, symmetric=False): |
2118
|
|
|
"""Return the Monge-Elkan similarity of two strings. |
2119
|
|
|
|
2120
|
|
|
Monge-Elkan is defined in :cite:`Monge:1996`. |
2121
|
|
|
|
2122
|
|
|
Note: Monge-Elkan is NOT a symmetric similarity algoritm. Thus, the |
2123
|
|
|
similarity of src to tar is not necessarily equal to the similarity of |
2124
|
|
|
tar to src. If the sym argument is True, a symmetric value is calculated, |
2125
|
|
|
at the cost of doubling the computation time (since the |
2126
|
|
|
:math:`sim_{Monge-Elkan}(src, tar)` and |
2127
|
|
|
:math:`sim_{Monge-Elkan}(tar, src)` are both calculated and then averaged). |
2128
|
|
|
|
2129
|
|
|
:param str src, tar: two strings to be compared |
2130
|
|
|
:param function sim_func: the internal similarity metric to emply |
2131
|
|
|
:param bool symmetric: return a symmetric similarity measure |
2132
|
|
|
:returns: Monge-Elkan similarity |
2133
|
|
|
:rtype: float |
2134
|
|
|
|
2135
|
|
|
>>> sim_monge_elkan('cat', 'hat') |
2136
|
|
|
0.75 |
2137
|
|
|
>>> round(sim_monge_elkan('Niall', 'Neil'), 12) |
2138
|
|
|
0.666666666667 |
2139
|
|
|
>>> round(sim_monge_elkan('aluminum', 'Catalan'), 12) |
2140
|
|
|
0.388888888889 |
2141
|
|
|
>>> sim_monge_elkan('ATCG', 'TAGC') |
2142
|
|
|
0.5 |
2143
|
|
|
""" |
2144
|
|
|
if src == tar: |
2145
|
|
|
return 1.0 |
2146
|
|
|
|
2147
|
|
|
q_src = sorted(QGrams(src).elements()) |
2148
|
|
|
q_tar = sorted(QGrams(tar).elements()) |
2149
|
|
|
|
2150
|
|
|
if not q_src or not q_tar: |
2151
|
|
|
return 0.0 |
2152
|
|
|
|
2153
|
|
|
sum_of_maxes = 0 |
2154
|
|
|
for q_s in q_src: |
2155
|
|
|
max_sim = float('-inf') |
2156
|
|
|
for q_t in q_tar: |
2157
|
|
|
max_sim = max(max_sim, sim_func(q_s, q_t)) |
2158
|
|
|
sum_of_maxes += max_sim |
2159
|
|
|
sim_em = sum_of_maxes / len(q_src) |
2160
|
|
|
|
2161
|
|
|
if symmetric: |
2162
|
|
|
sim_em = (sim_em + sim_monge_elkan(tar, src, sim, False))/2 |
2163
|
|
|
|
2164
|
|
|
return sim_em |
2165
|
|
|
|
2166
|
|
|
|
2167
|
|
|
def dist_monge_elkan(src, tar, sim_func=sim_levenshtein, symmetric=False): |
2168
|
|
|
"""Return the Monge-Elkan distance between two strings. |
2169
|
|
|
|
2170
|
|
|
Monge-Elkan distance is the complement of Monge-Elkan similarity: |
2171
|
|
|
:math:`dist_{Monge-Elkan} = 1 - sim_{Monge-Elkan}`. |
2172
|
|
|
|
2173
|
|
|
:param str src, tar: two strings to be compared |
2174
|
|
|
:param function sim_func: the internal similarity metric to emply |
2175
|
|
|
:param bool symmetric: return a symmetric similarity measure |
2176
|
|
|
:returns: Monge-Elkan distance |
2177
|
|
|
:rtype: float |
2178
|
|
|
|
2179
|
|
|
>>> dist_monge_elkan('cat', 'hat') |
2180
|
|
|
0.25 |
2181
|
|
|
>>> round(dist_monge_elkan('Niall', 'Neil'), 12) |
2182
|
|
|
0.333333333333 |
2183
|
|
|
>>> round(dist_monge_elkan('aluminum', 'Catalan'), 12) |
2184
|
|
|
0.611111111111 |
2185
|
|
|
>>> dist_monge_elkan('ATCG', 'TAGC') |
2186
|
|
|
0.5 |
2187
|
|
|
""" |
2188
|
|
|
return 1 - sim_monge_elkan(src, tar, sim_func, symmetric) |
2189
|
|
|
|
2190
|
|
|
|
2191
|
|
|
def sim_ident(src, tar): |
2192
|
|
|
"""Return the identity similarity of two strings. |
2193
|
|
|
|
2194
|
|
|
Identity similarity is 1 if the two strings are identical, otherwise 0. |
2195
|
|
|
|
2196
|
|
|
:param str src, tar: two strings to be compared |
2197
|
|
|
:returns: identity similarity |
2198
|
|
|
:rtype: int |
2199
|
|
|
|
2200
|
|
|
>>> sim_ident('cat', 'hat') |
2201
|
|
|
0 |
2202
|
|
|
>>> sim_ident('cat', 'cat') |
2203
|
|
|
1 |
2204
|
|
|
""" |
2205
|
|
|
return int(src == tar) |
2206
|
|
|
|
2207
|
|
|
|
2208
|
|
|
def dist_ident(src, tar): |
2209
|
|
|
"""Return the identity distance between two strings. |
2210
|
|
|
|
2211
|
|
|
This is 0 if the two strings are identical, otherwise 1, i.e. |
2212
|
|
|
:math:`dist_{identity} = 1 - sim_{identity}`. |
2213
|
|
|
|
2214
|
|
|
:param str src, tar: two strings to be compared |
2215
|
|
|
:returns: indentity distance |
2216
|
|
|
:rtype: int |
2217
|
|
|
|
2218
|
|
|
>>> dist_ident('cat', 'hat') |
2219
|
|
|
1 |
2220
|
|
|
>>> dist_ident('cat', 'cat') |
2221
|
|
|
0 |
2222
|
|
|
""" |
2223
|
|
|
return 1 - sim_ident(src, tar) |
2224
|
|
|
|
2225
|
|
|
|
2226
|
|
|
def sim_matrix(src, tar, mat=None, mismatch_cost=0, match_cost=1, |
|
|
|
|
2227
|
|
|
symmetric=True, alphabet=None): |
2228
|
|
|
"""Return the matrix similarity of two strings. |
2229
|
|
|
|
2230
|
|
|
With the default parameters, this is identical to sim_ident. |
2231
|
|
|
It is possible for sim_matrix to return values outside of the range |
2232
|
|
|
:math:`[0, 1]`, if values outside that range are present in mat, |
2233
|
|
|
mismatch_cost, or match_cost. |
2234
|
|
|
|
2235
|
|
|
:param str src, tar: two strings to be compared |
2236
|
|
|
:param dict mat: a dict mapping tuples to costs; the tuples are (src, tar) |
2237
|
|
|
pairs of symbols from the alphabet parameter |
2238
|
|
|
:param float mismatch_cost: the value returned if (src, tar) is absent from |
2239
|
|
|
mat when src does not equal tar |
2240
|
|
|
:param float match_cost: the value returned if (src, tar) is absent from |
2241
|
|
|
mat when src equals tar |
2242
|
|
|
:param bool symmetric: True if the cost of src not matching tar is |
2243
|
|
|
identical to the cost of tar not matching src; in this case, the values |
2244
|
|
|
in mat need only contain (src, tar) or (tar, src), not both |
2245
|
|
|
:param str alphabet: a collection of tokens from which src and tar are |
2246
|
|
|
drawn; if this is defined a ValueError is raised if either tar or src |
2247
|
|
|
is not found in alphabet |
2248
|
|
|
:returns: matrix similarity |
2249
|
|
|
:rtype: float |
2250
|
|
|
|
2251
|
|
|
>>> sim_matrix('cat', 'hat') |
2252
|
|
|
0 |
2253
|
|
|
>>> sim_matrix('hat', 'hat') |
2254
|
|
|
1 |
2255
|
|
|
""" |
2256
|
|
|
if alphabet: |
2257
|
|
|
alphabet = tuple(alphabet) |
2258
|
|
|
for i in src: |
2259
|
|
|
if i not in alphabet: |
2260
|
|
|
raise ValueError('src value not in alphabet') |
2261
|
|
|
for i in tar: |
2262
|
|
|
if i not in alphabet: |
2263
|
|
|
raise ValueError('tar value not in alphabet') |
2264
|
|
|
|
2265
|
|
|
if src == tar: |
2266
|
|
|
if mat and (src, src) in mat: |
2267
|
|
|
return mat[(src, src)] |
2268
|
|
|
return match_cost |
2269
|
|
|
if mat and (src, tar) in mat: |
|
|
|
|
2270
|
|
|
return mat[(src, tar)] |
2271
|
|
|
elif symmetric and mat and (tar, src) in mat: |
2272
|
|
|
return mat[(tar, src)] |
2273
|
|
|
return mismatch_cost |
2274
|
|
|
|
2275
|
|
|
|
2276
|
|
View Code Duplication |
def needleman_wunsch(src, tar, gap_cost=1, sim_func=sim_ident): |
|
|
|
|
2277
|
|
|
"""Return the Needleman-Wunsch score of two strings. |
2278
|
|
|
|
2279
|
|
|
The Needleman-Wunsch score :cite:`Needleman:1970` is a standard edit |
2280
|
|
|
distance measure. |
2281
|
|
|
|
2282
|
|
|
:param str src, tar: two strings to be compared |
2283
|
|
|
:param float gap_cost: the cost of an alignment gap (1 by default) |
2284
|
|
|
:param function sim_func: a function that returns the similarity of two |
2285
|
|
|
characters (identity similarity by default) |
2286
|
|
|
:returns: Needleman-Wunsch score |
2287
|
|
|
:rtype: int (in fact dependent on the gap_cost & return value of sim_func) |
2288
|
|
|
|
2289
|
|
|
>>> needleman_wunsch('cat', 'hat') |
2290
|
|
|
2.0 |
2291
|
|
|
>>> needleman_wunsch('Niall', 'Neil') |
2292
|
|
|
1.0 |
2293
|
|
|
>>> needleman_wunsch('aluminum', 'Catalan') |
2294
|
|
|
-1.0 |
2295
|
|
|
>>> needleman_wunsch('ATCG', 'TAGC') |
2296
|
|
|
0.0 |
2297
|
|
|
""" |
2298
|
|
|
d_mat = np_zeros((len(src)+1, len(tar)+1), dtype=np_float32) |
2299
|
|
|
|
2300
|
|
|
for i in range(len(src)+1): |
2301
|
|
|
d_mat[i, 0] = -(i * gap_cost) |
2302
|
|
|
for j in range(len(tar)+1): |
2303
|
|
|
d_mat[0, j] = -(j * gap_cost) |
2304
|
|
|
for i in range(1, len(src)+1): |
2305
|
|
|
for j in range(1, len(tar)+1): |
2306
|
|
|
match = d_mat[i-1, j-1] + sim_func(src[i-1], tar[j-1]) |
2307
|
|
|
delete = d_mat[i-1, j] - gap_cost |
2308
|
|
|
insert = d_mat[i, j-1] - gap_cost |
2309
|
|
|
d_mat[i, j] = max(match, delete, insert) |
2310
|
|
|
return d_mat[d_mat.shape[0]-1, d_mat.shape[1]-1] |
2311
|
|
|
|
2312
|
|
|
|
2313
|
|
View Code Duplication |
def smith_waterman(src, tar, gap_cost=1, sim_func=sim_ident): |
|
|
|
|
2314
|
|
|
"""Return the Smith-Waterman score of two strings. |
2315
|
|
|
|
2316
|
|
|
The Smith-Waterman score :cite:`Smith:1981` is a standard edit distance |
2317
|
|
|
measure, differing from Needleman-Wunsch in that it focuses on local |
2318
|
|
|
alignment and disallows negative scores. |
2319
|
|
|
|
2320
|
|
|
:param str src, tar: two strings to be compared |
2321
|
|
|
:param float gap_cost: the cost of an alignment gap (1 by default) |
2322
|
|
|
:param function sim_func: a function that returns the similarity of two |
2323
|
|
|
characters (identity similarity by default) |
2324
|
|
|
:returns: Smith-Waterman score |
2325
|
|
|
:rtype: int (in fact dependent on the gap_cost & return value of sim_func) |
2326
|
|
|
|
2327
|
|
|
>>> smith_waterman('cat', 'hat') |
2328
|
|
|
2.0 |
2329
|
|
|
>>> smith_waterman('Niall', 'Neil') |
2330
|
|
|
1.0 |
2331
|
|
|
>>> smith_waterman('aluminum', 'Catalan') |
2332
|
|
|
0.0 |
2333
|
|
|
>>> smith_waterman('ATCG', 'TAGC') |
2334
|
|
|
1.0 |
2335
|
|
|
""" |
2336
|
|
|
d_mat = np_zeros((len(src)+1, len(tar)+1), dtype=np_float32) |
2337
|
|
|
|
2338
|
|
|
for i in range(len(src)+1): |
2339
|
|
|
d_mat[i, 0] = 0 |
2340
|
|
|
for j in range(len(tar)+1): |
2341
|
|
|
d_mat[0, j] = 0 |
2342
|
|
|
for i in range(1, len(src)+1): |
2343
|
|
|
for j in range(1, len(tar)+1): |
2344
|
|
|
match = d_mat[i-1, j-1] + sim_func(src[i-1], tar[j-1]) |
2345
|
|
|
delete = d_mat[i-1, j] - gap_cost |
2346
|
|
|
insert = d_mat[i, j-1] - gap_cost |
2347
|
|
|
d_mat[i, j] = max(0, match, delete, insert) |
2348
|
|
|
return d_mat[d_mat.shape[0]-1, d_mat.shape[1]-1] |
2349
|
|
|
|
2350
|
|
|
|
2351
|
|
|
def gotoh(src, tar, gap_open=1, gap_ext=0.4, sim_func=sim_ident): |
2352
|
|
|
"""Return the Gotoh score of two strings. |
2353
|
|
|
|
2354
|
|
|
The Gotoh score :cite:`Gotoh:1982` is essentially Needleman-Wunsch with |
2355
|
|
|
affine gap penalties. |
2356
|
|
|
|
2357
|
|
|
:param str src, tar: two strings to be compared |
2358
|
|
|
:param float gap_open: the cost of an open alignment gap (1 by default) |
2359
|
|
|
:param float gap_ext: the cost of an alignment gap extension (0.4 by |
2360
|
|
|
default) |
2361
|
|
|
:param function sim_func: a function that returns the similarity of two |
2362
|
|
|
characters (identity similarity by default) |
2363
|
|
|
:returns: Gotoh score |
2364
|
|
|
:rtype: float (in fact dependent on the gap_cost & return value of |
2365
|
|
|
sim_func) |
2366
|
|
|
|
2367
|
|
|
>>> gotoh('cat', 'hat') |
2368
|
|
|
2.0 |
2369
|
|
|
>>> gotoh('Niall', 'Neil') |
2370
|
|
|
1.0 |
2371
|
|
|
>>> round(gotoh('aluminum', 'Catalan'), 12) |
2372
|
|
|
-0.4 |
2373
|
|
|
>>> gotoh('cat', 'hat') |
2374
|
|
|
2.0 |
2375
|
|
|
""" |
2376
|
|
|
d_mat = np_zeros((len(src)+1, len(tar)+1), dtype=np_float32) |
2377
|
|
|
p_mat = np_zeros((len(src)+1, len(tar)+1), dtype=np_float32) |
2378
|
|
|
q_mat = np_zeros((len(src)+1, len(tar)+1), dtype=np_float32) |
2379
|
|
|
|
2380
|
|
|
d_mat[0, 0] = 0 |
2381
|
|
|
p_mat[0, 0] = float('-inf') |
2382
|
|
|
q_mat[0, 0] = float('-inf') |
2383
|
|
|
for i in range(1, len(src)+1): |
2384
|
|
|
d_mat[i, 0] = float('-inf') |
2385
|
|
|
p_mat[i, 0] = -gap_open - gap_ext*(i-1) |
2386
|
|
|
q_mat[i, 0] = float('-inf') |
2387
|
|
|
q_mat[i, 1] = -gap_open |
2388
|
|
|
for j in range(1, len(tar)+1): |
2389
|
|
|
d_mat[0, j] = float('-inf') |
2390
|
|
|
p_mat[0, j] = float('-inf') |
2391
|
|
|
p_mat[1, j] = -gap_open |
2392
|
|
|
q_mat[0, j] = -gap_open - gap_ext*(j-1) |
2393
|
|
|
|
2394
|
|
|
for i in range(1, len(src)+1): |
2395
|
|
|
for j in range(1, len(tar)+1): |
2396
|
|
|
sim_val = sim_func(src[i-1], tar[j-1]) |
2397
|
|
|
d_mat[i, j] = max(d_mat[i-1, j-1] + sim_val, |
2398
|
|
|
p_mat[i-1, j-1] + sim_val, |
2399
|
|
|
q_mat[i-1, j-1] + sim_val) |
2400
|
|
|
|
2401
|
|
|
p_mat[i, j] = max(d_mat[i-1, j] - gap_open, |
2402
|
|
|
p_mat[i-1, j] - gap_ext) |
2403
|
|
|
|
2404
|
|
|
q_mat[i, j] = max(d_mat[i, j-1] - gap_open, |
2405
|
|
|
q_mat[i, j-1] - gap_ext) |
2406
|
|
|
|
2407
|
|
|
i, j = (n - 1 for n in d_mat.shape) |
|
|
|
|
2408
|
|
|
return max(d_mat[i, j], p_mat[i, j], q_mat[i, j]) |
2409
|
|
|
|
2410
|
|
|
|
2411
|
|
|
def sim_length(src, tar): |
2412
|
|
|
"""Return the length similarty of two strings. |
2413
|
|
|
|
2414
|
|
|
Length similarity is the ratio of the length of the shorter string to the |
2415
|
|
|
longer. |
2416
|
|
|
|
2417
|
|
|
:param str src, tar: two strings to be compared |
2418
|
|
|
:returns: length similarity |
2419
|
|
|
:rtype: float |
2420
|
|
|
|
2421
|
|
|
>>> sim_length('cat', 'hat') |
2422
|
|
|
1.0 |
2423
|
|
|
>>> sim_length('Niall', 'Neil') |
2424
|
|
|
0.8 |
2425
|
|
|
>>> sim_length('aluminum', 'Catalan') |
2426
|
|
|
0.875 |
2427
|
|
|
>>> sim_length('ATCG', 'TAGC') |
2428
|
|
|
1.0 |
2429
|
|
|
""" |
2430
|
|
|
if src == tar: |
2431
|
|
|
return 1.0 |
2432
|
|
|
if not src or not tar: |
2433
|
|
|
return 0.0 |
2434
|
|
|
return len(src)/len(tar) if len(src) < len(tar) else len(tar)/len(src) |
2435
|
|
|
|
2436
|
|
|
|
2437
|
|
|
def dist_length(src, tar): |
2438
|
|
|
"""Return the length distance between two strings. |
2439
|
|
|
|
2440
|
|
|
Length distance is the complement of length similarity: |
2441
|
|
|
:math:`dist_{length} = 1 - sim_{length}`. |
2442
|
|
|
|
2443
|
|
|
:param str src, tar: two strings to be compared |
2444
|
|
|
:returns: length distance |
2445
|
|
|
:rtype: float |
2446
|
|
|
|
2447
|
|
|
>>> dist_length('cat', 'hat') |
2448
|
|
|
0.0 |
2449
|
|
|
>>> dist_length('Niall', 'Neil') |
2450
|
|
|
0.19999999999999996 |
2451
|
|
|
>>> dist_length('aluminum', 'Catalan') |
2452
|
|
|
0.125 |
2453
|
|
|
>>> dist_length('ATCG', 'TAGC') |
2454
|
|
|
0.0 |
2455
|
|
|
""" |
2456
|
|
|
return 1 - sim_length(src, tar) |
2457
|
|
|
|
2458
|
|
|
|
2459
|
|
View Code Duplication |
def sim_prefix(src, tar): |
|
|
|
|
2460
|
|
|
"""Return the prefix similarty of two strings. |
2461
|
|
|
|
2462
|
|
|
Prefix similarity is the ratio of the length of the shorter term that |
2463
|
|
|
exactly matches the longer term to the length of the shorter term, |
2464
|
|
|
beginning at the start of both terms. |
2465
|
|
|
|
2466
|
|
|
:param str src, tar: two strings to be compared |
2467
|
|
|
:returns: prefix similarity |
2468
|
|
|
:rtype: float |
2469
|
|
|
|
2470
|
|
|
>>> sim_prefix('cat', 'hat') |
2471
|
|
|
0.0 |
2472
|
|
|
>>> sim_prefix('Niall', 'Neil') |
2473
|
|
|
0.25 |
2474
|
|
|
>>> sim_prefix('aluminum', 'Catalan') |
2475
|
|
|
0.0 |
2476
|
|
|
>>> sim_prefix('ATCG', 'TAGC') |
2477
|
|
|
0.0 |
2478
|
|
|
""" |
2479
|
|
|
if src == tar: |
2480
|
|
|
return 1.0 |
2481
|
|
|
if not src or not tar: |
2482
|
|
|
return 0.0 |
2483
|
|
|
min_word, max_word = (src, tar) if len(src) < len(tar) else (tar, src) |
2484
|
|
|
min_len = len(min_word) |
2485
|
|
|
for i in range(min_len, 0, -1): |
2486
|
|
|
if min_word[:i] == max_word[:i]: |
2487
|
|
|
return i/min_len |
2488
|
|
|
return 0.0 |
2489
|
|
|
|
2490
|
|
|
|
2491
|
|
|
def dist_prefix(src, tar): |
2492
|
|
|
"""Return the prefix distance between two strings. |
2493
|
|
|
|
2494
|
|
|
Prefix distance is the complement of prefix similarity: |
2495
|
|
|
:math:`dist_{prefix} = 1 - sim_{prefix}`. |
2496
|
|
|
|
2497
|
|
|
:param str src, tar: two strings to be compared |
2498
|
|
|
:returns: prefix distance |
2499
|
|
|
:rtype: float |
2500
|
|
|
|
2501
|
|
|
>>> dist_prefix('cat', 'hat') |
2502
|
|
|
1.0 |
2503
|
|
|
>>> dist_prefix('Niall', 'Neil') |
2504
|
|
|
0.75 |
2505
|
|
|
>>> dist_prefix('aluminum', 'Catalan') |
2506
|
|
|
1.0 |
2507
|
|
|
>>> dist_prefix('ATCG', 'TAGC') |
2508
|
|
|
1.0 |
2509
|
|
|
""" |
2510
|
|
|
return 1 - sim_prefix(src, tar) |
2511
|
|
|
|
2512
|
|
|
|
2513
|
|
View Code Duplication |
def sim_suffix(src, tar): |
|
|
|
|
2514
|
|
|
"""Return the suffix similarity of two strings. |
2515
|
|
|
|
2516
|
|
|
Suffix similarity is the ratio of the length of the shorter term that |
2517
|
|
|
exactly matches the longer term to the length of the shorter term, |
2518
|
|
|
beginning at the end of both terms. |
2519
|
|
|
|
2520
|
|
|
:param str src, tar: two strings to be compared |
2521
|
|
|
:returns: suffix similarity |
2522
|
|
|
:rtype: float |
2523
|
|
|
|
2524
|
|
|
>>> sim_suffix('cat', 'hat') |
2525
|
|
|
0.6666666666666666 |
2526
|
|
|
>>> sim_suffix('Niall', 'Neil') |
2527
|
|
|
0.25 |
2528
|
|
|
>>> sim_suffix('aluminum', 'Catalan') |
2529
|
|
|
0.0 |
2530
|
|
|
>>> sim_suffix('ATCG', 'TAGC') |
2531
|
|
|
0.0 |
2532
|
|
|
""" |
2533
|
|
|
if src == tar: |
2534
|
|
|
return 1.0 |
2535
|
|
|
if not src or not tar: |
2536
|
|
|
return 0.0 |
2537
|
|
|
min_word, max_word = (src, tar) if len(src) < len(tar) else (tar, src) |
2538
|
|
|
min_len = len(min_word) |
2539
|
|
|
for i in range(min_len, 0, -1): |
2540
|
|
|
if min_word[-i:] == max_word[-i:]: |
2541
|
|
|
return i/min_len |
2542
|
|
|
return 0.0 |
2543
|
|
|
|
2544
|
|
|
|
2545
|
|
|
def dist_suffix(src, tar): |
2546
|
|
|
"""Return the suffix distance between two strings. |
2547
|
|
|
|
2548
|
|
|
Suffix distance is the complement of suffix similarity: |
2549
|
|
|
:math:`dist_{suffix} = 1 - sim_{suffix}`. |
2550
|
|
|
|
2551
|
|
|
:param str src, tar: two strings to be compared |
2552
|
|
|
:returns: suffix distance |
2553
|
|
|
:rtype: float |
2554
|
|
|
|
2555
|
|
|
>>> dist_suffix('cat', 'hat') |
2556
|
|
|
0.33333333333333337 |
2557
|
|
|
>>> dist_suffix('Niall', 'Neil') |
2558
|
|
|
0.75 |
2559
|
|
|
>>> dist_suffix('aluminum', 'Catalan') |
2560
|
|
|
1.0 |
2561
|
|
|
>>> dist_suffix('ATCG', 'TAGC') |
2562
|
|
|
1.0 |
2563
|
|
|
""" |
2564
|
|
|
return 1 - sim_suffix(src, tar) |
2565
|
|
|
|
2566
|
|
|
|
2567
|
|
|
def sim_mlipns(src, tar, threshold=0.25, maxmismatches=2): |
2568
|
|
|
"""Return the MLIPNS similarity of two strings. |
2569
|
|
|
|
2570
|
|
|
Modified Language-Independent Product Name Search (MLIPNS) is described in |
2571
|
|
|
:cite:`Shannaq:2010`. This function returns only 1.0 (similar) or 0.0 |
2572
|
|
|
(not similar). LIPNS similarity is identical to normalized Hamming |
2573
|
|
|
similarity. |
2574
|
|
|
|
2575
|
|
|
:param str src, tar: two strings to be compared |
2576
|
|
|
:param float threshold: a number [0, 1] indicating the maximum similarity |
2577
|
|
|
score, below which the strings are considered 'similar' (0.25 by |
2578
|
|
|
default) |
2579
|
|
|
:param int maxmismatches: a number indicating the allowable number of |
2580
|
|
|
mismatches to remove before declaring two strings not similar (2 by |
2581
|
|
|
default) |
2582
|
|
|
:returns: MLIPNS similarity |
2583
|
|
|
:rtype: float |
2584
|
|
|
|
2585
|
|
|
>>> sim_mlipns('cat', 'hat') |
2586
|
|
|
1.0 |
2587
|
|
|
>>> sim_mlipns('Niall', 'Neil') |
2588
|
|
|
0.0 |
2589
|
|
|
>>> sim_mlipns('aluminum', 'Catalan') |
2590
|
|
|
0.0 |
2591
|
|
|
>>> sim_mlipns('ATCG', 'TAGC') |
2592
|
|
|
0.0 |
2593
|
|
|
""" |
2594
|
|
|
if tar == src: |
2595
|
|
|
return 1.0 |
2596
|
|
|
if not src or not tar: |
2597
|
|
|
return 0.0 |
2598
|
|
|
|
2599
|
|
|
mismatches = 0 |
2600
|
|
|
ham = hamming(src, tar, difflens=True) |
2601
|
|
|
maxlen = max(len(src), len(tar)) |
2602
|
|
|
while src and tar and mismatches <= maxmismatches: |
2603
|
|
|
if maxlen < 1 or (1-(maxlen-ham)/maxlen) <= threshold: |
|
|
|
|
2604
|
|
|
return 1.0 |
2605
|
|
|
else: |
2606
|
|
|
mismatches += 1 |
2607
|
|
|
ham -= 1 |
2608
|
|
|
maxlen -= 1 |
2609
|
|
|
|
2610
|
|
|
if maxlen < 1: |
2611
|
|
|
return 1.0 |
2612
|
|
|
return 0.0 |
2613
|
|
|
|
2614
|
|
|
|
2615
|
|
|
def dist_mlipns(src, tar, threshold=0.25, maxmismatches=2): |
2616
|
|
|
"""Return the MLIPNS distance between two strings. |
2617
|
|
|
|
2618
|
|
|
MLIPNS distance is the complement of MLIPNS similarity: |
2619
|
|
|
:math:`dist_{MLIPNS} = 1 - sim_{MLIPNS}`. This function returns only 0.0 |
2620
|
|
|
(distant) or 1.0 (not distant). |
2621
|
|
|
|
2622
|
|
|
:param str src, tar: two strings to be compared |
2623
|
|
|
:param float threshold: a number [0, 1] indicating the maximum similarity |
2624
|
|
|
score, below which the strings are considered 'similar' (0.25 by |
2625
|
|
|
default) |
2626
|
|
|
:param int maxmismatches: a number indicating the allowable number of |
2627
|
|
|
mismatches to remove before declaring two strings not similar (2 by |
2628
|
|
|
default) |
2629
|
|
|
:returns: MLIPNS distance |
2630
|
|
|
:rtype: float |
2631
|
|
|
|
2632
|
|
|
>>> dist_mlipns('cat', 'hat') |
2633
|
|
|
0.0 |
2634
|
|
|
>>> dist_mlipns('Niall', 'Neil') |
2635
|
|
|
1.0 |
2636
|
|
|
>>> dist_mlipns('aluminum', 'Catalan') |
2637
|
|
|
1.0 |
2638
|
|
|
>>> dist_mlipns('ATCG', 'TAGC') |
2639
|
|
|
1.0 |
2640
|
|
|
""" |
2641
|
|
|
return 1.0 - sim_mlipns(src, tar, threshold, maxmismatches) |
2642
|
|
|
|
2643
|
|
|
|
2644
|
|
|
def bag(src, tar): |
2645
|
|
|
"""Return the bag distance between two strings. |
2646
|
|
|
|
2647
|
|
|
Bag distance is proposed in :cite:`Bartolini:2002`. It is defined as: |
2648
|
|
|
:math:`max(|multiset(src)-multiset(tar)|, |multiset(tar)-multiset(src)|)`. |
2649
|
|
|
|
2650
|
|
|
:param str src, tar: two strings to be compared |
2651
|
|
|
:returns: bag distance |
2652
|
|
|
:rtype: int |
2653
|
|
|
|
2654
|
|
|
>>> bag('cat', 'hat') |
2655
|
|
|
1 |
2656
|
|
|
>>> bag('Niall', 'Neil') |
2657
|
|
|
2 |
2658
|
|
|
>>> bag('aluminum', 'Catalan') |
2659
|
|
|
5 |
2660
|
|
|
>>> bag('ATCG', 'TAGC') |
2661
|
|
|
0 |
2662
|
|
|
>>> bag('abcdefg', 'hijklm') |
2663
|
|
|
7 |
2664
|
|
|
>>> bag('abcdefg', 'hijklmno') |
2665
|
|
|
8 |
2666
|
|
|
""" |
2667
|
|
|
if tar == src: |
|
|
|
|
2668
|
|
|
return 0 |
2669
|
|
|
elif not src: |
2670
|
|
|
return len(tar) |
2671
|
|
|
elif not tar: |
2672
|
|
|
return len(src) |
2673
|
|
|
|
2674
|
|
|
src_bag = Counter(src) |
2675
|
|
|
tar_bag = Counter(tar) |
2676
|
|
|
return max(sum((src_bag-tar_bag).values()), |
2677
|
|
|
sum((tar_bag-src_bag).values())) |
2678
|
|
|
|
2679
|
|
|
|
2680
|
|
|
def dist_bag(src, tar): |
2681
|
|
|
"""Return the normalized bag distance between two strings. |
2682
|
|
|
|
2683
|
|
|
Bag distance is normalized by dividing by :math:`max( |src|, |tar| )`. |
2684
|
|
|
|
2685
|
|
|
:param str src, tar: two strings to be compared |
2686
|
|
|
:returns: normalized bag distance |
2687
|
|
|
:rtype: float |
2688
|
|
|
|
2689
|
|
|
>>> dist_bag('cat', 'hat') |
2690
|
|
|
0.3333333333333333 |
2691
|
|
|
>>> dist_bag('Niall', 'Neil') |
2692
|
|
|
0.4 |
2693
|
|
|
>>> dist_bag('aluminum', 'Catalan') |
2694
|
|
|
0.625 |
2695
|
|
|
>>> dist_bag('ATCG', 'TAGC') |
2696
|
|
|
0.0 |
2697
|
|
|
""" |
2698
|
|
|
if tar == src: |
2699
|
|
|
return 0.0 |
2700
|
|
|
if not src or not tar: |
2701
|
|
|
return 1.0 |
2702
|
|
|
|
2703
|
|
|
maxlen = max(len(src), len(tar)) |
2704
|
|
|
|
2705
|
|
|
return bag(src, tar)/maxlen |
2706
|
|
|
|
2707
|
|
|
|
2708
|
|
|
def sim_bag(src, tar): |
2709
|
|
|
"""Return the normalized bag similarity of two strings. |
2710
|
|
|
|
2711
|
|
|
Normalized bag similarity is the complement of normalized bag distance: |
2712
|
|
|
:math:`sim_{bag} = 1 - dist_{bag}`. |
2713
|
|
|
|
2714
|
|
|
:param str src, tar: two strings to be compared |
2715
|
|
|
:returns: normalized bag similarity |
2716
|
|
|
:rtype: float |
2717
|
|
|
|
2718
|
|
|
>>> round(sim_bag('cat', 'hat'), 12) |
2719
|
|
|
0.666666666667 |
2720
|
|
|
>>> sim_bag('Niall', 'Neil') |
2721
|
|
|
0.6 |
2722
|
|
|
>>> sim_bag('aluminum', 'Catalan') |
2723
|
|
|
0.375 |
2724
|
|
|
>>> sim_bag('ATCG', 'TAGC') |
2725
|
|
|
1.0 |
2726
|
|
|
""" |
2727
|
|
|
return 1-dist_bag(src, tar) |
2728
|
|
|
|
2729
|
|
|
|
2730
|
|
|
def editex(src, tar, cost=(0, 1, 2), local=False): |
|
|
|
|
2731
|
|
|
"""Return the Editex distance between two strings. |
2732
|
|
|
|
2733
|
|
|
As described on pages 3 & 4 of :cite:`Zobel:1996`. |
2734
|
|
|
|
2735
|
|
|
The local variant is based on :cite:`Ring:2009`. |
2736
|
|
|
|
2737
|
|
|
:param str src, tar: two strings to be compared |
2738
|
|
|
:param tuple cost: a 3-tuple representing the cost of the four possible |
2739
|
|
|
edits: |
2740
|
|
|
match, same-group, and mismatch respectively (by default: (0, 1, 2)) |
2741
|
|
|
:param bool local: if True, the local variant of Editex is used |
2742
|
|
|
:returns: Editex distance |
2743
|
|
|
:rtype: int |
2744
|
|
|
|
2745
|
|
|
>>> editex('cat', 'hat') |
2746
|
|
|
2 |
2747
|
|
|
>>> editex('Niall', 'Neil') |
2748
|
|
|
2 |
2749
|
|
|
>>> editex('aluminum', 'Catalan') |
2750
|
|
|
12 |
2751
|
|
|
>>> editex('ATCG', 'TAGC') |
2752
|
|
|
6 |
2753
|
|
|
""" |
2754
|
|
|
match_cost, group_cost, mismatch_cost = cost |
2755
|
|
|
letter_groups = ({'A', 'E', 'I', 'O', 'U', 'Y'}, |
2756
|
|
|
{'B', 'P'}, |
2757
|
|
|
{'C', 'K', 'Q'}, |
2758
|
|
|
{'D', 'T'}, |
2759
|
|
|
{'L', 'R'}, |
2760
|
|
|
{'M', 'N'}, |
2761
|
|
|
{'G', 'J'}, |
2762
|
|
|
{'F', 'P', 'V'}, |
2763
|
|
|
{'S', 'X', 'Z'}, |
2764
|
|
|
{'C', 'S', 'Z'}) |
2765
|
|
|
all_letters = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'I', 'J', 'K', 'L', 'M', |
2766
|
|
|
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'X', 'Y', 'Z'} |
2767
|
|
|
|
2768
|
|
|
def r_cost(ch1, ch2): |
2769
|
|
|
"""Return r(a,b) according to Zobel & Dart's definition.""" |
2770
|
|
|
if ch1 == ch2: |
2771
|
|
|
return match_cost |
2772
|
|
|
if ch1 in all_letters and ch2 in all_letters: |
2773
|
|
|
for group in letter_groups: |
2774
|
|
|
if ch1 in group and ch2 in group: |
2775
|
|
|
return group_cost |
2776
|
|
|
return mismatch_cost |
2777
|
|
|
|
2778
|
|
|
def d_cost(ch1, ch2): |
2779
|
|
|
"""Return d(a,b) according to Zobel & Dart's definition.""" |
2780
|
|
|
if ch1 != ch2 and (ch1 == 'H' or ch1 == 'W'): |
|
|
|
|
2781
|
|
|
return group_cost |
2782
|
|
|
return r_cost(ch1, ch2) |
2783
|
|
|
|
2784
|
|
|
# convert both src & tar to NFKD normalized unicode |
2785
|
|
|
src = normalize('NFKD', text_type(src.upper())) |
2786
|
|
|
tar = normalize('NFKD', text_type(tar.upper())) |
2787
|
|
|
# convert ß to SS (for Python2) |
2788
|
|
|
src = src.replace('ß', 'SS') |
2789
|
|
|
tar = tar.replace('ß', 'SS') |
2790
|
|
|
|
2791
|
|
|
if src == tar: |
2792
|
|
|
return 0 |
2793
|
|
|
if not src: |
2794
|
|
|
return len(tar) * mismatch_cost |
2795
|
|
|
if not tar: |
2796
|
|
|
return len(src) * mismatch_cost |
2797
|
|
|
|
2798
|
|
|
d_mat = np_zeros((len(src)+1, len(tar)+1), dtype=np_int) |
2799
|
|
|
lens = len(src) |
2800
|
|
|
lent = len(tar) |
2801
|
|
|
src = ' '+src |
2802
|
|
|
tar = ' '+tar |
2803
|
|
|
|
2804
|
|
|
if not local: |
2805
|
|
|
for i in range(1, lens+1): |
2806
|
|
|
d_mat[i, 0] = d_mat[i-1, 0] + d_cost(src[i-1], src[i]) |
2807
|
|
|
for j in range(1, lent+1): |
2808
|
|
|
d_mat[0, j] = d_mat[0, j-1] + d_cost(tar[j-1], tar[j]) |
2809
|
|
|
|
2810
|
|
|
for i in range(1, lens+1): |
2811
|
|
|
for j in range(1, lent+1): |
2812
|
|
|
d_mat[i, j] = min(d_mat[i-1, j] + d_cost(src[i-1], src[i]), |
2813
|
|
|
d_mat[i, j-1] + d_cost(tar[j-1], tar[j]), |
2814
|
|
|
d_mat[i-1, j-1] + r_cost(src[i], tar[j])) |
2815
|
|
|
|
2816
|
|
|
return d_mat[lens, lent] |
2817
|
|
|
|
2818
|
|
|
|
2819
|
|
|
def dist_editex(src, tar, cost=(0, 1, 2), local=False): |
2820
|
|
|
"""Return the normalized Editex distance between two strings. |
2821
|
|
|
|
2822
|
|
|
The Editex distance is normalized by dividing the Editex distance |
2823
|
|
|
(calculated by any of the three supported methods) by the greater of |
2824
|
|
|
the number of characters in src times the cost of a delete and |
2825
|
|
|
the number of characters in tar times the cost of an insert. |
2826
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
2827
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
2828
|
|
|
|
2829
|
|
|
:param str src, tar: two strings to be compared |
2830
|
|
|
:param tuple cost: a 3-tuple representing the cost of the four possible |
2831
|
|
|
edits: |
2832
|
|
|
match, same-group, and mismatch respectively (by default: (0, 1, 2)) |
2833
|
|
|
:param bool local: if True, the local variant of Editex is used |
2834
|
|
|
:returns: normalized Editex distance |
2835
|
|
|
:rtype: float |
2836
|
|
|
|
2837
|
|
|
>>> round(dist_editex('cat', 'hat'), 12) |
2838
|
|
|
0.333333333333 |
2839
|
|
|
>>> round(dist_editex('Niall', 'Neil'), 12) |
2840
|
|
|
0.2 |
2841
|
|
|
>>> dist_editex('aluminum', 'Catalan') |
2842
|
|
|
0.75 |
2843
|
|
|
>>> dist_editex('ATCG', 'TAGC') |
2844
|
|
|
0.75 |
2845
|
|
|
""" |
2846
|
|
|
if src == tar: |
2847
|
|
|
return 0 |
2848
|
|
|
mismatch_cost = cost[2] |
2849
|
|
|
return (editex(src, tar, cost, local) / |
2850
|
|
|
(max(len(src)*mismatch_cost, len(tar)*mismatch_cost))) |
2851
|
|
|
|
2852
|
|
|
|
2853
|
|
|
def sim_editex(src, tar, cost=(0, 1, 2), local=False): |
2854
|
|
|
"""Return the normalized Editex similarity of two strings. |
2855
|
|
|
|
2856
|
|
|
The Editex similarity is the complement of Editex distance: |
2857
|
|
|
:math:`sim_{Editex} = 1 - dist_{Editex}`. |
2858
|
|
|
|
2859
|
|
|
:param str src, tar: two strings to be compared |
2860
|
|
|
:param tuple cost: a 3-tuple representing the cost of the four possible |
2861
|
|
|
edits: |
2862
|
|
|
match, same-group, and mismatch respectively (by default: (0, 1, 2)) |
2863
|
|
|
:param bool local: if True, the local variant of Editex is used |
2864
|
|
|
:returns: normalized Editex similarity |
2865
|
|
|
:rtype: float |
2866
|
|
|
|
2867
|
|
|
>>> round(sim_editex('cat', 'hat'), 12) |
2868
|
|
|
0.666666666667 |
2869
|
|
|
>>> round(sim_editex('Niall', 'Neil'), 12) |
2870
|
|
|
0.8 |
2871
|
|
|
>>> sim_editex('aluminum', 'Catalan') |
2872
|
|
|
0.25 |
2873
|
|
|
>>> sim_editex('ATCG', 'TAGC') |
2874
|
|
|
0.25 |
2875
|
|
|
""" |
2876
|
|
|
return 1 - dist_editex(src, tar, cost, local) |
2877
|
|
|
|
2878
|
|
|
|
2879
|
|
|
def eudex_hamming(src, tar, weights='exponential', maxlength=8, |
2880
|
|
|
normalized=False): |
2881
|
|
|
"""Calculate the Hamming distance between the Eudex hashes of two terms. |
2882
|
|
|
|
2883
|
|
|
Cf. :cite:`Ticki:2016`. |
2884
|
|
|
|
2885
|
|
|
- If weights is set to None, a simple Hamming distance is calculated. |
2886
|
|
|
- If weights is set to 'exponential', weight decays by powers of 2, as |
2887
|
|
|
proposed in the eudex specification: https://github.com/ticki/eudex. |
2888
|
|
|
- If weights is set to 'fibonacci', weight decays through the Fibonacci |
2889
|
|
|
series, as in the eudex reference implementation. |
2890
|
|
|
- If weights is set to a callable function, this assumes it creates a |
2891
|
|
|
generator and the generator is used to populate a series of weights. |
2892
|
|
|
- If weights is set to an iterable, the iterable's values should be |
2893
|
|
|
integers and will be used as the weights. |
2894
|
|
|
|
2895
|
|
|
:param str src, tar: two strings to be compared |
2896
|
|
|
:param iterable or generator function weights: |
2897
|
|
|
:param maxlength: the number of characters to encode as a eudex hash |
2898
|
|
|
:return: |
2899
|
|
|
""" |
2900
|
|
|
def _gen_fibonacci(): |
2901
|
|
|
"""Yield the next Fibonacci number. |
2902
|
|
|
|
2903
|
|
|
Based on https://www.python-course.eu/generators.php |
2904
|
|
|
Starts at Fibonacci number 3 (the second 1) |
2905
|
|
|
""" |
2906
|
|
|
num_a, num_b = 1, 2 |
2907
|
|
|
while True: |
2908
|
|
|
yield num_a |
2909
|
|
|
num_a, num_b = num_b, num_a + num_b |
2910
|
|
|
|
2911
|
|
|
def _gen_exponential(base=2): |
2912
|
|
|
"""Yield the next value in an exponential series of the base. |
2913
|
|
|
|
2914
|
|
|
Starts at base**0 |
2915
|
|
|
""" |
2916
|
|
|
exp = 0 |
2917
|
|
|
while True: |
2918
|
|
|
yield base ** exp |
2919
|
|
|
exp += 1 |
2920
|
|
|
|
2921
|
|
|
# Calculate the eudex hashes and XOR them |
2922
|
|
|
xored = eudex(src, maxlength=maxlength) ^ eudex(tar, maxlength=maxlength) |
2923
|
|
|
|
2924
|
|
|
# Simple hamming distance (all bits are equal) |
2925
|
|
|
if not weights: |
2926
|
|
|
binary = bin(xored) |
2927
|
|
|
dist = binary.count('1') |
|
|
|
|
2928
|
|
|
if normalized: |
2929
|
|
|
return dist/(len(binary)-2) |
2930
|
|
|
return dist |
2931
|
|
|
|
2932
|
|
|
# If weights is a function, it should create a generator, |
2933
|
|
|
# which we now use to populate a list |
2934
|
|
|
if callable(weights): |
2935
|
|
|
weights = weights() |
2936
|
|
|
elif weights == 'exponential': |
2937
|
|
|
weights = _gen_exponential() |
2938
|
|
|
elif weights == 'fibonacci': |
2939
|
|
|
weights = _gen_fibonacci() |
2940
|
|
|
if isinstance(weights, GeneratorType): |
2941
|
|
|
weights = [next(weights) for _ in range(maxlength)][::-1] |
2942
|
|
|
|
2943
|
|
|
# Sum the weighted hamming distance |
2944
|
|
|
dist = 0 |
2945
|
|
|
maxdist = 0 |
2946
|
|
|
while (xored or normalized) and weights: |
2947
|
|
|
maxdist += 8*weights[-1] |
2948
|
|
|
dist += bin(xored & 0xFF).count('1') * weights.pop() |
2949
|
|
|
xored >>= 8 |
2950
|
|
|
|
2951
|
|
|
if normalized: |
2952
|
|
|
dist /= maxdist |
2953
|
|
|
|
2954
|
|
|
return dist |
2955
|
|
|
|
2956
|
|
|
|
2957
|
|
|
def dist_eudex(src, tar, weights='exponential', maxlength=8): |
2958
|
|
|
"""Return normalized Hamming distance between Eudex hashes of two terms. |
2959
|
|
|
|
2960
|
|
|
This is Eudex distance normalized to [0, 1]. |
2961
|
|
|
|
2962
|
|
|
:param str src, tar: two strings to be compared |
2963
|
|
|
:param iterable or generator function weights: |
2964
|
|
|
:param maxlength: the number of characters to encode as a eudex hash |
2965
|
|
|
:return: |
2966
|
|
|
""" |
2967
|
|
|
return eudex_hamming(src, tar, weights, maxlength, True) |
2968
|
|
|
|
2969
|
|
|
|
2970
|
|
|
def sim_eudex(src, tar, weights='exponential', maxlength=8): |
2971
|
|
|
"""Return normalized Hamming similarity between Eudex hashes of two terms. |
2972
|
|
|
|
2973
|
|
|
Normalized Eudex similarity is the complement of normalized Eudex distance: |
2974
|
|
|
:math:`sim_{Eudex} = 1 - dist_{Eudex}`. |
2975
|
|
|
|
2976
|
|
|
:param str src, tar: two strings to be compared |
2977
|
|
|
:param iterable or generator function weights: |
2978
|
|
|
:param maxlength: the number of characters to encode as a eudex hash |
2979
|
|
|
:return: |
2980
|
|
|
""" |
2981
|
|
|
return 1-dist_eudex(src, tar, weights, maxlength) |
2982
|
|
|
|
2983
|
|
|
|
2984
|
|
|
def sift4_simplest(src, tar, max_offset=5): |
2985
|
|
|
"""Return the "simplest" Sift4 distance between two terms. |
2986
|
|
|
|
2987
|
|
|
This is an approximation of edit distance, described in |
2988
|
|
|
:cite:`Zackwehdex:2014`. |
2989
|
|
|
|
2990
|
|
|
:param str src, tar: two strings to be compared |
2991
|
|
|
:param max_offset: the number of characters to search for matching letters |
2992
|
|
|
:return: |
2993
|
|
|
""" |
2994
|
|
|
if not src: |
2995
|
|
|
return len(tar) |
2996
|
|
|
|
2997
|
|
|
if not tar: |
2998
|
|
|
return len(src) |
2999
|
|
|
|
3000
|
|
|
src_len = len(src) |
3001
|
|
|
tar_len = len(tar) |
3002
|
|
|
|
3003
|
|
|
src_cur = 0 |
3004
|
|
|
tar_cur = 0 |
3005
|
|
|
lcss = 0 |
3006
|
|
|
local_cs = 0 |
3007
|
|
|
|
3008
|
|
|
while (src_cur < src_len) and (tar_cur < tar_len): |
3009
|
|
|
if src[src_cur] == tar[tar_cur]: |
3010
|
|
|
local_cs += 1 |
3011
|
|
|
else: |
3012
|
|
|
lcss += local_cs |
3013
|
|
|
local_cs = 0 |
3014
|
|
|
if src_cur != tar_cur: |
3015
|
|
|
src_cur = tar_cur = max(src_cur, tar_cur) |
3016
|
|
|
for i in range(max_offset): |
3017
|
|
|
if not ((src_cur+i < src_len) or (tar_cur+i < tar_len)): |
3018
|
|
|
break |
3019
|
|
|
if (src_cur+i < src_len) and (src[src_cur+i] == tar[tar_cur]): |
3020
|
|
|
src_cur += i |
3021
|
|
|
local_cs += 1 |
3022
|
|
|
break |
3023
|
|
|
if (tar_cur+i < tar_len) and (src[src_cur] == tar[tar_cur+i]): |
3024
|
|
|
tar_cur += i |
3025
|
|
|
local_cs += 1 |
3026
|
|
|
break |
3027
|
|
|
|
3028
|
|
|
src_cur += 1 |
3029
|
|
|
tar_cur += 1 |
3030
|
|
|
|
3031
|
|
|
lcss += local_cs |
3032
|
|
|
return round(max(src_len, tar_len) - lcss) |
3033
|
|
|
|
3034
|
|
|
|
3035
|
|
|
def sift4_common(src, tar, max_offset=5, max_distance=0): |
|
|
|
|
3036
|
|
|
"""Return the "common" Sift4 distance between two terms. |
3037
|
|
|
|
3038
|
|
|
This is an approximation of edit distance, described in |
3039
|
|
|
:cite:`Zackwehdex:2014`. |
3040
|
|
|
|
3041
|
|
|
:param str src, tar: two strings to be compared |
3042
|
|
|
:param max_offset: the number of characters to search for matching letters |
3043
|
|
|
:param max_distance: the distance at which to stop and exit |
3044
|
|
|
:return: |
3045
|
|
|
""" |
3046
|
|
|
if not src: |
3047
|
|
|
return len(tar) |
3048
|
|
|
|
3049
|
|
|
if not tar: |
3050
|
|
|
return len(src) |
3051
|
|
|
|
3052
|
|
|
src_len = len(src) |
3053
|
|
|
tar_len = len(tar) |
3054
|
|
|
|
3055
|
|
|
src_cur = 0 |
3056
|
|
|
tar_cur = 0 |
3057
|
|
|
lcss = 0 |
3058
|
|
|
local_cs = 0 |
3059
|
|
|
trans = 0 |
3060
|
|
|
offset_arr = [] |
3061
|
|
|
|
3062
|
|
|
while (src_cur < src_len) and (tar_cur < tar_len): |
3063
|
|
|
if src[src_cur] == tar[tar_cur]: |
3064
|
|
|
local_cs += 1 |
3065
|
|
|
is_trans = False |
3066
|
|
|
i = 0 |
3067
|
|
|
while i < len(offset_arr): |
3068
|
|
|
ofs = offset_arr[i] |
3069
|
|
|
if src_cur <= ofs['src_cur'] or tar_cur <= ofs['tar_cur']: |
3070
|
|
|
is_trans = (abs(tar_cur-src_cur) >= |
3071
|
|
|
abs(ofs['tar_cur']-ofs['src_cur'])) |
3072
|
|
|
if is_trans: |
3073
|
|
|
trans += 1 |
3074
|
|
|
elif not ofs['trans']: |
3075
|
|
|
ofs['trans'] = True |
3076
|
|
|
trans += 1 |
3077
|
|
|
break |
3078
|
|
|
elif src_cur > ofs['tar_cur'] and tar_cur > ofs['src_cur']: |
3079
|
|
|
del offset_arr[i] |
3080
|
|
|
else: |
3081
|
|
|
i += 1 |
3082
|
|
|
|
3083
|
|
|
offset_arr.append({'src_cur': src_cur, 'tar_cur': tar_cur, |
3084
|
|
|
'trans': is_trans}) |
3085
|
|
|
else: |
3086
|
|
|
lcss += local_cs |
3087
|
|
|
local_cs = 0 |
3088
|
|
|
if src_cur != tar_cur: |
3089
|
|
|
src_cur = tar_cur = min(src_cur, tar_cur) |
3090
|
|
|
for i in range(max_offset): |
3091
|
|
|
if not ((src_cur+i < src_len) or (tar_cur+i < tar_len)): |
3092
|
|
|
break |
3093
|
|
|
if (src_cur+i < src_len) and (src[src_cur+i] == tar[tar_cur]): |
3094
|
|
|
src_cur += i-1 |
3095
|
|
|
tar_cur -= 1 |
3096
|
|
|
break |
3097
|
|
|
if (tar_cur+i < tar_len) and (src[src_cur] == tar[tar_cur+i]): |
3098
|
|
|
src_cur -= 1 |
3099
|
|
|
tar_cur += i-1 |
3100
|
|
|
break |
3101
|
|
|
|
3102
|
|
|
src_cur += 1 |
3103
|
|
|
tar_cur += 1 |
3104
|
|
|
|
3105
|
|
|
if max_distance: |
3106
|
|
|
temporary_distance = max(src_cur, tar_cur) - lcss + trans |
3107
|
|
|
if temporary_distance >= max_distance: |
3108
|
|
|
return round(temporary_distance) |
3109
|
|
|
|
3110
|
|
|
if (src_cur >= src_len) or (tar_cur >= tar_len): |
3111
|
|
|
lcss += local_cs |
3112
|
|
|
local_cs = 0 |
3113
|
|
|
src_cur = tar_cur = min(src_cur, tar_cur) |
3114
|
|
|
|
3115
|
|
|
lcss += local_cs |
3116
|
|
|
return round(max(src_len, tar_len) - lcss + trans) |
3117
|
|
|
|
3118
|
|
|
|
3119
|
|
|
def dist_sift4(src, tar, max_offset=5, max_distance=0): |
3120
|
|
|
"""Return the normalized "common" Sift4 distance between two terms. |
3121
|
|
|
|
3122
|
|
|
This is Sift4 distance, normalized to [0, 1]. |
3123
|
|
|
|
3124
|
|
|
:param str src, tar: two strings to be compared |
3125
|
|
|
:param max_offset: the number of characters to search for matching letters |
3126
|
|
|
:param max_distance: the distance at which to stop and exit |
3127
|
|
|
:return: |
3128
|
|
|
""" |
3129
|
|
|
return (sift4_common(src, tar, max_offset, max_distance) / |
3130
|
|
|
(max(len(src), len(tar), 1))) |
3131
|
|
|
|
3132
|
|
|
|
3133
|
|
|
def sim_sift4(src, tar, max_offset=5, max_distance=0): |
3134
|
|
|
"""Return the normalized "common" Sift4 similarity of two terms. |
3135
|
|
|
|
3136
|
|
|
Normalized Sift4 similarity is the complement of normalized Sift4 distance: |
3137
|
|
|
:math:`sim_{Sift4} = 1 - dist_{Sift4}`. |
3138
|
|
|
|
3139
|
|
|
:param str src, tar: two strings to be compared |
3140
|
|
|
:param max_offset: the number of characters to search for matching letters |
3141
|
|
|
:param max_distance: the distance at which to stop and exit |
3142
|
|
|
:return: |
3143
|
|
|
""" |
3144
|
|
|
return 1-dist_sift4(src, tar, max_offset, max_distance) |
3145
|
|
|
|
3146
|
|
|
|
3147
|
|
|
def sim_baystat(src, tar, min_ss_len=None, left_ext=None, right_ext=None): |
|
|
|
|
3148
|
|
|
"""Return the Baystat similarity. |
3149
|
|
|
|
3150
|
|
|
Good results for shorter words are reported when setting min_ss_len to 1 |
3151
|
|
|
and either left_ext OR right_ext to 1. |
3152
|
|
|
|
3153
|
|
|
The Baystat similarity is defined in :cite:`Furnohr:2002`. |
3154
|
|
|
|
3155
|
|
|
This is ostensibly a port of the R module PPRL's implementation: |
3156
|
|
|
https://github.com/cran/PPRL/blob/master/src/MTB_Baystat.cpp |
3157
|
|
|
:cite:`Rukasz:2018`. As such, this could be made more pythonic. |
3158
|
|
|
|
3159
|
|
|
:param str src, tar: two strings to be compared |
3160
|
|
|
:param int min_ss_len: minimum substring length to be considered |
3161
|
|
|
:param int left_ext: left-side extension length |
3162
|
|
|
:param int right_ext: right-side extension length |
3163
|
|
|
:rtype: float |
3164
|
|
|
:return: the Baystat similarity |
3165
|
|
|
""" |
3166
|
|
|
if src == tar: |
3167
|
|
|
return 1 |
3168
|
|
|
if not src or not tar: |
3169
|
|
|
return 0 |
3170
|
|
|
|
3171
|
|
|
max_len = max(len(src), len(tar)) |
3172
|
|
|
|
3173
|
|
|
if not (min_ss_len and left_ext and right_ext): |
3174
|
|
|
# These can be set via arguments to the function. Otherwise they are |
3175
|
|
|
# set automatically based on values from the article. |
3176
|
|
|
if max_len >= 7: |
3177
|
|
|
min_ss_len = 2 |
3178
|
|
|
left_ext = 2 |
3179
|
|
|
right_ext = 2 |
3180
|
|
|
else: |
3181
|
|
|
# The paper suggests that for short names, (exclusively) one or the |
3182
|
|
|
# other of left_ext and right_ext can be 1, with good results. |
3183
|
|
|
# I use 0 & 0 as the default in this case. |
3184
|
|
|
min_ss_len = 1 |
3185
|
|
|
left_ext = 0 |
3186
|
|
|
right_ext = 0 |
3187
|
|
|
|
3188
|
|
|
pos = 0 |
3189
|
|
|
match_len = 0 |
3190
|
|
|
|
3191
|
|
|
while (True): |
|
|
|
|
3192
|
|
|
if pos + min_ss_len > len(src): |
3193
|
|
|
return match_len/max_len |
3194
|
|
|
|
3195
|
|
|
hit_len = 0 |
3196
|
|
|
ix = 1 |
|
|
|
|
3197
|
|
|
|
3198
|
|
|
substring = src[pos:pos + min_ss_len] |
3199
|
|
|
search_begin = pos - left_ext |
3200
|
|
|
|
3201
|
|
|
if search_begin < 0: |
3202
|
|
|
search_begin = 0 |
3203
|
|
|
left_ext_len = pos |
3204
|
|
|
else: |
3205
|
|
|
left_ext_len = left_ext |
3206
|
|
|
|
3207
|
|
|
if pos + min_ss_len + right_ext >= len(tar): |
3208
|
|
|
right_ext_len = len(tar) - pos - min_ss_len |
3209
|
|
|
else: |
3210
|
|
|
right_ext_len = right_ext |
3211
|
|
|
|
3212
|
|
|
if (search_begin + left_ext_len + min_ss_len + right_ext_len > |
3213
|
|
|
search_begin): |
3214
|
|
|
search_val = tar[search_begin:(search_begin + left_ext_len + |
3215
|
|
|
min_ss_len + right_ext_len)] |
3216
|
|
|
else: |
3217
|
|
|
search_val = '' |
3218
|
|
|
|
3219
|
|
|
flagged_tar = '' |
3220
|
|
|
while substring in search_val and pos + ix <= len(src): |
3221
|
|
|
hit_len = len(substring) |
3222
|
|
|
flagged_tar = tar.replace(substring, '#'*hit_len) |
3223
|
|
|
|
3224
|
|
|
if pos + min_ss_len + ix <= len(src): |
3225
|
|
|
substring = src[pos:pos + min_ss_len + ix] |
3226
|
|
|
|
3227
|
|
|
if pos+min_ss_len + right_ext_len + 1 <= len(tar): |
3228
|
|
|
right_ext_len += 1 |
3229
|
|
|
|
3230
|
|
|
if (search_begin + left_ext_len + min_ss_len + right_ext_len <= |
3231
|
|
|
len(tar)): |
3232
|
|
|
search_val = tar[search_begin:(search_begin + left_ext_len + |
3233
|
|
|
min_ss_len + right_ext_len)] |
3234
|
|
|
|
3235
|
|
|
ix += 1 |
|
|
|
|
3236
|
|
|
|
3237
|
|
|
if hit_len > 0: |
3238
|
|
|
tar = flagged_tar |
3239
|
|
|
|
3240
|
|
|
match_len += hit_len |
3241
|
|
|
pos += ix |
3242
|
|
|
|
3243
|
|
|
|
3244
|
|
|
def dist_baystat(src, tar, min_ss_len=None, left_ext=None, right_ext=None): |
3245
|
|
|
"""Return the Baystat distance. |
3246
|
|
|
|
3247
|
|
|
Normalized Baystat similarity is the complement of normalized Baystat |
3248
|
|
|
distance: :math:`sim_{Baystat} = 1 - dist_{Baystat}`. |
3249
|
|
|
|
3250
|
|
|
:param str src, tar: two strings to be compared |
3251
|
|
|
:param int min_ss_len: minimum substring length to be considered |
3252
|
|
|
:param int left_ext: left-side extension length |
3253
|
|
|
:param int right_ext: right-side extension length |
3254
|
|
|
:rtype: float |
3255
|
|
|
:return: the Baystat distance |
3256
|
|
|
""" |
3257
|
|
|
return 1-sim_baystat(src, tar, min_ss_len, left_ext, right_ext) |
3258
|
|
|
|
3259
|
|
|
|
3260
|
|
|
def typo(src, tar, metric='euclidean', cost=(1, 1, 0.5, 0.5), layout='QWERTY'): |
|
|
|
|
3261
|
|
|
"""Return the typo distance between two strings. |
3262
|
|
|
|
3263
|
|
|
This is inspired by Typo-Distance :cite:`Song:2011`, and a fair bit of |
3264
|
|
|
this was copied from that module. Compared to the original, this supports |
3265
|
|
|
different metrics for substitution. |
3266
|
|
|
|
3267
|
|
|
:param str src, tar: two strings to be compared |
3268
|
|
|
:param str metric: supported values include: 'euclidean', 'manhattan', |
3269
|
|
|
'log-euclidean', and 'log-manhattan' |
3270
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
3271
|
|
|
edits: inserts, deletes, substitutions, and shift, respectively (by |
3272
|
|
|
default: (1, 1, 0.5, 0.5)) The substitution & shift costs should be |
3273
|
|
|
significantly less than the cost of an insertion & deletion unless |
3274
|
|
|
a log metric is used. |
3275
|
|
|
:return: typo distance |
3276
|
|
|
:rtype: float |
3277
|
|
|
""" |
3278
|
|
|
ins_cost, del_cost, sub_cost, shift_cost = cost |
3279
|
|
|
|
3280
|
|
|
if src == tar: |
3281
|
|
|
return 0.0 |
3282
|
|
|
if not src: |
3283
|
|
|
return len(tar) * ins_cost |
3284
|
|
|
if not tar: |
3285
|
|
|
return len(src) * del_cost |
3286
|
|
|
|
3287
|
|
|
kbs = {'QWERTY': ( |
3288
|
|
|
(('`', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '-', '='), |
3289
|
|
|
('', 'q', 'w', 'e', 'r', 't', 'y', 'u', 'i', 'o', 'p', '[', ']', |
3290
|
|
|
'\\'), |
3291
|
|
|
('', 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', ';', '\''), |
3292
|
|
|
('', 'z', 'x', 'c', 'v', 'b', 'n', 'm', ',', '.', '/')), |
3293
|
|
|
(('~', '!', '@', '#', '$', '%', '^', '&', '*', '(', ')', '_', '+'), |
3294
|
|
|
('', 'Q', 'W', 'E', 'R', 'T', 'Y', 'U', 'I', 'O', 'P', '{', '}', '|'), |
3295
|
|
|
('', 'A', 'S', 'D', 'F', 'G', 'H', 'J', 'K', 'L', ':', '"'), |
3296
|
|
|
('', 'Z', 'X', 'C', 'V', 'B', 'N', 'M', '<', '>', '?')) |
3297
|
|
|
), 'Dvorak': ( |
3298
|
|
|
(('`', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '[', ']'), |
3299
|
|
|
('', '\'', ',', '.', 'p', 'y', 'f', 'g', 'c', 'r', 'l', '/', '=', |
3300
|
|
|
'\\'), |
3301
|
|
|
('', 'a', 'o', 'e', 'u', 'i', 'd', 'h', 't', 'n', 's', '-'), |
3302
|
|
|
('', ';', 'q', 'j', 'k', 'x', 'b', 'm', 'w', 'v', 'z')), |
3303
|
|
|
(('~', '!', '@', '#', '$', '%', '^', '&', '*', '(', ')', '{', '}'), |
3304
|
|
|
('', '"', '<', '>', 'P', 'Y', 'F', 'G', 'C', 'R', 'L', '?', '+', '|'), |
3305
|
|
|
('', 'A', 'O', 'E', 'U', 'I', 'D', 'H', 'T', 'N', 'S', '_'), |
3306
|
|
|
('', ':', 'Q', 'J', 'K', 'X', 'B', 'M', 'W', 'V', 'Z')) |
3307
|
|
|
), 'AZERTY': ( |
3308
|
|
|
(('²', '&', 'é', '"', '\'', '(', '-', 'è', '_', 'ç', 'à', ')', '='), |
3309
|
|
|
('', 'a', 'z', 'e', 'r', 't', 'y', 'u', 'i', 'o', 'p', '', '$'), |
3310
|
|
|
('', 'q', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'm', 'ù', '*'), |
3311
|
|
|
('<', 'w', 'x', 'c', 'v', 'b', 'n', ',', ';', ':', '!')), |
3312
|
|
|
(('~', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', '°', '+'), |
3313
|
|
|
('', 'A', 'W', 'E', 'R', 'T', 'Y', 'U', 'I', 'O', 'P', '', '£'), |
3314
|
|
|
('', 'Q', 'S', 'D', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'Ù', 'μ'), |
3315
|
|
|
('>', 'W', 'X', 'C', 'V', 'B', 'N', '?', '.', '/', '§')) |
3316
|
|
|
), 'QWERTZ': ( |
3317
|
|
|
(('', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', 'ß', ''), |
3318
|
|
|
('', 'q', 'w', 'e', 'r', 't', 'z', 'u', 'i', 'o', 'p', ' ü', '+', |
3319
|
|
|
'\\'), |
3320
|
|
|
('', 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'ö', 'ä', '#'), |
3321
|
|
|
('<', 'y', 'x', 'c', 'v', 'b', 'n', 'm', ',', '.', '-')), |
3322
|
|
|
(('°', '!', '"', '§', '$', '%', '&', '/', '(', ')', '=', '?', ''), |
3323
|
|
|
('', 'Q', 'W', 'E', 'R', 'T', 'Z', 'U', 'I', 'O', 'P', 'Ü', '*', ''), |
3324
|
|
|
('', 'A', 'S', 'D', 'F', 'G', 'H', 'J', 'K', 'L', 'Ö', 'Ä', '\''), |
3325
|
|
|
('>', 'Y', 'X', 'C', 'V', 'B', 'N', 'M', ';', ':', '_')) |
3326
|
|
|
)} |
3327
|
|
|
|
3328
|
|
|
keyboard = kbs[layout] |
3329
|
|
|
lowercase = {item for sublist in keyboard[0] for item in sublist} |
3330
|
|
|
uppercase = {item for sublist in keyboard[1] for item in sublist} |
3331
|
|
|
|
3332
|
|
|
def _kb_array_for_char(char): |
3333
|
|
|
"""Return the keyboard layout that contains ch.""" |
3334
|
|
|
if char in lowercase: |
|
|
|
|
3335
|
|
|
return keyboard[0] |
3336
|
|
|
elif char in uppercase: |
3337
|
|
|
return keyboard[1] |
3338
|
|
|
else: |
3339
|
|
|
raise ValueError(char + ' not found in any keyboard layouts') |
3340
|
|
|
|
3341
|
|
|
def _get_char_coord(char, keyboard): |
3342
|
|
|
"""Return the row & column of char in the keyboard.""" |
3343
|
|
|
for row in keyboard: |
3344
|
|
|
if char in row: |
3345
|
|
|
return keyboard.index(row), row.index(char) |
3346
|
|
|
raise ValueError(char + ' not found in given keyboard layout') |
3347
|
|
|
|
3348
|
|
|
def _euclidean_keyboard_distance(char1, char2): |
3349
|
|
|
row1, col1 = _get_char_coord(char1, _kb_array_for_char(char1)) |
3350
|
|
|
row2, col2 = _get_char_coord(char2, _kb_array_for_char(char2)) |
3351
|
|
|
return ((row1 - row2) ** 2 + (col1 - col2) ** 2) ** 0.5 |
3352
|
|
|
|
3353
|
|
|
def _manhattan_keyboard_distance(char1, char2): |
3354
|
|
|
row1, col1 = _get_char_coord(char1, _kb_array_for_char(char1)) |
3355
|
|
|
row2, col2 = _get_char_coord(char2, _kb_array_for_char(char2)) |
3356
|
|
|
return abs(row1 - row2) + abs(col1 - col2) |
3357
|
|
|
|
3358
|
|
|
def _log_euclidean_keyboard_distance(char1, char2): |
3359
|
|
|
return log(1 + _euclidean_keyboard_distance(char1, char2)) |
3360
|
|
|
|
3361
|
|
|
def _log_manhattan_keyboard_distance(char1, char2): |
3362
|
|
|
return log(1 + _manhattan_keyboard_distance(char1, char2)) |
3363
|
|
|
|
3364
|
|
|
metric_dict = {'euclidean': _euclidean_keyboard_distance, |
3365
|
|
|
'manhattan': _manhattan_keyboard_distance, |
3366
|
|
|
'log-euclidean': _log_euclidean_keyboard_distance, |
3367
|
|
|
'log-manhattan': _log_manhattan_keyboard_distance} |
3368
|
|
|
|
3369
|
|
|
def substitution_cost(char1, char2): |
3370
|
|
|
cost = sub_cost |
3371
|
|
|
cost *= (metric_dict[metric](char1, char2) + |
3372
|
|
|
shift_cost * (_kb_array_for_char(char1) != |
3373
|
|
|
_kb_array_for_char(char2))) |
3374
|
|
|
return cost |
3375
|
|
|
|
3376
|
|
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
3377
|
|
|
for i in range(len(src) + 1): |
3378
|
|
|
d_mat[i, 0] = i * del_cost |
3379
|
|
|
for j in range(len(tar) + 1): |
3380
|
|
|
d_mat[0, j] = j * ins_cost |
3381
|
|
|
|
3382
|
|
|
for i in range(len(src)): |
|
|
|
|
3383
|
|
|
for j in range(len(tar)): |
|
|
|
|
3384
|
|
|
d_mat[i + 1, j + 1] = min( |
3385
|
|
|
d_mat[i + 1, j] + ins_cost, # ins |
3386
|
|
|
d_mat[i, j + 1] + del_cost, # del |
3387
|
|
|
d_mat[i, j] + (substitution_cost(src[i], tar[j]) |
3388
|
|
|
if src[i] != tar[j] else 0) # sub/== |
3389
|
|
|
) |
3390
|
|
|
|
3391
|
|
|
return d_mat[len(src), len(tar)] |
3392
|
|
|
|
3393
|
|
|
|
3394
|
|
|
def dist_typo(src, tar, metric='euclidean', cost=(1, 1, 0.5, 0.5)): |
3395
|
|
|
"""Return the normalized typo distance between two strings. |
3396
|
|
|
|
3397
|
|
|
This is typo distance, normalized to [0, 1]. |
3398
|
|
|
|
3399
|
|
|
:param str src, tar: two strings to be compared |
3400
|
|
|
:param str metric: supported values include: 'euclidean', 'manhattan', |
3401
|
|
|
'log-euclidean', and 'log-manhattan' |
3402
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
3403
|
|
|
edits: inserts, deletes, substitutions, and shift, respectively (by |
3404
|
|
|
default: (1, 1, 0.5, 0.5)) The substitution & shift costs should be |
3405
|
|
|
significantly less than the cost of an insertion & deletion unless |
3406
|
|
|
a log metric is used. |
3407
|
|
|
:return: normalized typo distance |
3408
|
|
|
:rtype: float |
3409
|
|
|
""" |
3410
|
|
|
if src == tar: |
3411
|
|
|
return 0 |
3412
|
|
|
ins_cost, del_cost = cost[:2] |
3413
|
|
|
return (typo(src, tar, metric, cost) / |
3414
|
|
|
(max(len(src)*del_cost, len(tar)*ins_cost))) |
3415
|
|
|
|
3416
|
|
|
|
3417
|
|
|
def sim_typo(src, tar, metric='euclidean', cost=(1, 1, 0.5, 0.5)): |
3418
|
|
|
"""Return the normalized typo similarity between two strings. |
3419
|
|
|
|
3420
|
|
|
Normalized typo similarity is the complement of normalized typo distance: |
3421
|
|
|
:math:`sim_{typo} = 1 - dist_{typo}`. |
3422
|
|
|
|
3423
|
|
|
:param str src, tar: two strings to be compared |
3424
|
|
|
:param str metric: supported values include: 'euclidean', 'manhattan', |
3425
|
|
|
'log-euclidean', and 'log-manhattan' |
3426
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
3427
|
|
|
edits: inserts, deletes, substitutions, and shift, respectively (by |
3428
|
|
|
default: (1, 1, 0.5, 0.5)) The substitution & shift costs should be |
3429
|
|
|
significantly less than the cost of an insertion & deletion unless |
3430
|
|
|
a log metric is used. |
3431
|
|
|
:return: normalized typo similarity |
3432
|
|
|
:rtype: float |
3433
|
|
|
""" |
3434
|
|
|
return 1 - dist_typo(src, tar, metric, cost) |
3435
|
|
|
|
3436
|
|
|
|
3437
|
|
|
def dist_indel(src, tar): |
3438
|
|
|
"""Return the indel distance between two strings. |
3439
|
|
|
|
3440
|
|
|
This is equivalent to levenshtein distance, when only inserts and deletes |
3441
|
|
|
are possible. |
3442
|
|
|
|
3443
|
|
|
:param str src, tar: two strings to be compared |
3444
|
|
|
:return: indel distance |
3445
|
|
|
:rtype: float |
3446
|
|
|
""" |
3447
|
|
|
return dist_levenshtein(src, tar, mode='lev', cost=(1, 1, 9999, 9999)) |
3448
|
|
|
|
3449
|
|
|
|
3450
|
|
|
def sim_indel(src, tar): |
3451
|
|
|
"""Return the indel similarity of two strings. |
3452
|
|
|
|
3453
|
|
|
Normalized bag similarity is the complement of normalized bag distance: |
3454
|
|
|
:math:`sim_{bag} = 1 - dist_{bag}` |
3455
|
|
|
|
3456
|
|
|
:param str src, tar: two strings to be compared |
3457
|
|
|
:return: indel similarity |
3458
|
|
|
:rtype: float |
3459
|
|
|
""" |
3460
|
|
|
return sim_levenshtein(src, tar, mode='lev', cost=(1, 1, 9999, 9999)) |
3461
|
|
|
|
3462
|
|
|
|
3463
|
|
|
def _synoname_strip_punct(word): |
3464
|
|
|
"""Return a word with punctuation stripped out. |
3465
|
|
|
|
3466
|
|
|
:param word: |
3467
|
|
|
:return: |
3468
|
|
|
""" |
3469
|
|
|
stripped = '' |
3470
|
|
|
for char in word: |
3471
|
|
|
if char not in set(',-./:;"&\'()!{|}?$%*+<=>[\\]^_`~'): |
3472
|
|
|
stripped += char |
3473
|
|
|
return stripped.strip() |
3474
|
|
|
|
3475
|
|
|
|
3476
|
|
|
def synoname_word_approximation(src_ln, tar_ln, src_fn='', tar_fn='', |
|
|
|
|
3477
|
|
|
features=None): |
3478
|
|
|
"""Return the Synoname word approximation score for two names. |
3479
|
|
|
|
3480
|
|
|
:param str src_ln, tar_ln: last names of the source and target |
3481
|
|
|
:param str src_fn, tar_fn: first names of the source and target (optional) |
3482
|
|
|
:param features: a dict containing special features calculated via |
3483
|
|
|
fingerprint.synoname_toolcode() (optional) |
3484
|
|
|
:returns: The word approximation score |
3485
|
|
|
:rtype: float |
3486
|
|
|
""" |
3487
|
|
|
if features is None: |
3488
|
|
|
features = {} |
3489
|
|
|
if 'src_specials' not in features: |
3490
|
|
|
features['src_specials'] = [] |
3491
|
|
|
if 'tar_specials' not in features: |
3492
|
|
|
features['tar_specials'] = [] |
3493
|
|
|
|
3494
|
|
|
src_len_specials = len(features['src_specials']) |
3495
|
|
|
tar_len_specials = len(features['tar_specials']) |
3496
|
|
|
|
3497
|
|
|
# 1 |
3498
|
|
|
if ('gen_conflict' not in features or features['gen_conflict'] or |
3499
|
|
|
'roman_conflict' not in features or features['roman_conflict']): |
3500
|
|
|
return 0 |
3501
|
|
|
|
3502
|
|
|
# 3 & 7 |
3503
|
|
|
full_tar1 = ' '.join((tar_ln, tar_fn)).replace('-', ' ') |
3504
|
|
|
for s_type, s_pos in features['tar_specials']: |
3505
|
|
|
if s_pos == 'a': |
3506
|
|
|
full_tar1 = full_tar1[:1+len(_synoname_special_table[s_type][1])] |
3507
|
|
|
elif s_pos == 'b': |
3508
|
|
|
loc = full_tar1.find(' '+_synoname_special_table[s_type][1]+' ')+1 |
3509
|
|
|
full_tar1 = (full_tar1[:loc] + |
3510
|
|
|
full_tar1[loc + |
3511
|
|
|
len(_synoname_special_table[s_type][1]):]) |
3512
|
|
|
elif s_pos == 'c': |
3513
|
|
|
full_tar1 = full_tar1[1+len(_synoname_special_table[s_type][1]):] |
3514
|
|
|
|
3515
|
|
|
full_src1 = ' '.join((src_ln, src_fn)).replace('-', ' ') |
3516
|
|
|
for s_type, s_pos in features['src_specials']: |
3517
|
|
|
if s_pos == 'a': |
3518
|
|
|
full_src1 = full_src1[:1+len(_synoname_special_table[s_type][1])] |
3519
|
|
|
elif s_pos == 'b': |
3520
|
|
|
loc = full_src1.find(' '+_synoname_special_table[s_type][1]+' ')+1 |
3521
|
|
|
full_src1 = (full_src1[:loc] + |
3522
|
|
|
full_src1[loc + |
3523
|
|
|
len(_synoname_special_table[s_type][1]):]) |
3524
|
|
|
elif s_pos == 'c': |
3525
|
|
|
full_src1 = full_src1[1+len(_synoname_special_table[s_type][1]):] |
3526
|
|
|
|
3527
|
|
|
full_tar2 = full_tar1 |
3528
|
|
|
for s_type, s_pos in features['tar_specials']: |
3529
|
|
|
if s_pos == 'd': |
3530
|
|
|
full_tar2 = full_tar2[len(_synoname_special_table[s_type][1]):] |
3531
|
|
|
elif s_pos == 'X' and _synoname_special_table[s_type][1] in full_tar2: |
3532
|
|
|
loc = full_tar2.find(' '+_synoname_special_table[s_type][1]+' ')+1 |
3533
|
|
|
full_tar2 = (full_tar2[:loc] + |
3534
|
|
|
full_tar2[loc + |
3535
|
|
|
len(_synoname_special_table[s_type][1]):]) |
3536
|
|
|
|
3537
|
|
|
full_src2 = full_tar1 |
3538
|
|
|
for s_type, s_pos in features['src_specials']: |
3539
|
|
|
if s_pos == 'd': |
3540
|
|
|
full_src2 = full_src2[len(_synoname_special_table[s_type][1]):] |
3541
|
|
|
elif s_pos == 'X' and _synoname_special_table[s_type][1] in full_src2: |
3542
|
|
|
loc = full_src2.find(' '+_synoname_special_table[s_type][1]+' ')+1 |
3543
|
|
|
full_src2 = (full_src2[:loc] + |
3544
|
|
|
full_src2[loc + |
3545
|
|
|
len(_synoname_special_table[s_type][1]):]) |
3546
|
|
|
|
3547
|
|
|
full_tar1 = _synoname_strip_punct(full_tar1) |
3548
|
|
|
tar1_words = full_tar1.split() |
3549
|
|
|
tar1_num_words = len(tar1_words) |
3550
|
|
|
|
3551
|
|
|
full_src1 = _synoname_strip_punct(full_src1) |
3552
|
|
|
src1_words = full_src1.split() |
3553
|
|
|
src1_num_words = len(src1_words) |
3554
|
|
|
|
3555
|
|
|
full_tar2 = _synoname_strip_punct(full_tar2) |
3556
|
|
|
tar2_words = full_tar2.split() |
3557
|
|
|
tar2_num_words = len(tar2_words) |
3558
|
|
|
|
3559
|
|
|
full_src2 = _synoname_strip_punct(full_src2) |
3560
|
|
|
src2_words = full_src2.split() |
3561
|
|
|
src2_num_words = len(src2_words) |
3562
|
|
|
|
3563
|
|
|
# 2 |
3564
|
|
|
if (src1_num_words < 2 and src_len_specials == 0 and src2_num_words < 2 and |
3565
|
|
|
tar_len_specials == 0): |
3566
|
|
|
return 0 |
3567
|
|
|
|
3568
|
|
|
# 4 |
3569
|
|
|
if (tar1_num_words == 1 and src1_num_words == 1 and |
3570
|
|
|
tar1_words[0] == src1_words[0]): |
3571
|
|
|
return 1 |
3572
|
|
|
if tar1_num_words < 2 and tar_len_specials == 0: |
3573
|
|
|
return 0 |
3574
|
|
|
|
3575
|
|
|
# 5 |
3576
|
|
|
last_found = False |
3577
|
|
|
for word in tar1_words: |
3578
|
|
|
if src_ln.endswith(word) or word+' ' in src_ln: |
3579
|
|
|
last_found = True |
3580
|
|
|
|
3581
|
|
|
if not last_found: |
3582
|
|
|
for word in src1_words: |
3583
|
|
|
if tar_ln.endswith(word) or word+' ' in tar_ln: |
3584
|
|
|
last_found = True |
3585
|
|
|
|
3586
|
|
|
# 6 |
3587
|
|
|
matches = 0 |
3588
|
|
|
if last_found: |
3589
|
|
|
for i, s_word in enumerate(src1_words): |
3590
|
|
|
for j, t_word in enumerate(tar1_words): |
3591
|
|
|
if s_word == t_word: |
3592
|
|
|
src1_words[i] = '@' |
3593
|
|
|
tar1_words[j] = '@' |
3594
|
|
|
matches += 1 |
3595
|
|
|
w_ratio = matches/max(tar1_num_words, src1_num_words) |
3596
|
|
|
if matches > 1 or (matches == 1 and |
|
|
|
|
3597
|
|
|
src1_num_words == 1 and tar1_num_words == 1 and |
3598
|
|
|
(tar_len_specials > 0 or src_len_specials > 0)): |
3599
|
|
|
return w_ratio |
3600
|
|
|
|
3601
|
|
|
# 8 |
3602
|
|
|
if (tar2_num_words == 1 and src2_num_words == 1 and |
3603
|
|
|
tar2_words[0] == src2_words[0]): |
3604
|
|
|
return 1 |
3605
|
|
|
if tar2_num_words < 2 and tar_len_specials == 0: |
3606
|
|
|
return 0 |
3607
|
|
|
|
3608
|
|
|
# 9 |
3609
|
|
|
last_found = False |
3610
|
|
|
for word in tar2_words: |
3611
|
|
|
if src_ln.endswith(word) or word+' ' in src_ln: |
3612
|
|
|
last_found = True |
3613
|
|
|
|
3614
|
|
|
if not last_found: |
3615
|
|
|
for word in src2_words: |
3616
|
|
|
if tar_ln.endswith(word) or word+' ' in tar_ln: |
3617
|
|
|
last_found = True |
3618
|
|
|
|
3619
|
|
|
if not last_found: |
3620
|
|
|
return 0 |
3621
|
|
|
|
3622
|
|
|
# 10 |
3623
|
|
|
matches = 0 |
3624
|
|
|
if last_found: |
3625
|
|
|
for i, s_word in enumerate(src2_words): |
3626
|
|
|
for j, t_word in enumerate(tar2_words): |
3627
|
|
|
if s_word == t_word: |
3628
|
|
|
src2_words[i] = '@' |
3629
|
|
|
tar2_words[j] = '@' |
3630
|
|
|
matches += 1 |
3631
|
|
|
w_ratio = matches/max(tar2_num_words, src2_num_words) |
3632
|
|
|
if matches > 1 or (matches == 1 and |
|
|
|
|
3633
|
|
|
src2_num_words == 1 and tar2_num_words == 1 and |
3634
|
|
|
(tar_len_specials > 0 or src_len_specials > 0)): |
3635
|
|
|
return w_ratio |
3636
|
|
|
|
3637
|
|
|
return 0 |
3638
|
|
|
|
3639
|
|
|
|
3640
|
|
|
def synoname(src, tar, word_approx_min=0.3, char_approx_min=0.73, |
|
|
|
|
3641
|
|
|
tests=2**12-1): |
3642
|
|
|
"""Return the Synoname similarity type of two words. |
3643
|
|
|
|
3644
|
|
|
Cf. :cite:`Getty:1991,Gross:1991` |
3645
|
|
|
|
3646
|
|
|
:param str src, tar: two strings to be compared |
3647
|
|
|
:return: Synoname value |
3648
|
|
|
:rtype: int |
3649
|
|
|
""" |
3650
|
|
|
test_dict = {val: 2**n for n, val in enumerate([ |
3651
|
|
|
'exact', 'omission', 'substitution', 'transposition', 'punctuation', |
3652
|
|
|
'initials', 'extended', 'inclusion', 'no_first', 'word_approx', |
3653
|
|
|
'confusions', 'char_approx'])} |
3654
|
|
|
match_type_dict = {val: n for n, val in enumerate([ |
3655
|
|
|
'exact', 'omission', 'substitution', 'transposition', 'punctuation', |
3656
|
|
|
'initials', 'extended', 'inclusion', 'no_first', 'word_approx', |
3657
|
|
|
'confusions', 'char_approx', 'no_match'], 1)} |
3658
|
|
|
|
3659
|
|
|
if isinstance(tests, Iterable): |
3660
|
|
|
new_tests = 0 |
3661
|
|
|
for term in tests: |
3662
|
|
|
if term in test_dict: |
3663
|
|
|
new_tests += test_dict[term] |
3664
|
|
|
tests = new_tests |
3665
|
|
|
|
3666
|
|
|
if isinstance(src, tuple): |
3667
|
|
|
src_ln, src_fn, src_qual = src |
3668
|
|
|
elif '#' in src: |
3669
|
|
|
src_ln, src_fn, src_qual = src.split('#')[1:4] |
3670
|
|
|
else: |
3671
|
|
|
src_ln, src_fn, src_qual = src, '', '' |
3672
|
|
|
|
3673
|
|
|
if isinstance(tar, tuple): |
3674
|
|
|
tar_ln, tar_fn, tar_qual = tar |
3675
|
|
|
elif '#' in tar: |
3676
|
|
|
tar_ln, tar_fn, tar_qual = tar.split('#')[1:4] |
3677
|
|
|
else: |
3678
|
|
|
tar_ln, tar_fn, tar_qual = tar, '', '' |
3679
|
|
|
|
3680
|
|
|
def split_special(spec): |
3681
|
|
|
spec_list = [] |
3682
|
|
|
while spec: |
3683
|
|
|
spec_list.append((int(spec[:3]), spec[3:4])) |
3684
|
|
|
spec = spec[4:] |
3685
|
|
|
return spec_list |
3686
|
|
|
|
3687
|
|
|
# 1. Preprocessing |
3688
|
|
|
|
3689
|
|
|
# Lowercasing |
3690
|
|
|
src_fn = src_fn.strip().lower() |
3691
|
|
|
src_ln = src_ln.strip().lower() |
3692
|
|
|
src_qual = src_qual.strip().lower() |
3693
|
|
|
|
3694
|
|
|
tar_fn = tar_fn.strip().lower() |
3695
|
|
|
tar_ln = tar_ln.strip().lower() |
3696
|
|
|
tar_qual = tar_qual.strip().lower() |
3697
|
|
|
|
3698
|
|
|
# Create toolcodes |
3699
|
|
|
src_fn, src_ln, src_tc = synoname_toolcode(src_fn, src_ln, src_qual) |
3700
|
|
|
tar_fn, tar_ln, tar_tc = synoname_toolcode(tar_fn, tar_ln, tar_qual) |
3701
|
|
|
|
3702
|
|
|
src_generation = int(src_tc[2]) |
3703
|
|
|
src_romancode = int(src_tc[3:6]) |
3704
|
|
|
src_len_fn = int(src_tc[6:8]) |
3705
|
|
|
src_tc = src_tc.split('$') |
3706
|
|
|
src_specials = split_special(src_tc[1]) |
3707
|
|
|
|
3708
|
|
|
tar_generation = int(tar_tc[2]) |
3709
|
|
|
tar_romancode = int(tar_tc[3:6]) |
3710
|
|
|
tar_len_fn = int(tar_tc[6:8]) |
3711
|
|
|
tar_tc = tar_tc.split('$') |
3712
|
|
|
tar_specials = split_special(tar_tc[1]) |
3713
|
|
|
|
3714
|
|
|
gen_conflict = (src_generation != tar_generation and |
3715
|
|
|
(src_generation or tar_generation)) |
3716
|
|
|
roman_conflict = (src_romancode != tar_romancode and |
3717
|
|
|
(src_romancode or tar_romancode)) |
3718
|
|
|
|
3719
|
|
|
ln_equal = src_ln == tar_ln |
3720
|
|
|
fn_equal = src_fn == tar_fn |
3721
|
|
|
|
3722
|
|
|
# approx_c |
3723
|
|
|
def approx_c(): |
3724
|
|
|
if gen_conflict or roman_conflict: |
3725
|
|
|
return 0 |
3726
|
|
|
|
3727
|
|
|
full_src = ' '.join((src_ln, src_fn)) |
3728
|
|
|
if full_src.startswith('master '): |
3729
|
|
|
full_src = full_src[len('master '):] |
3730
|
|
|
for intro in ['of the ', 'of ', 'known as the ', 'with the ', |
3731
|
|
|
'with ']: |
3732
|
|
|
if full_src.ssrctswith(intro): |
|
|
|
|
3733
|
|
|
full_src = full_src[len(intro):] |
3734
|
|
|
|
3735
|
|
|
full_tar = ' '.join((tar_ln, tar_fn)) |
3736
|
|
|
if full_tar.startswith('master '): |
3737
|
|
|
full_tar = full_tar[len('master '):] |
3738
|
|
|
for intro in ['of the ', 'of ', 'known as the ', 'with the ', |
3739
|
|
|
'with ']: |
3740
|
|
|
if full_tar.startswith(intro): |
3741
|
|
|
full_tar = full_tar[len(intro):] |
3742
|
|
|
|
3743
|
|
|
ca_ratio = sim_ratcliff_obershelp(full_src, full_tar) |
3744
|
|
|
return ca_ratio >= char_approx_min, ca_ratio |
3745
|
|
|
|
3746
|
|
|
approx_c_result, ca_ratio = approx_c() |
|
|
|
|
3747
|
|
|
|
3748
|
|
|
if tests & test_dict['exact'] and fn_equal and ln_equal: |
3749
|
|
|
return match_type_dict['exact'] |
3750
|
|
|
if tests & test_dict['omission']: |
3751
|
|
|
if (fn_equal and |
3752
|
|
|
levenshtein(src_ln, tar_ln, cost=(1, 1, 99, 99)) == 1): |
3753
|
|
|
if not roman_conflict: |
3754
|
|
|
return match_type_dict['omission'] |
3755
|
|
|
elif (ln_equal and |
3756
|
|
|
levenshtein(src_fn, tar_fn, cost=(1, 1, 99, 99)) == 1): |
3757
|
|
|
return match_type_dict['omission'] |
3758
|
|
|
if tests & test_dict['substitution']: |
3759
|
|
|
if (fn_equal and |
|
|
|
|
3760
|
|
|
levenshtein(src_ln, tar_ln, cost=(99, 99, 1, 99)) == 1): |
3761
|
|
|
return match_type_dict['substitution'] |
3762
|
|
|
elif (ln_equal and |
3763
|
|
|
levenshtein(src_fn, tar_fn, cost=(99, 99, 1, 99)) == 1): |
3764
|
|
|
return match_type_dict['substitution'] |
3765
|
|
|
if tests & test_dict['transposition']: |
3766
|
|
|
if (fn_equal and |
|
|
|
|
3767
|
|
|
levenshtein(src_ln, tar_ln, cost=(99, 99, 99, 1)) == 1): |
3768
|
|
|
return match_type_dict['transposition'] |
3769
|
|
|
elif (ln_equal and |
3770
|
|
|
levenshtein(src_fn, tar_fn, cost=(99, 99, 99, 1)) == 1): |
3771
|
|
|
return match_type_dict['transposition'] |
3772
|
|
|
if tests & test_dict['punctuation']: |
3773
|
|
|
np_src_fn = _synoname_strip_punct(src_fn) |
3774
|
|
|
np_tar_fn = _synoname_strip_punct(tar_fn) |
3775
|
|
|
np_src_ln = _synoname_strip_punct(src_ln) |
3776
|
|
|
np_tar_ln = _synoname_strip_punct(tar_ln) |
3777
|
|
|
|
3778
|
|
|
if np_src_fn == np_tar_fn and np_src_ln == np_tar_ln: |
3779
|
|
|
return match_type_dict['punctuation'] |
3780
|
|
|
if tests & test_dict['initials'] and ln_equal: |
3781
|
|
|
if src_fn or tar_fn: |
3782
|
|
|
src_initials = ''.join(_[0] for _ in src_fn.split()) |
3783
|
|
|
tar_initials = ''.join(_[0] for _ in tar_fn.split()) |
3784
|
|
|
if src_initials == tar_initials: |
3785
|
|
|
return match_type_dict['initials'] |
3786
|
|
|
initial_diff = abs(len(src_initials)-len(tar_initials)) |
3787
|
|
|
if (initial_diff and |
3788
|
|
|
((initial_diff == levenshtein(src_initials, tar_initials, |
3789
|
|
|
cost=(1, 99, 99, 99))) or |
3790
|
|
|
(initial_diff == levenshtein(tar_initials, src_initials, |
3791
|
|
|
cost=(1, 99, 99, 99))))): |
3792
|
|
|
return match_type_dict['initials'] |
3793
|
|
|
if tests & test_dict['extended']: |
3794
|
|
|
if src_ln[0] == tar_ln[0] and (src_ln.startswith(tar_ln) or |
3795
|
|
|
tar_ln.startswith(src_ln)): |
3796
|
|
|
if ((not src_len_fn and not tar_len_fn) or |
3797
|
|
|
src_ln.startswith(tar_ln) or |
3798
|
|
|
tar_ln.startswith(src_ln)) and not roman_conflict: |
3799
|
|
|
return match_type_dict['extended'] |
3800
|
|
|
if tests & test_dict['inclusion'] and ln_equal: |
3801
|
|
|
if src_fn in tar_fn or tar_fn in src_ln: |
3802
|
|
|
return match_type_dict['inclusion'] |
3803
|
|
|
if tests & test_dict['no_first'] and ln_equal: |
3804
|
|
|
if src_fn == '' or tar_fn == '': |
3805
|
|
|
return match_type_dict['no_first'] |
3806
|
|
|
if tests & test_dict['word_approx']: |
3807
|
|
|
ratio = synoname_word_approximation(src_ln, tar_ln, src_fn, tar_fn, |
3808
|
|
|
{'gen_conflict': gen_conflict, |
3809
|
|
|
'roman_conflict': roman_conflict, |
3810
|
|
|
'src_specials': src_specials, |
3811
|
|
|
'tar_specials': tar_specials}) |
3812
|
|
|
if ratio == 1 and tests & test_dict['confusions']: |
3813
|
|
|
if ' '.join((src_fn, src_ln)) == ' '.join((tar_fn, tar_ln)): |
3814
|
|
|
return match_type_dict['confusions'] |
3815
|
|
|
if ratio >= word_approx_min: |
3816
|
|
|
return match_type_dict['word_approx'] |
3817
|
|
|
if tests & test_dict['char_approx']: |
3818
|
|
|
if ca_ratio >= char_approx_min: |
3819
|
|
|
return match_type_dict['char_approx'] |
3820
|
|
|
return match_type_dict['no_match'] |
3821
|
|
|
|
3822
|
|
|
|
3823
|
|
|
############################################################################### |
3824
|
|
|
|
3825
|
|
|
|
3826
|
|
|
def sim(src, tar, method=sim_levenshtein): |
3827
|
|
|
"""Return a similarity of two strings. |
3828
|
|
|
|
3829
|
|
|
This is a generalized function for calling other similarity functions. |
3830
|
|
|
|
3831
|
|
|
:param str src, tar: two strings to be compared |
3832
|
|
|
:param function method: specifies the similarity metric (Levenshtein by |
3833
|
|
|
default) |
3834
|
|
|
:returns: similarity according to the specified function |
3835
|
|
|
:rtype: float |
3836
|
|
|
|
3837
|
|
|
>>> round(sim('cat', 'hat'), 12) |
3838
|
|
|
0.666666666667 |
3839
|
|
|
>>> round(sim('Niall', 'Neil'), 12) |
3840
|
|
|
0.4 |
3841
|
|
|
>>> sim('aluminum', 'Catalan') |
3842
|
|
|
0.125 |
3843
|
|
|
>>> sim('ATCG', 'TAGC') |
3844
|
|
|
0.25 |
3845
|
|
|
""" |
3846
|
|
|
if callable(method): |
|
|
|
|
3847
|
|
|
return method(src, tar) |
3848
|
|
|
else: |
3849
|
|
|
raise AttributeError('Unknown similarity function: ' + str(method)) |
3850
|
|
|
|
3851
|
|
|
|
3852
|
|
|
def dist(src, tar, method=sim_levenshtein): |
3853
|
|
|
"""Return a distance between two strings. |
3854
|
|
|
|
3855
|
|
|
This is a generalized function for calling other distance functions. |
3856
|
|
|
|
3857
|
|
|
:param str src, tar: two strings to be compared |
3858
|
|
|
:param function method: specifies the similarity metric (Levenshtein by |
3859
|
|
|
default) -- Note that this takes a similarity metric function, not |
3860
|
|
|
a distance metric function. |
3861
|
|
|
:returns: distance according to the specified function |
3862
|
|
|
:rtype: float |
3863
|
|
|
|
3864
|
|
|
>>> round(dist('cat', 'hat'), 12) |
3865
|
|
|
0.333333333333 |
3866
|
|
|
>>> round(dist('Niall', 'Neil'), 12) |
3867
|
|
|
0.6 |
3868
|
|
|
>>> dist('aluminum', 'Catalan') |
3869
|
|
|
0.875 |
3870
|
|
|
>>> dist('ATCG', 'TAGC') |
3871
|
|
|
0.75 |
3872
|
|
|
""" |
3873
|
|
|
if callable(method): |
|
|
|
|
3874
|
|
|
return 1 - method(src, tar) |
3875
|
|
|
else: |
3876
|
|
|
raise AttributeError('Unknown distance function: ' + str(method)) |
3877
|
|
|
|
3878
|
|
|
|
3879
|
|
|
if __name__ == '__main__': |
3880
|
|
|
import doctest |
3881
|
|
|
doctest.testmod() |
3882
|
|
|
|