|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
|
4
|
|
|
# This file is part of Abydos. |
|
5
|
|
|
# |
|
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
|
7
|
|
|
# it under the terms of the GNU General Public License as published by |
|
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
|
9
|
|
|
# (at your option) any later version. |
|
10
|
|
|
# |
|
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
|
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
14
|
|
|
# GNU General Public License for more details. |
|
15
|
|
|
# |
|
16
|
|
|
# You should have received a copy of the GNU General Public License |
|
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
|
18
|
|
|
|
|
19
|
1 |
|
"""abydos.distance._cosine. |
|
20
|
|
|
|
|
21
|
|
|
Cosine similarity & distance |
|
22
|
|
|
""" |
|
23
|
|
|
|
|
24
|
1 |
|
from __future__ import ( |
|
25
|
|
|
absolute_import, |
|
26
|
|
|
division, |
|
27
|
|
|
print_function, |
|
28
|
|
|
unicode_literals, |
|
29
|
|
|
) |
|
30
|
|
|
|
|
31
|
1 |
|
from math import sqrt |
|
32
|
|
|
|
|
33
|
1 |
|
from ._token_distance import _TokenDistance |
|
34
|
|
|
|
|
35
|
1 |
|
__all__ = ['Cosine', 'dist_cosine', 'sim_cosine'] |
|
36
|
|
|
|
|
37
|
|
|
|
|
38
|
1 |
View Code Duplication |
class Cosine(_TokenDistance): |
|
|
|
|
|
|
39
|
|
|
r"""Cosine similarity. |
|
40
|
|
|
|
|
41
|
|
|
For two sets X and Y, the cosine similarity, Otsuka-Ochiai coefficient, or |
|
42
|
|
|
Ochiai coefficient :cite:`Otsuka:1936,Ochiai:1957` is: |
|
43
|
|
|
:math:`sim_{cosine}(X, Y) = \frac{|X \cap Y|}{\sqrt{|X| \cdot |Y|}}`. |
|
44
|
|
|
""" |
|
45
|
|
|
|
|
46
|
1 |
|
def sim(self, src, tar, qval=2): |
|
|
|
|
|
|
47
|
|
|
r"""Return the cosine similarity of two strings. |
|
48
|
|
|
|
|
49
|
|
|
Parameters |
|
50
|
|
|
---------- |
|
51
|
|
|
src : str |
|
52
|
|
|
Source string (or QGrams/Counter objects) for comparison |
|
53
|
|
|
tar : str |
|
54
|
|
|
Target string (or QGrams/Counter objects) for comparison |
|
55
|
|
|
qval : int |
|
56
|
|
|
The length of each q-gram; 0 for non-q-gram version |
|
57
|
|
|
|
|
58
|
|
|
Returns |
|
59
|
|
|
------- |
|
60
|
|
|
float |
|
61
|
|
|
Cosine similarity |
|
62
|
|
|
|
|
63
|
|
|
Examples |
|
64
|
|
|
-------- |
|
65
|
|
|
>>> cmp = Cosine() |
|
66
|
|
|
>>> cmp.sim('cat', 'hat') |
|
67
|
|
|
0.5 |
|
68
|
|
|
>>> cmp.sim('Niall', 'Neil') |
|
69
|
|
|
0.3651483716701107 |
|
70
|
|
|
>>> cmp.sim('aluminum', 'Catalan') |
|
71
|
|
|
0.11785113019775793 |
|
72
|
|
|
>>> cmp.sim('ATCG', 'TAGC') |
|
73
|
|
|
0.0 |
|
74
|
|
|
|
|
75
|
|
|
""" |
|
76
|
1 |
|
if src == tar: |
|
77
|
1 |
|
return 1.0 |
|
78
|
1 |
|
if not src or not tar: |
|
79
|
1 |
|
return 0.0 |
|
80
|
|
|
|
|
81
|
1 |
|
q_src, q_tar = self._get_qgrams(src, tar, qval) |
|
82
|
1 |
|
q_src_mag = sum(q_src.values()) |
|
83
|
1 |
|
q_tar_mag = sum(q_tar.values()) |
|
84
|
1 |
|
q_intersection_mag = sum((q_src & q_tar).values()) |
|
85
|
|
|
|
|
86
|
1 |
|
return q_intersection_mag / sqrt(q_src_mag * q_tar_mag) |
|
87
|
|
|
|
|
88
|
|
|
|
|
89
|
1 |
|
def sim_cosine(src, tar, qval=2): |
|
90
|
|
|
r"""Return the cosine similarity of two strings. |
|
91
|
|
|
|
|
92
|
|
|
This is a wrapper for :py:meth:`Cosine.sim`. |
|
93
|
|
|
|
|
94
|
|
|
Parameters |
|
95
|
|
|
---------- |
|
96
|
|
|
src : str |
|
97
|
|
|
Source string (or QGrams/Counter objects) for comparison |
|
98
|
|
|
tar : str |
|
99
|
|
|
Target string (or QGrams/Counter objects) for comparison |
|
100
|
|
|
qval : int |
|
101
|
|
|
The length of each q-gram; 0 for non-q-gram version |
|
102
|
|
|
|
|
103
|
|
|
Returns |
|
104
|
|
|
------- |
|
105
|
|
|
float |
|
106
|
|
|
Cosine similarity |
|
107
|
|
|
|
|
108
|
|
|
Examples |
|
109
|
|
|
-------- |
|
110
|
|
|
>>> sim_cosine('cat', 'hat') |
|
111
|
|
|
0.5 |
|
112
|
|
|
>>> sim_cosine('Niall', 'Neil') |
|
113
|
|
|
0.3651483716701107 |
|
114
|
|
|
>>> sim_cosine('aluminum', 'Catalan') |
|
115
|
|
|
0.11785113019775793 |
|
116
|
|
|
>>> sim_cosine('ATCG', 'TAGC') |
|
117
|
|
|
0.0 |
|
118
|
|
|
|
|
119
|
|
|
""" |
|
120
|
1 |
|
return Cosine().sim(src, tar, qval) |
|
121
|
|
|
|
|
122
|
|
|
|
|
123
|
1 |
|
def dist_cosine(src, tar, qval=2): |
|
124
|
|
|
"""Return the cosine distance between two strings. |
|
125
|
|
|
|
|
126
|
|
|
This is a wrapper for :py:meth:`Cosine.dist`. |
|
127
|
|
|
|
|
128
|
|
|
Parameters |
|
129
|
|
|
---------- |
|
130
|
|
|
src : str |
|
131
|
|
|
Source string (or QGrams/Counter objects) for comparison |
|
132
|
|
|
tar : str |
|
133
|
|
|
Target string (or QGrams/Counter objects) for comparison |
|
134
|
|
|
qval : int |
|
135
|
|
|
The length of each q-gram; 0 for non-q-gram version |
|
136
|
|
|
|
|
137
|
|
|
Returns |
|
138
|
|
|
------- |
|
139
|
|
|
float |
|
140
|
|
|
Cosine distance |
|
141
|
|
|
|
|
142
|
|
|
Examples |
|
143
|
|
|
-------- |
|
144
|
|
|
>>> dist_cosine('cat', 'hat') |
|
145
|
|
|
0.5 |
|
146
|
|
|
>>> dist_cosine('Niall', 'Neil') |
|
147
|
|
|
0.6348516283298893 |
|
148
|
|
|
>>> dist_cosine('aluminum', 'Catalan') |
|
149
|
|
|
0.882148869802242 |
|
150
|
|
|
>>> dist_cosine('ATCG', 'TAGC') |
|
151
|
|
|
1.0 |
|
152
|
|
|
|
|
153
|
|
|
""" |
|
154
|
1 |
|
return Cosine().dist(src, tar, qval) |
|
155
|
|
|
|
|
156
|
|
|
|
|
157
|
|
|
if __name__ == '__main__': |
|
158
|
|
|
import doctest |
|
159
|
|
|
|
|
160
|
|
|
doctest.testmod() |
|
161
|
|
|
|