1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance._strcmp95. |
20
|
|
|
|
21
|
|
|
The strcmp95 algorithm variant of Jaro-Winkler distance |
22
|
|
|
""" |
23
|
|
|
|
24
|
1 |
|
from __future__ import ( |
25
|
|
|
absolute_import, |
26
|
|
|
division, |
27
|
|
|
print_function, |
28
|
|
|
unicode_literals, |
29
|
|
|
) |
30
|
|
|
|
31
|
1 |
|
from collections import defaultdict |
32
|
|
|
|
33
|
1 |
|
from six.moves import range |
34
|
|
|
|
35
|
1 |
|
from ._distance import _Distance |
36
|
|
|
|
37
|
1 |
|
__all__ = ['Strcmp95', 'dist_strcmp95', 'sim_strcmp95'] |
38
|
|
|
|
39
|
|
|
|
40
|
1 |
|
class Strcmp95(_Distance): |
|
|
|
|
41
|
|
|
"""Strcmp95. |
42
|
|
|
|
43
|
|
|
This is a Python translation of the C code for strcmp95: |
44
|
|
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
45
|
|
|
:cite:`Winkler:1994`. |
46
|
|
|
The above file is a US Government publication and, accordingly, |
47
|
|
|
in the public domain. |
48
|
|
|
|
49
|
|
|
This is based on the Jaro-Winkler distance, but also attempts to correct |
50
|
|
|
for some common typos and frequently confused characters. It is also |
51
|
|
|
limited to uppercase ASCII characters, so it is appropriate to American |
52
|
|
|
names, but not much else. |
53
|
|
|
""" |
54
|
|
|
|
55
|
1 |
|
_sp_mx = ( |
56
|
|
|
('A', 'E'), |
57
|
|
|
('A', 'I'), |
58
|
|
|
('A', 'O'), |
59
|
|
|
('A', 'U'), |
60
|
|
|
('B', 'V'), |
61
|
|
|
('E', 'I'), |
62
|
|
|
('E', 'O'), |
63
|
|
|
('E', 'U'), |
64
|
|
|
('I', 'O'), |
65
|
|
|
('I', 'U'), |
66
|
|
|
('O', 'U'), |
67
|
|
|
('I', 'Y'), |
68
|
|
|
('E', 'Y'), |
69
|
|
|
('C', 'G'), |
70
|
|
|
('E', 'F'), |
71
|
|
|
('W', 'U'), |
72
|
|
|
('W', 'V'), |
73
|
|
|
('X', 'K'), |
74
|
|
|
('S', 'Z'), |
75
|
|
|
('X', 'S'), |
76
|
|
|
('Q', 'C'), |
77
|
|
|
('U', 'V'), |
78
|
|
|
('M', 'N'), |
79
|
|
|
('L', 'I'), |
80
|
|
|
('Q', 'O'), |
81
|
|
|
('P', 'R'), |
82
|
|
|
('I', 'J'), |
83
|
|
|
('2', 'Z'), |
84
|
|
|
('5', 'S'), |
85
|
|
|
('8', 'B'), |
86
|
|
|
('1', 'I'), |
87
|
|
|
('1', 'L'), |
88
|
|
|
('0', 'O'), |
89
|
|
|
('0', 'Q'), |
90
|
|
|
('C', 'K'), |
91
|
|
|
('G', 'J'), |
92
|
|
|
) |
93
|
|
|
|
94
|
1 |
|
def sim(self, src, tar, long_strings=False): |
|
|
|
|
95
|
|
|
"""Return the strcmp95 similarity of two strings. |
96
|
|
|
|
97
|
|
|
Parameters |
98
|
|
|
---------- |
99
|
|
|
src : str |
100
|
|
|
Source string for comparison |
101
|
|
|
tar : str |
102
|
|
|
Target string for comparison |
103
|
|
|
long_strings : bool |
104
|
|
|
Set to True to increase the probability of a match when the number |
105
|
|
|
of matched characters is large. This option allows for a little |
106
|
|
|
more tolerance when the strings are large. It is not an appropriate |
107
|
|
|
test when comparing fixed length fields such as phone and social |
108
|
|
|
security numbers. |
109
|
|
|
|
110
|
|
|
Returns |
111
|
|
|
------- |
112
|
|
|
float |
113
|
|
|
Strcmp95 similarity |
114
|
|
|
|
115
|
|
|
Examples |
116
|
|
|
-------- |
117
|
|
|
>>> cmp = Strcmp95() |
118
|
|
|
>>> cmp.sim('cat', 'hat') |
119
|
|
|
0.7777777777777777 |
120
|
|
|
>>> cmp.sim('Niall', 'Neil') |
121
|
|
|
0.8454999999999999 |
122
|
|
|
>>> cmp.sim('aluminum', 'Catalan') |
123
|
|
|
0.6547619047619048 |
124
|
|
|
>>> cmp.sim('ATCG', 'TAGC') |
125
|
|
|
0.8333333333333334 |
126
|
|
|
|
127
|
|
|
""" |
128
|
|
|
|
129
|
1 |
|
def _in_range(char): |
130
|
|
|
"""Return True if char is in the range (0, 91). |
131
|
|
|
|
132
|
|
|
Parameters |
133
|
|
|
---------- |
134
|
|
|
char : str |
135
|
|
|
The character to check |
136
|
|
|
|
137
|
|
|
Returns |
138
|
|
|
------- |
139
|
|
|
bool |
140
|
|
|
True if char is in the range (0, 91) |
141
|
|
|
|
142
|
|
|
""" |
143
|
1 |
|
return 91 > ord(char) > 0 |
144
|
|
|
|
145
|
1 |
|
ying = src.strip().upper() |
146
|
1 |
|
yang = tar.strip().upper() |
147
|
|
|
|
148
|
1 |
|
if ying == yang: |
149
|
1 |
|
return 1.0 |
150
|
|
|
# If either string is blank - return - added in Version 2 |
151
|
1 |
|
if not ying or not yang: |
152
|
1 |
|
return 0.0 |
153
|
|
|
|
154
|
1 |
|
adjwt = defaultdict(int) |
155
|
|
|
|
156
|
|
|
# Initialize the adjwt array on the first call to the function only. |
157
|
|
|
# The adjwt array is used to give partial credit for characters that |
158
|
|
|
# may be errors due to known phonetic or character recognition errors. |
159
|
|
|
# A typical example is to match the letter "O" with the number "0" |
160
|
1 |
|
for i in self._sp_mx: |
161
|
1 |
|
adjwt[(i[0], i[1])] = 3 |
162
|
1 |
|
adjwt[(i[1], i[0])] = 3 |
163
|
|
|
|
164
|
1 |
|
if len(ying) > len(yang): |
165
|
1 |
|
search_range = len(ying) |
166
|
1 |
|
minv = len(yang) |
167
|
|
|
else: |
168
|
1 |
|
search_range = len(yang) |
169
|
1 |
|
minv = len(ying) |
170
|
|
|
|
171
|
|
|
# Blank out the flags |
172
|
1 |
|
ying_flag = [0] * search_range |
173
|
1 |
|
yang_flag = [0] * search_range |
174
|
1 |
|
search_range = max(0, search_range // 2 - 1) |
175
|
|
|
|
176
|
|
|
# Looking only within the search range, |
177
|
|
|
# count and flag the matched pairs. |
178
|
1 |
|
num_com = 0 |
179
|
1 |
|
yl1 = len(yang) - 1 |
180
|
1 |
|
for i in range(len(ying)): |
|
|
|
|
181
|
1 |
|
low_lim = (i - search_range) if (i >= search_range) else 0 |
182
|
1 |
|
hi_lim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
183
|
1 |
|
for j in range(low_lim, hi_lim + 1): |
184
|
1 |
|
if (yang_flag[j] == 0) and (yang[j] == ying[i]): |
185
|
1 |
|
yang_flag[j] = 1 |
186
|
1 |
|
ying_flag[i] = 1 |
187
|
1 |
|
num_com += 1 |
188
|
1 |
|
break |
189
|
|
|
|
190
|
|
|
# If no characters in common - return |
191
|
1 |
|
if num_com == 0: |
192
|
1 |
|
return 0.0 |
193
|
|
|
|
194
|
|
|
# Count the number of transpositions |
195
|
1 |
|
k = n_trans = 0 |
196
|
1 |
|
for i in range(len(ying)): |
|
|
|
|
197
|
1 |
|
if ying_flag[i] != 0: |
198
|
1 |
|
j = 0 |
199
|
1 |
|
for j in range(k, len(yang)): # pragma: no branch |
200
|
1 |
|
if yang_flag[j] != 0: |
201
|
1 |
|
k = j + 1 |
202
|
1 |
|
break |
203
|
1 |
|
if ying[i] != yang[j]: |
204
|
1 |
|
n_trans += 1 |
205
|
1 |
|
n_trans //= 2 |
206
|
|
|
|
207
|
|
|
# Adjust for similarities in unmatched characters |
208
|
1 |
|
n_simi = 0 |
209
|
1 |
|
if minv > num_com: |
|
|
|
|
210
|
1 |
|
for i in range(len(ying)): |
|
|
|
|
211
|
1 |
|
if ying_flag[i] == 0 and _in_range(ying[i]): |
212
|
1 |
|
for j in range(len(yang)): |
|
|
|
|
213
|
1 |
|
if yang_flag[j] == 0 and _in_range(yang[j]): |
214
|
1 |
|
if (ying[i], yang[j]) in adjwt: |
215
|
1 |
|
n_simi += adjwt[(ying[i], yang[j])] |
216
|
1 |
|
yang_flag[j] = 2 |
217
|
1 |
|
break |
218
|
1 |
|
num_sim = n_simi / 10.0 + num_com |
219
|
|
|
|
220
|
|
|
# Main weight computation |
221
|
1 |
|
weight = ( |
222
|
|
|
num_sim / len(ying) |
223
|
|
|
+ num_sim / len(yang) |
224
|
|
|
+ (num_com - n_trans) / num_com |
225
|
|
|
) |
226
|
1 |
|
weight /= 3.0 |
227
|
|
|
|
228
|
|
|
# Continue to boost the weight if the strings are similar |
229
|
1 |
|
if weight > 0.7: |
230
|
|
|
|
231
|
|
|
# Adjust for having up to the first 4 characters in common |
232
|
1 |
|
j = 4 if (minv >= 4) else minv |
233
|
1 |
|
i = 0 |
234
|
1 |
|
while (i < j) and (ying[i] == yang[i]) and (not ying[i].isdigit()): |
235
|
1 |
|
i += 1 |
236
|
1 |
|
if i: |
237
|
1 |
|
weight += i * 0.1 * (1.0 - weight) |
238
|
|
|
|
239
|
|
|
# Optionally adjust for long strings. |
240
|
|
|
|
241
|
|
|
# After agreeing beginning chars, at least two more must agree and |
242
|
|
|
# the agreeing characters must be > .5 of remaining characters. |
243
|
1 |
|
if ( |
244
|
|
|
long_strings |
|
|
|
|
245
|
|
|
and (minv > 4) |
|
|
|
|
246
|
|
|
and (num_com > i + 1) |
|
|
|
|
247
|
|
|
and (2 * num_com >= minv + i) |
|
|
|
|
248
|
|
|
): |
249
|
1 |
|
if not ying[0].isdigit(): |
250
|
1 |
|
weight += (1.0 - weight) * ( |
251
|
|
|
(num_com - i - 1) / (len(ying) + len(yang) - i * 2 + 2) |
252
|
|
|
) |
253
|
|
|
|
254
|
1 |
|
return weight |
255
|
|
|
|
256
|
|
|
|
257
|
1 |
|
def sim_strcmp95(src, tar, long_strings=False): |
258
|
|
|
"""Return the strcmp95 similarity of two strings. |
259
|
|
|
|
260
|
|
|
This is a wrapper for :py:meth:`Strcmp95.sim`. |
261
|
|
|
|
262
|
|
|
Parameters |
263
|
|
|
---------- |
264
|
|
|
src : str |
265
|
|
|
Source string for comparison |
266
|
|
|
tar : str |
267
|
|
|
Target string for comparison |
268
|
|
|
long_strings : bool |
269
|
|
|
Set to True to increase the probability of a match when the number of |
270
|
|
|
matched characters is large. This option allows for a little more |
271
|
|
|
tolerance when the strings are large. It is not an appropriate test |
272
|
|
|
when comparing fixed length fields such as phone and social security |
273
|
|
|
numbers. |
274
|
|
|
|
275
|
|
|
Returns |
276
|
|
|
------- |
277
|
|
|
float |
278
|
|
|
Strcmp95 similarity |
279
|
|
|
|
280
|
|
|
Examples |
281
|
|
|
-------- |
282
|
|
|
>>> sim_strcmp95('cat', 'hat') |
283
|
|
|
0.7777777777777777 |
284
|
|
|
>>> sim_strcmp95('Niall', 'Neil') |
285
|
|
|
0.8454999999999999 |
286
|
|
|
>>> sim_strcmp95('aluminum', 'Catalan') |
287
|
|
|
0.6547619047619048 |
288
|
|
|
>>> sim_strcmp95('ATCG', 'TAGC') |
289
|
|
|
0.8333333333333334 |
290
|
|
|
|
291
|
|
|
""" |
292
|
1 |
|
return Strcmp95().sim(src, tar, long_strings) |
293
|
|
|
|
294
|
|
|
|
295
|
1 |
|
def dist_strcmp95(src, tar, long_strings=False): |
296
|
|
|
"""Return the strcmp95 distance between two strings. |
297
|
|
|
|
298
|
|
|
This is a wrapper for :py:meth:`Strcmp95.dist`. |
299
|
|
|
|
300
|
|
|
Parameters |
301
|
|
|
---------- |
302
|
|
|
src : str |
303
|
|
|
Source string for comparison |
304
|
|
|
tar : str |
305
|
|
|
Target string for comparison |
306
|
|
|
long_strings : bool |
307
|
|
|
Set to True to increase the probability of a match when the number of |
308
|
|
|
matched characters is large. This option allows for a little more |
309
|
|
|
tolerance when the strings are large. It is not an appropriate test |
310
|
|
|
when comparing fixed length fields such as phone and social security |
311
|
|
|
numbers. |
312
|
|
|
|
313
|
|
|
Returns |
314
|
|
|
------- |
315
|
|
|
float |
316
|
|
|
Strcmp95 distance |
317
|
|
|
|
318
|
|
|
Examples |
319
|
|
|
-------- |
320
|
|
|
>>> round(dist_strcmp95('cat', 'hat'), 12) |
321
|
|
|
0.222222222222 |
322
|
|
|
>>> round(dist_strcmp95('Niall', 'Neil'), 12) |
323
|
|
|
0.1545 |
324
|
|
|
>>> round(dist_strcmp95('aluminum', 'Catalan'), 12) |
325
|
|
|
0.345238095238 |
326
|
|
|
>>> round(dist_strcmp95('ATCG', 'TAGC'), 12) |
327
|
|
|
0.166666666667 |
328
|
|
|
|
329
|
|
|
""" |
330
|
1 |
|
return Strcmp95().dist(src, tar, long_strings) |
331
|
|
|
|
332
|
|
|
|
333
|
|
|
if __name__ == '__main__': |
334
|
|
|
import doctest |
335
|
|
|
|
336
|
|
|
doctest.testmod() |
337
|
|
|
|