|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
|
4
|
|
|
# This file is part of Abydos. |
|
5
|
|
|
# |
|
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
|
7
|
|
|
# it under the terms of the GNU General Public License as published by |
|
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
|
9
|
|
|
# (at your option) any later version. |
|
10
|
|
|
# |
|
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
|
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
14
|
|
|
# GNU General Public License for more details. |
|
15
|
|
|
# |
|
16
|
|
|
# You should have received a copy of the GNU General Public License |
|
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
|
18
|
|
|
|
|
19
|
1 |
|
"""abydos.distance._levenshtein. |
|
20
|
|
|
|
|
21
|
|
|
The distance._Levenshtein module implements string edit distance functions |
|
22
|
|
|
based on Levenshtein distance, including: |
|
23
|
|
|
|
|
24
|
|
|
- Levenshtein distance |
|
25
|
|
|
- Optimal String Alignment distance |
|
26
|
|
|
""" |
|
27
|
|
|
|
|
28
|
1 |
|
from __future__ import ( |
|
29
|
|
|
absolute_import, |
|
30
|
|
|
division, |
|
31
|
|
|
print_function, |
|
32
|
|
|
unicode_literals, |
|
33
|
|
|
) |
|
34
|
|
|
|
|
35
|
|
|
|
|
36
|
1 |
|
from numpy import int as np_int |
|
37
|
1 |
|
from numpy import zeros as np_zeros |
|
38
|
|
|
|
|
39
|
1 |
|
from six.moves import range |
|
40
|
|
|
|
|
41
|
1 |
|
from ._distance import _Distance |
|
42
|
|
|
|
|
43
|
1 |
|
__all__ = ['Levenshtein', 'dist_levenshtein', 'levenshtein', 'sim_levenshtein'] |
|
44
|
|
|
|
|
45
|
|
|
|
|
46
|
1 |
|
class Levenshtein(_Distance): |
|
|
|
|
|
|
47
|
|
|
"""Levenshtein distance. |
|
48
|
|
|
|
|
49
|
|
|
This is the standard edit distance measure. Cf. |
|
50
|
|
|
:cite:`Levenshtein:1965,Levenshtein:1966`. |
|
51
|
|
|
|
|
52
|
|
|
Optimal string alignment (aka restricted |
|
53
|
|
|
Damerau-Levenshtein distance) :cite:`Boytsov:2011` is also supported. |
|
54
|
|
|
|
|
55
|
|
|
The ordinary Levenshtein & Optimal String Alignment distance both |
|
56
|
|
|
employ the Wagner-Fischer dynamic programming algorithm |
|
57
|
|
|
:cite:`Wagner:1974`. |
|
58
|
|
|
|
|
59
|
|
|
Levenshtein edit distance ordinarily has unit insertion, deletion, and |
|
60
|
|
|
substitution costs. |
|
61
|
|
|
""" |
|
62
|
|
|
|
|
63
|
1 |
|
def dist_abs(self, src, tar, mode='lev', cost=(1, 1, 1, 1)): |
|
|
|
|
|
|
64
|
|
|
"""Return the Levenshtein distance between two strings. |
|
65
|
|
|
|
|
66
|
|
|
Parameters |
|
67
|
|
|
---------- |
|
68
|
|
|
src : str |
|
69
|
|
|
Source string for comparison |
|
70
|
|
|
tar : str |
|
71
|
|
|
Target string for comparison |
|
72
|
|
|
mode : str |
|
73
|
|
|
Specifies a mode for computing the Levenshtein distance: |
|
74
|
|
|
|
|
75
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, |
|
76
|
|
|
in which edits may include inserts, deletes, and |
|
77
|
|
|
substitutions |
|
78
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in |
|
79
|
|
|
which edits may include inserts, deletes, substitutions, and |
|
80
|
|
|
transpositions but substrings may only be edited once |
|
81
|
|
|
|
|
82
|
|
|
cost : tuple |
|
83
|
|
|
A 4-tuple representing the cost of the four possible edits: |
|
84
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
|
85
|
|
|
(by default: (1, 1, 1, 1)) |
|
86
|
|
|
|
|
87
|
|
|
Returns |
|
88
|
|
|
------- |
|
89
|
|
|
int (may return a float if cost has float values) |
|
90
|
|
|
The Levenshtein distance between src & tar |
|
91
|
|
|
|
|
92
|
|
|
Examples |
|
93
|
|
|
-------- |
|
94
|
|
|
>>> cmp = Levenshtein() |
|
95
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
|
96
|
|
|
1 |
|
97
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
|
98
|
|
|
3 |
|
99
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
|
100
|
|
|
7 |
|
101
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
|
102
|
|
|
3 |
|
103
|
|
|
|
|
104
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC', mode='osa') |
|
105
|
|
|
2 |
|
106
|
|
|
>>> cmp.dist_abs('ACTG', 'TAGC', mode='osa') |
|
107
|
|
|
4 |
|
108
|
|
|
|
|
109
|
|
|
""" |
|
110
|
1 |
|
ins_cost, del_cost, sub_cost, trans_cost = cost |
|
111
|
|
|
|
|
112
|
1 |
|
if src == tar: |
|
113
|
1 |
|
return 0 |
|
114
|
1 |
|
if not src: |
|
115
|
1 |
|
return len(tar) * ins_cost |
|
116
|
1 |
|
if not tar: |
|
117
|
1 |
|
return len(src) * del_cost |
|
118
|
|
|
|
|
119
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_int) |
|
120
|
1 |
|
for i in range(len(src) + 1): |
|
121
|
1 |
|
d_mat[i, 0] = i * del_cost |
|
122
|
1 |
|
for j in range(len(tar) + 1): |
|
123
|
1 |
|
d_mat[0, j] = j * ins_cost |
|
124
|
|
|
|
|
125
|
1 |
|
for i in range(len(src)): |
|
|
|
|
|
|
126
|
1 |
|
for j in range(len(tar)): |
|
|
|
|
|
|
127
|
1 |
|
d_mat[i + 1, j + 1] = min( |
|
128
|
|
|
d_mat[i + 1, j] + ins_cost, # ins |
|
129
|
|
|
d_mat[i, j + 1] + del_cost, # del |
|
130
|
|
|
d_mat[i, j] |
|
131
|
|
|
+ (sub_cost if src[i] != tar[j] else 0), # sub/== |
|
132
|
|
|
) |
|
133
|
|
|
|
|
134
|
1 |
|
if mode == 'osa': |
|
135
|
1 |
|
if ( |
|
136
|
|
|
i + 1 > 1 |
|
|
|
|
|
|
137
|
|
|
and j + 1 > 1 |
|
|
|
|
|
|
138
|
|
|
and src[i] == tar[j - 1] |
|
|
|
|
|
|
139
|
|
|
and src[i - 1] == tar[j] |
|
|
|
|
|
|
140
|
|
|
): |
|
141
|
|
|
# transposition |
|
142
|
1 |
|
d_mat[i + 1, j + 1] = min( |
|
143
|
|
|
d_mat[i + 1, j + 1], |
|
144
|
|
|
d_mat[i - 1, j - 1] + trans_cost, |
|
145
|
|
|
) |
|
146
|
|
|
|
|
147
|
1 |
|
return d_mat[len(src), len(tar)] |
|
148
|
|
|
|
|
149
|
1 |
|
def dist(self, src, tar, mode='lev', cost=(1, 1, 1, 1)): |
|
|
|
|
|
|
150
|
|
|
"""Return the normalized Levenshtein distance between two strings. |
|
151
|
|
|
|
|
152
|
|
|
The Levenshtein distance is normalized by dividing the Levenshtein |
|
153
|
|
|
distance (calculated by any of the three supported methods) by the |
|
154
|
|
|
greater of the number of characters in src times the cost of a delete |
|
155
|
|
|
and the number of characters in tar times the cost of an insert. |
|
156
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
|
157
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
|
158
|
|
|
|
|
159
|
|
|
Parameters |
|
160
|
|
|
---------- |
|
161
|
|
|
src : str |
|
162
|
|
|
Source string for comparison |
|
163
|
|
|
tar : str |
|
164
|
|
|
Target string for comparison |
|
165
|
|
|
mode : str |
|
166
|
|
|
Specifies a mode for computing the Levenshtein distance: |
|
167
|
|
|
|
|
168
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, |
|
169
|
|
|
in which edits may include inserts, deletes, and |
|
170
|
|
|
substitutions |
|
171
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in |
|
172
|
|
|
which edits may include inserts, deletes, substitutions, and |
|
173
|
|
|
transpositions but substrings may only be edited once |
|
174
|
|
|
|
|
175
|
|
|
cost : tuple |
|
176
|
|
|
A 4-tuple representing the cost of the four possible edits: |
|
177
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
|
178
|
|
|
(by default: (1, 1, 1, 1)) |
|
179
|
|
|
|
|
180
|
|
|
Returns |
|
181
|
|
|
------- |
|
182
|
|
|
float |
|
183
|
|
|
The normalized Levenshtein distance between src & tar |
|
184
|
|
|
|
|
185
|
|
|
Examples |
|
186
|
|
|
-------- |
|
187
|
|
|
>>> cmp = Levenshtein() |
|
188
|
|
|
>>> round(cmp.dist('cat', 'hat'), 12) |
|
189
|
|
|
0.333333333333 |
|
190
|
|
|
>>> round(cmp.dist('Niall', 'Neil'), 12) |
|
191
|
|
|
0.6 |
|
192
|
|
|
>>> cmp.dist('aluminum', 'Catalan') |
|
193
|
|
|
0.875 |
|
194
|
|
|
>>> cmp.dist('ATCG', 'TAGC') |
|
195
|
|
|
0.75 |
|
196
|
|
|
|
|
197
|
|
|
""" |
|
198
|
1 |
|
if src == tar: |
|
199
|
1 |
|
return 0 |
|
200
|
1 |
|
ins_cost, del_cost = cost[:2] |
|
201
|
1 |
|
return levenshtein(src, tar, mode, cost) / ( |
|
202
|
|
|
max(len(src) * del_cost, len(tar) * ins_cost) |
|
203
|
|
|
) |
|
204
|
|
|
|
|
205
|
|
|
|
|
206
|
1 |
|
def levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
|
207
|
|
|
"""Return the Levenshtein distance between two strings. |
|
208
|
|
|
|
|
209
|
|
|
This is a wrapper of :py:meth:`Levenshtein.dist_abs`. |
|
210
|
|
|
|
|
211
|
|
|
Parameters |
|
212
|
|
|
---------- |
|
213
|
|
|
src : str |
|
214
|
|
|
Source string for comparison |
|
215
|
|
|
tar : str |
|
216
|
|
|
Target string for comparison |
|
217
|
|
|
mode : str |
|
218
|
|
|
Specifies a mode for computing the Levenshtein distance: |
|
219
|
|
|
|
|
220
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, in |
|
221
|
|
|
which edits may include inserts, deletes, and substitutions |
|
222
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in which |
|
223
|
|
|
edits may include inserts, deletes, substitutions, and |
|
224
|
|
|
transpositions but substrings may only be edited once |
|
225
|
|
|
|
|
226
|
|
|
cost : tuple |
|
227
|
|
|
A 4-tuple representing the cost of the four possible edits: inserts, |
|
228
|
|
|
deletes, substitutions, and transpositions, respectively (by default: |
|
229
|
|
|
(1, 1, 1, 1)) |
|
230
|
|
|
|
|
231
|
|
|
Returns |
|
232
|
|
|
------- |
|
233
|
|
|
int (may return a float if cost has float values) |
|
234
|
|
|
The Levenshtein distance between src & tar |
|
235
|
|
|
|
|
236
|
|
|
Examples |
|
237
|
|
|
-------- |
|
238
|
|
|
>>> levenshtein('cat', 'hat') |
|
239
|
|
|
1 |
|
240
|
|
|
>>> levenshtein('Niall', 'Neil') |
|
241
|
|
|
3 |
|
242
|
|
|
>>> levenshtein('aluminum', 'Catalan') |
|
243
|
|
|
7 |
|
244
|
|
|
>>> levenshtein('ATCG', 'TAGC') |
|
245
|
|
|
3 |
|
246
|
|
|
|
|
247
|
|
|
>>> levenshtein('ATCG', 'TAGC', mode='osa') |
|
248
|
|
|
2 |
|
249
|
|
|
>>> levenshtein('ACTG', 'TAGC', mode='osa') |
|
250
|
|
|
4 |
|
251
|
|
|
|
|
252
|
|
|
""" |
|
253
|
1 |
|
return Levenshtein().dist_abs(src, tar, mode, cost) |
|
254
|
|
|
|
|
255
|
|
|
|
|
256
|
1 |
|
def dist_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
|
257
|
|
|
"""Return the normalized Levenshtein distance between two strings. |
|
258
|
|
|
|
|
259
|
|
|
This is a wrapper of :py:meth:`Levenshtein.dist`. |
|
260
|
|
|
|
|
261
|
|
|
Parameters |
|
262
|
|
|
---------- |
|
263
|
|
|
src : str |
|
264
|
|
|
Source string for comparison |
|
265
|
|
|
tar : str |
|
266
|
|
|
Target string for comparison |
|
267
|
|
|
mode : str |
|
268
|
|
|
Specifies a mode for computing the Levenshtein distance: |
|
269
|
|
|
|
|
270
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, in |
|
271
|
|
|
which edits may include inserts, deletes, and substitutions |
|
272
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in which |
|
273
|
|
|
edits may include inserts, deletes, substitutions, and |
|
274
|
|
|
transpositions but substrings may only be edited once |
|
275
|
|
|
|
|
276
|
|
|
cost : tuple |
|
277
|
|
|
A 4-tuple representing the cost of the four possible edits: inserts, |
|
278
|
|
|
deletes, substitutions, and transpositions, respectively (by default: |
|
279
|
|
|
(1, 1, 1, 1)) |
|
280
|
|
|
|
|
281
|
|
|
Returns |
|
282
|
|
|
------- |
|
283
|
|
|
float |
|
284
|
|
|
The Levenshtein distance between src & tar |
|
285
|
|
|
|
|
286
|
|
|
Examples |
|
287
|
|
|
-------- |
|
288
|
|
|
>>> round(dist_levenshtein('cat', 'hat'), 12) |
|
289
|
|
|
0.333333333333 |
|
290
|
|
|
>>> round(dist_levenshtein('Niall', 'Neil'), 12) |
|
291
|
|
|
0.6 |
|
292
|
|
|
>>> dist_levenshtein('aluminum', 'Catalan') |
|
293
|
|
|
0.875 |
|
294
|
|
|
>>> dist_levenshtein('ATCG', 'TAGC') |
|
295
|
|
|
0.75 |
|
296
|
|
|
|
|
297
|
|
|
""" |
|
298
|
1 |
|
return Levenshtein().dist(src, tar, mode, cost) |
|
299
|
|
|
|
|
300
|
|
|
|
|
301
|
1 |
|
def sim_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
|
302
|
|
|
"""Return the Levenshtein similarity of two strings. |
|
303
|
|
|
|
|
304
|
|
|
This is a wrapper of :py:meth:`Levenshtein.sim`. |
|
305
|
|
|
|
|
306
|
|
|
Parameters |
|
307
|
|
|
---------- |
|
308
|
|
|
src : str |
|
309
|
|
|
Source string for comparison |
|
310
|
|
|
tar : str |
|
311
|
|
|
Target string for comparison |
|
312
|
|
|
mode : str |
|
313
|
|
|
Specifies a mode for computing the Levenshtein distance: |
|
314
|
|
|
|
|
315
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, in |
|
316
|
|
|
which edits may include inserts, deletes, and substitutions |
|
317
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in which |
|
318
|
|
|
edits may include inserts, deletes, substitutions, and |
|
319
|
|
|
transpositions but substrings may only be edited once |
|
320
|
|
|
|
|
321
|
|
|
cost : tuple |
|
322
|
|
|
A 4-tuple representing the cost of the four possible edits: inserts, |
|
323
|
|
|
deletes, substitutions, and transpositions, respectively (by default: |
|
324
|
|
|
(1, 1, 1, 1)) |
|
325
|
|
|
|
|
326
|
|
|
Returns |
|
327
|
|
|
------- |
|
328
|
|
|
float |
|
329
|
|
|
The Levenshtein similarity between src & tar |
|
330
|
|
|
|
|
331
|
|
|
Examples |
|
332
|
|
|
-------- |
|
333
|
|
|
>>> round(sim_levenshtein('cat', 'hat'), 12) |
|
334
|
|
|
0.666666666667 |
|
335
|
|
|
>>> round(sim_levenshtein('Niall', 'Neil'), 12) |
|
336
|
|
|
0.4 |
|
337
|
|
|
>>> sim_levenshtein('aluminum', 'Catalan') |
|
338
|
|
|
0.125 |
|
339
|
|
|
>>> sim_levenshtein('ATCG', 'TAGC') |
|
340
|
|
|
0.25 |
|
341
|
|
|
|
|
342
|
|
|
""" |
|
343
|
1 |
|
return Levenshtein().sim(src, tar, mode, cost) |
|
344
|
|
|
|
|
345
|
|
|
|
|
346
|
|
|
if __name__ == '__main__': |
|
347
|
|
|
import doctest |
|
348
|
|
|
|
|
349
|
|
|
doctest.testmod() |
|
350
|
|
|
|