|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
|
4
|
|
|
# This file is part of Abydos. |
|
5
|
|
|
# |
|
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
|
7
|
|
|
# it under the terms of the GNU General Public License as published by |
|
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
|
9
|
|
|
# (at your option) any later version. |
|
10
|
|
|
# |
|
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
|
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
14
|
|
|
# GNU General Public License for more details. |
|
15
|
|
|
# |
|
16
|
|
|
# You should have received a copy of the GNU General Public License |
|
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
|
18
|
|
|
|
|
19
|
1 |
|
"""abydos.distance.levenshtein. |
|
20
|
|
|
|
|
21
|
|
|
The distance.levenshtein module implements string edit distance functions |
|
22
|
|
|
based on Levenshtein distance, including: |
|
23
|
|
|
|
|
24
|
|
|
- Levenshtein distance |
|
25
|
|
|
- Optimal String Alignment distance |
|
26
|
|
|
- Levenshtein-Damerau distance |
|
27
|
|
|
- Indel distance |
|
28
|
|
|
""" |
|
29
|
|
|
|
|
30
|
1 |
|
from __future__ import division, unicode_literals |
|
31
|
|
|
|
|
32
|
1 |
|
from sys import maxsize |
|
33
|
|
|
|
|
34
|
1 |
|
from numpy import int as np_int |
|
35
|
1 |
|
from numpy import zeros as np_zeros |
|
36
|
|
|
|
|
37
|
1 |
|
from six.moves import range |
|
38
|
|
|
|
|
39
|
|
|
|
|
40
|
1 |
|
__all__ = [ |
|
41
|
|
|
'damerau_levenshtein', |
|
42
|
|
|
'dist_damerau', |
|
43
|
|
|
'dist_indel', |
|
44
|
|
|
'dist_levenshtein', |
|
45
|
|
|
'levenshtein', |
|
46
|
|
|
'sim_damerau', |
|
47
|
|
|
'sim_indel', |
|
48
|
|
|
'sim_levenshtein', |
|
49
|
|
|
] |
|
50
|
|
|
|
|
51
|
|
|
|
|
52
|
1 |
|
def levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
|
53
|
|
|
"""Return the Levenshtein distance between two strings. |
|
54
|
|
|
|
|
55
|
|
|
This is the standard edit distance measure. Cf. |
|
56
|
|
|
:cite:`Levenshtein:1965,Levenshtein:1966`. |
|
57
|
|
|
|
|
58
|
|
|
Two additional variants: optimal string alignment (aka restricted |
|
59
|
|
|
Damerau-Levenshtein distance) :cite:`Boytsov:2011` and the |
|
60
|
|
|
Damerau-Levenshtein :cite:`Damerau:1964` distance are also supported. |
|
61
|
|
|
|
|
62
|
|
|
The ordinary Levenshtein & Optimal String Alignment distance both |
|
63
|
|
|
employ the Wagner-Fischer dynamic programming algorithm |
|
64
|
|
|
:cite:`Wagner:1974`. |
|
65
|
|
|
|
|
66
|
|
|
Levenshtein edit distance ordinarily has unit insertion, deletion, and |
|
67
|
|
|
substitution costs. |
|
68
|
|
|
|
|
69
|
|
|
:param str src: source string for comparison |
|
70
|
|
|
:param str tar: target string for comparison |
|
71
|
|
|
:param str mode: specifies a mode for computing the Levenshtein distance: |
|
72
|
|
|
|
|
73
|
|
|
- 'lev' (default) computes the ordinary Levenshtein distance, |
|
74
|
|
|
in which edits may include inserts, deletes, and substitutions |
|
75
|
|
|
- 'osa' computes the Optimal String Alignment distance, in which |
|
76
|
|
|
edits may include inserts, deletes, substitutions, and |
|
77
|
|
|
transpositions but substrings may only be edited once |
|
78
|
|
|
- 'dam' computes the Damerau-Levenshtein distance, in which |
|
79
|
|
|
edits may include inserts, deletes, substitutions, and |
|
80
|
|
|
transpositions and substrings may undergo repeated edits |
|
81
|
|
|
|
|
82
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
|
83
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
|
84
|
|
|
respectively (by default: (1, 1, 1, 1)) |
|
85
|
|
|
:returns: the Levenshtein distance between src & tar |
|
86
|
|
|
:rtype: int (may return a float if cost has float values) |
|
87
|
|
|
|
|
88
|
|
|
>>> levenshtein('cat', 'hat') |
|
89
|
|
|
1 |
|
90
|
|
|
>>> levenshtein('Niall', 'Neil') |
|
91
|
|
|
3 |
|
92
|
|
|
>>> levenshtein('aluminum', 'Catalan') |
|
93
|
|
|
7 |
|
94
|
|
|
>>> levenshtein('ATCG', 'TAGC') |
|
95
|
|
|
3 |
|
96
|
|
|
|
|
97
|
|
|
>>> levenshtein('ATCG', 'TAGC', mode='osa') |
|
98
|
|
|
2 |
|
99
|
|
|
>>> levenshtein('ACTG', 'TAGC', mode='osa') |
|
100
|
|
|
4 |
|
101
|
|
|
|
|
102
|
|
|
>>> levenshtein('ATCG', 'TAGC', mode='dam') |
|
103
|
|
|
2 |
|
104
|
|
|
>>> levenshtein('ACTG', 'TAGC', mode='dam') |
|
105
|
|
|
3 |
|
106
|
|
|
""" |
|
107
|
1 |
|
ins_cost, del_cost, sub_cost, trans_cost = cost |
|
108
|
|
|
|
|
109
|
1 |
|
if src == tar: |
|
110
|
1 |
|
return 0 |
|
111
|
1 |
|
if not src: |
|
112
|
1 |
|
return len(tar) * ins_cost |
|
113
|
1 |
|
if not tar: |
|
114
|
1 |
|
return len(src) * del_cost |
|
115
|
|
|
|
|
116
|
1 |
|
if 'dam' in mode: |
|
117
|
1 |
|
return damerau_levenshtein(src, tar, cost) |
|
118
|
|
|
|
|
119
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_int) |
|
120
|
1 |
|
for i in range(len(src) + 1): |
|
121
|
1 |
|
d_mat[i, 0] = i * del_cost |
|
122
|
1 |
|
for j in range(len(tar) + 1): |
|
123
|
1 |
|
d_mat[0, j] = j * ins_cost |
|
124
|
|
|
|
|
125
|
1 |
|
for i in range(len(src)): |
|
|
|
|
|
|
126
|
1 |
|
for j in range(len(tar)): |
|
|
|
|
|
|
127
|
1 |
|
d_mat[i + 1, j + 1] = min( |
|
128
|
|
|
d_mat[i + 1, j] + ins_cost, # ins |
|
129
|
|
|
d_mat[i, j + 1] + del_cost, # del |
|
130
|
|
|
d_mat[i, j] + (sub_cost if src[i] != tar[j] else 0), # sub/== |
|
131
|
|
|
) |
|
132
|
|
|
|
|
133
|
1 |
|
if mode == 'osa': |
|
134
|
1 |
|
if ( |
|
135
|
|
|
i + 1 > 1 |
|
|
|
|
|
|
136
|
|
|
and j + 1 > 1 |
|
|
|
|
|
|
137
|
|
|
and src[i] == tar[j - 1] |
|
|
|
|
|
|
138
|
|
|
and src[i - 1] == tar[j] |
|
|
|
|
|
|
139
|
|
|
): |
|
140
|
|
|
# transposition |
|
141
|
1 |
|
d_mat[i + 1, j + 1] = min( |
|
142
|
|
|
d_mat[i + 1, j + 1], d_mat[i - 1, j - 1] + trans_cost |
|
143
|
|
|
) |
|
144
|
|
|
|
|
145
|
1 |
|
return d_mat[len(src), len(tar)] |
|
146
|
|
|
|
|
147
|
|
|
|
|
148
|
1 |
|
def dist_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
|
149
|
|
|
"""Return the normalized Levenshtein distance between two strings. |
|
150
|
|
|
|
|
151
|
|
|
The Levenshtein distance is normalized by dividing the Levenshtein distance |
|
152
|
|
|
(calculated by any of the three supported methods) by the greater of |
|
153
|
|
|
the number of characters in src times the cost of a delete and |
|
154
|
|
|
the number of characters in tar times the cost of an insert. |
|
155
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
|
156
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
|
157
|
|
|
|
|
158
|
|
|
:param str src: source string for comparison |
|
159
|
|
|
:param str tar: target string for comparison |
|
160
|
|
|
:param str mode: specifies a mode for computing the Levenshtein distance: |
|
161
|
|
|
|
|
162
|
|
|
- 'lev' (default) computes the ordinary Levenshtein distance, |
|
163
|
|
|
in which edits may include inserts, deletes, and substitutions |
|
164
|
|
|
- 'osa' computes the Optimal String Alignment distance, in which |
|
165
|
|
|
edits may include inserts, deletes, substitutions, and |
|
166
|
|
|
transpositions but substrings may only be edited once |
|
167
|
|
|
- 'dam' computes the Damerau-Levenshtein distance, in which |
|
168
|
|
|
edits may include inserts, deletes, substitutions, and |
|
169
|
|
|
transpositions and substrings may undergo repeated edits |
|
170
|
|
|
|
|
171
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
|
172
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
|
173
|
|
|
respectively (by default: (1, 1, 1, 1)) |
|
174
|
|
|
:returns: normalized Levenshtein distance |
|
175
|
|
|
:rtype: float |
|
176
|
|
|
|
|
177
|
|
|
>>> round(dist_levenshtein('cat', 'hat'), 12) |
|
178
|
|
|
0.333333333333 |
|
179
|
|
|
>>> round(dist_levenshtein('Niall', 'Neil'), 12) |
|
180
|
|
|
0.6 |
|
181
|
|
|
>>> dist_levenshtein('aluminum', 'Catalan') |
|
182
|
|
|
0.875 |
|
183
|
|
|
>>> dist_levenshtein('ATCG', 'TAGC') |
|
184
|
|
|
0.75 |
|
185
|
|
|
""" |
|
186
|
1 |
|
if src == tar: |
|
187
|
1 |
|
return 0 |
|
188
|
1 |
|
ins_cost, del_cost = cost[:2] |
|
189
|
1 |
|
return levenshtein(src, tar, mode, cost) / ( |
|
190
|
|
|
max(len(src) * del_cost, len(tar) * ins_cost) |
|
191
|
|
|
) |
|
192
|
|
|
|
|
193
|
|
|
|
|
194
|
1 |
|
def sim_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
|
195
|
|
|
"""Return the Levenshtein similarity of two strings. |
|
196
|
|
|
|
|
197
|
|
|
Normalized Levenshtein similarity is the complement of normalized |
|
198
|
|
|
Levenshtein distance: |
|
199
|
|
|
:math:`sim_{Levenshtein} = 1 - dist_{Levenshtein}`. |
|
200
|
|
|
|
|
201
|
|
|
:param str src: source string for comparison |
|
202
|
|
|
:param str tar: target string for comparison |
|
203
|
|
|
:param str mode: specifies a mode for computing the Levenshtein distance: |
|
204
|
|
|
|
|
205
|
|
|
- 'lev' (default) computes the ordinary Levenshtein distance, |
|
206
|
|
|
in which edits may include inserts, deletes, and substitutions |
|
207
|
|
|
- 'osa' computes the Optimal String Alignment distance, in which |
|
208
|
|
|
edits may include inserts, deletes, substitutions, and |
|
209
|
|
|
transpositions but substrings may only be edited once |
|
210
|
|
|
- 'dam' computes the Damerau-Levenshtein distance, in which |
|
211
|
|
|
edits may include inserts, deletes, substitutions, and |
|
212
|
|
|
transpositions and substrings may undergo repeated edits |
|
213
|
|
|
|
|
214
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
|
215
|
|
|
edits: |
|
216
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
|
217
|
|
|
(by default: (1, 1, 1, 1)) |
|
218
|
|
|
:returns: normalized Levenshtein similarity |
|
219
|
|
|
:rtype: float |
|
220
|
|
|
|
|
221
|
|
|
>>> round(sim_levenshtein('cat', 'hat'), 12) |
|
222
|
|
|
0.666666666667 |
|
223
|
|
|
>>> round(sim_levenshtein('Niall', 'Neil'), 12) |
|
224
|
|
|
0.4 |
|
225
|
|
|
>>> sim_levenshtein('aluminum', 'Catalan') |
|
226
|
|
|
0.125 |
|
227
|
|
|
>>> sim_levenshtein('ATCG', 'TAGC') |
|
228
|
|
|
0.25 |
|
229
|
|
|
""" |
|
230
|
1 |
|
return 1 - dist_levenshtein(src, tar, mode, cost) |
|
231
|
|
|
|
|
232
|
|
|
|
|
233
|
1 |
|
def damerau_levenshtein(src, tar, cost=(1, 1, 1, 1)): |
|
|
|
|
|
|
234
|
|
|
"""Return the Damerau-Levenshtein distance between two strings. |
|
235
|
|
|
|
|
236
|
|
|
This computes the Damerau-Levenshtein distance :cite:`Damerau:1964`. |
|
237
|
|
|
Damerau-Levenshtein code is based on Java code by Kevin L. Stern |
|
238
|
|
|
:cite:`Stern:2014`, under the MIT license: |
|
239
|
|
|
https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/string/DamerauLevenshteinAlgorithm.java |
|
240
|
|
|
|
|
241
|
|
|
:param str src: source string for comparison |
|
242
|
|
|
:param str tar: target string for comparison |
|
243
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
|
244
|
|
|
edits: |
|
245
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
|
246
|
|
|
(by default: (1, 1, 1, 1)) |
|
247
|
|
|
:returns: the Damerau-Levenshtein distance between src & tar |
|
248
|
|
|
:rtype: int (may return a float if cost has float values) |
|
249
|
|
|
|
|
250
|
|
|
>>> damerau_levenshtein('cat', 'hat') |
|
251
|
|
|
1 |
|
252
|
|
|
>>> damerau_levenshtein('Niall', 'Neil') |
|
253
|
|
|
3 |
|
254
|
|
|
>>> damerau_levenshtein('aluminum', 'Catalan') |
|
255
|
|
|
7 |
|
256
|
|
|
>>> damerau_levenshtein('ATCG', 'TAGC') |
|
257
|
|
|
2 |
|
258
|
|
|
""" |
|
259
|
1 |
|
ins_cost, del_cost, sub_cost, trans_cost = cost |
|
260
|
|
|
|
|
261
|
1 |
|
if src == tar: |
|
262
|
1 |
|
return 0 |
|
263
|
1 |
|
if not src: |
|
264
|
1 |
|
return len(tar) * ins_cost |
|
265
|
1 |
|
if not tar: |
|
266
|
1 |
|
return len(src) * del_cost |
|
267
|
|
|
|
|
268
|
1 |
|
if 2 * trans_cost < ins_cost + del_cost: |
|
269
|
1 |
|
raise ValueError( |
|
270
|
|
|
'Unsupported cost assignment; the cost of two ' |
|
271
|
|
|
+ 'transpositions must not be less than the cost of ' |
|
272
|
|
|
+ 'an insert plus a delete.' |
|
273
|
|
|
) |
|
274
|
|
|
|
|
275
|
1 |
|
d_mat = np_zeros((len(src)) * (len(tar)), dtype=np_int).reshape( |
|
276
|
|
|
(len(src), len(tar)) |
|
277
|
|
|
) |
|
278
|
|
|
|
|
279
|
1 |
|
if src[0] != tar[0]: |
|
280
|
1 |
|
d_mat[0, 0] = min(sub_cost, ins_cost + del_cost) |
|
281
|
|
|
|
|
282
|
1 |
|
src_index_by_character = {src[0]: 0} |
|
283
|
1 |
|
for i in range(1, len(src)): |
|
284
|
1 |
|
del_distance = d_mat[i - 1, 0] + del_cost |
|
285
|
1 |
|
ins_distance = (i + 1) * del_cost + ins_cost |
|
286
|
1 |
|
match_distance = i * del_cost + (0 if src[i] == tar[0] else sub_cost) |
|
287
|
1 |
|
d_mat[i, 0] = min(del_distance, ins_distance, match_distance) |
|
288
|
|
|
|
|
289
|
1 |
|
for j in range(1, len(tar)): |
|
290
|
1 |
|
del_distance = (j + 1) * ins_cost + del_cost |
|
291
|
1 |
|
ins_distance = d_mat[0, j - 1] + ins_cost |
|
292
|
1 |
|
match_distance = j * ins_cost + (0 if src[0] == tar[j] else sub_cost) |
|
293
|
1 |
|
d_mat[0, j] = min(del_distance, ins_distance, match_distance) |
|
294
|
|
|
|
|
295
|
1 |
|
for i in range(1, len(src)): |
|
296
|
1 |
|
max_src_letter_match_index = 0 if src[i] == tar[0] else -1 |
|
297
|
1 |
|
for j in range(1, len(tar)): |
|
298
|
1 |
|
candidate_swap_index = ( |
|
299
|
|
|
-1 |
|
300
|
|
|
if tar[j] not in src_index_by_character |
|
301
|
|
|
else src_index_by_character[tar[j]] |
|
302
|
|
|
) |
|
303
|
1 |
|
j_swap = max_src_letter_match_index |
|
304
|
1 |
|
del_distance = d_mat[i - 1, j] + del_cost |
|
305
|
1 |
|
ins_distance = d_mat[i, j - 1] + ins_cost |
|
306
|
1 |
|
match_distance = d_mat[i - 1, j - 1] |
|
307
|
1 |
|
if src[i] != tar[j]: |
|
308
|
1 |
|
match_distance += sub_cost |
|
309
|
|
|
else: |
|
310
|
1 |
|
max_src_letter_match_index = j |
|
311
|
|
|
|
|
312
|
1 |
|
if candidate_swap_index != -1 and j_swap != -1: |
|
313
|
1 |
|
i_swap = candidate_swap_index |
|
314
|
|
|
|
|
315
|
1 |
|
if i_swap == 0 and j_swap == 0: |
|
316
|
1 |
|
pre_swap_cost = 0 |
|
317
|
|
|
else: |
|
318
|
1 |
|
pre_swap_cost = d_mat[ |
|
319
|
|
|
max(0, i_swap - 1), max(0, j_swap - 1) |
|
320
|
|
|
] |
|
321
|
1 |
|
swap_distance = ( |
|
322
|
|
|
pre_swap_cost |
|
323
|
|
|
+ (i - i_swap - 1) * del_cost |
|
324
|
|
|
+ (j - j_swap - 1) * ins_cost |
|
325
|
|
|
+ trans_cost |
|
326
|
|
|
) |
|
327
|
|
|
else: |
|
328
|
1 |
|
swap_distance = maxsize |
|
329
|
|
|
|
|
330
|
1 |
|
d_mat[i, j] = min( |
|
331
|
|
|
del_distance, ins_distance, match_distance, swap_distance |
|
332
|
|
|
) |
|
333
|
1 |
|
src_index_by_character[src[i]] = i |
|
334
|
|
|
|
|
335
|
1 |
|
return d_mat[len(src) - 1, len(tar) - 1] |
|
336
|
|
|
|
|
337
|
|
|
|
|
338
|
1 |
|
def dist_damerau(src, tar, cost=(1, 1, 1, 1)): |
|
339
|
|
|
"""Return the Damerau-Levenshtein similarity of two strings. |
|
340
|
|
|
|
|
341
|
|
|
Damerau-Levenshtein distance normalized to the interval [0, 1]. |
|
342
|
|
|
|
|
343
|
|
|
The Damerau-Levenshtein distance is normalized by dividing the |
|
344
|
|
|
Damerau-Levenshtein distance by the greater of |
|
345
|
|
|
the number of characters in src times the cost of a delete and |
|
346
|
|
|
the number of characters in tar times the cost of an insert. |
|
347
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
|
348
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
|
349
|
|
|
|
|
350
|
|
|
The arguments are identical to those of the levenshtein() function. |
|
351
|
|
|
|
|
352
|
|
|
:param str src: source string for comparison |
|
353
|
|
|
:param str tar: target string for comparison |
|
354
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
|
355
|
|
|
edits: |
|
356
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
|
357
|
|
|
(by default: (1, 1, 1, 1)) |
|
358
|
|
|
:returns: normalized Damerau-Levenshtein distance |
|
359
|
|
|
:rtype: float |
|
360
|
|
|
|
|
361
|
|
|
>>> round(dist_damerau('cat', 'hat'), 12) |
|
362
|
|
|
0.333333333333 |
|
363
|
|
|
>>> round(dist_damerau('Niall', 'Neil'), 12) |
|
364
|
|
|
0.6 |
|
365
|
|
|
>>> dist_damerau('aluminum', 'Catalan') |
|
366
|
|
|
0.875 |
|
367
|
|
|
>>> dist_damerau('ATCG', 'TAGC') |
|
368
|
|
|
0.5 |
|
369
|
|
|
""" |
|
370
|
1 |
|
if src == tar: |
|
371
|
1 |
|
return 0 |
|
372
|
1 |
|
ins_cost, del_cost = cost[:2] |
|
373
|
1 |
|
return damerau_levenshtein(src, tar, cost) / ( |
|
374
|
|
|
max(len(src) * del_cost, len(tar) * ins_cost) |
|
375
|
|
|
) |
|
376
|
|
|
|
|
377
|
|
|
|
|
378
|
1 |
|
def sim_damerau(src, tar, cost=(1, 1, 1, 1)): |
|
379
|
|
|
"""Return the Damerau-Levenshtein similarity of two strings. |
|
380
|
|
|
|
|
381
|
|
|
Normalized Damerau-Levenshtein similarity the complement of normalized |
|
382
|
|
|
Damerau-Levenshtein distance: |
|
383
|
|
|
:math:`sim_{Damerau} = 1 - dist_{Damerau}`. |
|
384
|
|
|
|
|
385
|
|
|
The arguments are identical to those of the levenshtein() function. |
|
386
|
|
|
|
|
387
|
|
|
:param str src: source string for comparison |
|
388
|
|
|
:param str tar: target string for comparison |
|
389
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
|
390
|
|
|
edits: |
|
391
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
|
392
|
|
|
(by default: (1, 1, 1, 1)) |
|
393
|
|
|
:returns: normalized Damerau-Levenshtein similarity |
|
394
|
|
|
:rtype: float |
|
395
|
|
|
|
|
396
|
|
|
>>> round(sim_damerau('cat', 'hat'), 12) |
|
397
|
|
|
0.666666666667 |
|
398
|
|
|
>>> round(sim_damerau('Niall', 'Neil'), 12) |
|
399
|
|
|
0.4 |
|
400
|
|
|
>>> sim_damerau('aluminum', 'Catalan') |
|
401
|
|
|
0.125 |
|
402
|
|
|
>>> sim_damerau('ATCG', 'TAGC') |
|
403
|
|
|
0.5 |
|
404
|
|
|
""" |
|
405
|
1 |
|
return 1 - dist_damerau(src, tar, cost) |
|
406
|
|
|
|
|
407
|
|
|
|
|
408
|
1 |
|
def indel(src, tar): |
|
409
|
|
|
"""Return the indel distance between two strings. |
|
410
|
|
|
|
|
411
|
|
|
This is equivalent to Levenshtein distance, when only inserts and deletes |
|
412
|
|
|
are possible. |
|
413
|
|
|
|
|
414
|
|
|
:param str src: source string for comparison |
|
415
|
|
|
:param str tar: target string for comparison |
|
416
|
|
|
:returns: indel distance |
|
417
|
|
|
:rtype: float |
|
418
|
|
|
|
|
419
|
|
|
>>> round(dist_indel('cat', 'hat'), 12) |
|
420
|
|
|
0.333333333333 |
|
421
|
|
|
>>> round(dist_indel('Niall', 'Neil'), 12) |
|
422
|
|
|
0.333333333333 |
|
423
|
|
|
>>> round(dist_indel('Colin', 'Cuilen'), 12) |
|
424
|
|
|
0.454545454545 |
|
425
|
|
|
>>> dist_indel('ATCG', 'TAGC') |
|
426
|
|
|
0.5 |
|
427
|
|
|
""" |
|
428
|
1 |
|
return levenshtein(src, tar, mode='lev', cost=(1, 1, 9999, 9999)) |
|
429
|
|
|
|
|
430
|
|
|
|
|
431
|
1 |
|
def dist_indel(src, tar): |
|
432
|
|
|
"""Return the normalized indel distance between two strings. |
|
433
|
|
|
|
|
434
|
|
|
This is equivalent to normalized Levenshtein distance, when only inserts |
|
435
|
|
|
and deletes are possible. |
|
436
|
|
|
|
|
437
|
|
|
:param str src: source string for comparison |
|
438
|
|
|
:param str tar: target string for comparison |
|
439
|
|
|
:returns: indel distance |
|
440
|
|
|
:rtype: float |
|
441
|
|
|
|
|
442
|
|
|
>>> round(dist_indel('cat', 'hat'), 12) |
|
443
|
|
|
0.333333333333 |
|
444
|
|
|
>>> round(dist_indel('Niall', 'Neil'), 12) |
|
445
|
|
|
0.333333333333 |
|
446
|
|
|
>>> round(dist_indel('Colin', 'Cuilen'), 12) |
|
447
|
|
|
0.454545454545 |
|
448
|
|
|
>>> dist_indel('ATCG', 'TAGC') |
|
449
|
|
|
0.5 |
|
450
|
|
|
""" |
|
451
|
1 |
|
if src == tar: |
|
452
|
1 |
|
return 0 |
|
453
|
1 |
|
return indel(src, tar) / (len(src) + len(tar)) |
|
454
|
|
|
|
|
455
|
|
|
|
|
456
|
1 |
|
def sim_indel(src, tar): |
|
457
|
|
|
"""Return the normalized indel similarity of two strings. |
|
458
|
|
|
|
|
459
|
|
|
This is equivalent to normalized Levenshtein similarity, when only inserts |
|
460
|
|
|
and deletes are possible. |
|
461
|
|
|
|
|
462
|
|
|
:param str src: source string for comparison |
|
463
|
|
|
:param str tar: target string for comparison |
|
464
|
|
|
:returns: indel similarity |
|
465
|
|
|
:rtype: float |
|
466
|
|
|
|
|
467
|
|
|
>>> round(sim_indel('cat', 'hat'), 12) |
|
468
|
|
|
0.666666666667 |
|
469
|
|
|
>>> round(sim_indel('Niall', 'Neil'), 12) |
|
470
|
|
|
0.666666666667 |
|
471
|
|
|
>>> round(sim_indel('Colin', 'Cuilen'), 12) |
|
472
|
|
|
0.545454545455 |
|
473
|
|
|
>>> sim_indel('ATCG', 'TAGC') |
|
474
|
|
|
0.5 |
|
475
|
|
|
""" |
|
476
|
1 |
|
return 1 - dist_indel(src, tar) |
|
477
|
|
|
|
|
478
|
|
|
|
|
479
|
|
|
if __name__ == '__main__': |
|
480
|
|
|
import doctest |
|
481
|
|
|
|
|
482
|
|
|
doctest.testmod() |
|
483
|
|
|
|