Conditions | 14 |
Total Lines | 75 |
Code Lines | 36 |
Lines | 0 |
Ratio | 0 % |
Tests | 33 |
CRAP Score | 14 |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like abydos.distance._sift4_simplest.Sift4Simplest.dist_abs() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
45 | 1 | def dist_abs(self, src, tar, max_offset=5): |
|
46 | """Return the "simplest" Sift4 distance between two terms. |
||
47 | |||
48 | Parameters |
||
49 | ---------- |
||
50 | src : str |
||
51 | Source string for comparison |
||
52 | tar : str |
||
53 | Target string for comparison |
||
54 | max_offset : int |
||
55 | The number of characters to search for matching letters |
||
56 | |||
57 | Returns |
||
58 | ------- |
||
59 | int |
||
60 | The Sift4 distance according to the simplest formula |
||
61 | |||
62 | Examples |
||
63 | -------- |
||
64 | >>> cmp = Sift4Simplest() |
||
65 | >>> cmp.dist_abs('cat', 'hat') |
||
66 | 1 |
||
67 | >>> cmp.dist_abs('Niall', 'Neil') |
||
68 | 2 |
||
69 | >>> cmp.dist_abs('Colin', 'Cuilen') |
||
70 | 3 |
||
71 | >>> cmp.dist_abs('ATCG', 'TAGC') |
||
72 | 2 |
||
73 | |||
74 | """ |
||
75 | 1 | if not src: |
|
76 | 1 | return len(tar) |
|
77 | |||
78 | 1 | if not tar: |
|
79 | 1 | return len(src) |
|
80 | |||
81 | 1 | src_len = len(src) |
|
82 | 1 | tar_len = len(tar) |
|
83 | |||
84 | 1 | src_cur = 0 |
|
85 | 1 | tar_cur = 0 |
|
86 | 1 | lcss = 0 |
|
87 | 1 | local_cs = 0 |
|
88 | |||
89 | 1 | while (src_cur < src_len) and (tar_cur < tar_len): |
|
90 | 1 | if src[src_cur] == tar[tar_cur]: |
|
91 | 1 | local_cs += 1 |
|
92 | else: |
||
93 | 1 | lcss += local_cs |
|
94 | 1 | local_cs = 0 |
|
95 | 1 | if src_cur != tar_cur: |
|
96 | 1 | src_cur = tar_cur = max(src_cur, tar_cur) |
|
97 | 1 | for i in range(max_offset): |
|
98 | 1 | if not ( |
|
99 | (src_cur + i < src_len) or (tar_cur + i < tar_len) |
||
100 | ): |
||
101 | 1 | break |
|
102 | 1 | if (src_cur + i < src_len) and ( |
|
103 | src[src_cur + i] == tar[tar_cur] |
||
104 | ): |
||
105 | 1 | src_cur += i |
|
106 | 1 | local_cs += 1 |
|
107 | 1 | break |
|
108 | 1 | if (tar_cur + i < tar_len) and ( |
|
109 | src[src_cur] == tar[tar_cur + i] |
||
110 | ): |
||
111 | 1 | tar_cur += i |
|
112 | 1 | local_cs += 1 |
|
113 | 1 | break |
|
114 | |||
115 | 1 | src_cur += 1 |
|
116 | 1 | tar_cur += 1 |
|
117 | |||
118 | 1 | lcss += local_cs |
|
119 | 1 | return round(max(src_len, tar_len) - lcss) |
|
120 | |||
160 |