1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.compression._arithmetic. |
20
|
|
|
|
21
|
|
|
arithmetic coding functions |
22
|
|
|
""" |
23
|
|
|
|
24
|
1 |
|
from __future__ import division, unicode_literals |
25
|
|
|
|
26
|
1 |
|
from collections import Counter |
27
|
1 |
|
from fractions import Fraction |
28
|
|
|
|
29
|
1 |
|
from six import PY3, text_type |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
if PY3: |
33
|
|
|
long = int |
|
|
|
|
34
|
|
|
|
35
|
1 |
|
__all__ = ['ac_decode', 'ac_encode', 'ac_train'] |
36
|
|
|
|
37
|
|
|
|
38
|
1 |
|
def ac_train(text): |
39
|
|
|
r"""Generate a probability dict from the provided text. |
40
|
|
|
|
41
|
|
|
Text -> 0-order probability statistics as a dict |
42
|
|
|
|
43
|
|
|
This is based on Andrew Dalke's public domain implementation |
44
|
|
|
:cite:`Dalke:2005`. It has been ported to use the fractions.Fraction class. |
45
|
|
|
|
46
|
|
|
:param str text: The text data over which to calculate probability |
47
|
|
|
statistics. This must not contain the NUL (0x00) character because |
48
|
|
|
that's used to indicate the end of data. |
49
|
|
|
:returns: a probability dict |
50
|
|
|
:rtype: dict |
51
|
|
|
|
52
|
|
|
>>> ac_train('the quick brown fox jumped over the lazy dog') |
53
|
|
|
{' ': (Fraction(0, 1), Fraction(8, 45)), |
54
|
|
|
'o': (Fraction(8, 45), Fraction(4, 15)), |
55
|
|
|
'e': (Fraction(4, 15), Fraction(16, 45)), |
56
|
|
|
'u': (Fraction(16, 45), Fraction(2, 5)), |
57
|
|
|
't': (Fraction(2, 5), Fraction(4, 9)), |
58
|
|
|
'r': (Fraction(4, 9), Fraction(22, 45)), |
59
|
|
|
'h': (Fraction(22, 45), Fraction(8, 15)), |
60
|
|
|
'd': (Fraction(8, 15), Fraction(26, 45)), |
61
|
|
|
'z': (Fraction(26, 45), Fraction(3, 5)), |
62
|
|
|
'y': (Fraction(3, 5), Fraction(28, 45)), |
63
|
|
|
'x': (Fraction(28, 45), Fraction(29, 45)), |
64
|
|
|
'w': (Fraction(29, 45), Fraction(2, 3)), |
65
|
|
|
'v': (Fraction(2, 3), Fraction(31, 45)), |
66
|
|
|
'q': (Fraction(31, 45), Fraction(32, 45)), |
67
|
|
|
'p': (Fraction(32, 45), Fraction(11, 15)), |
68
|
|
|
'n': (Fraction(11, 15), Fraction(34, 45)), |
69
|
|
|
'm': (Fraction(34, 45), Fraction(7, 9)), |
70
|
|
|
'l': (Fraction(7, 9), Fraction(4, 5)), |
71
|
|
|
'k': (Fraction(4, 5), Fraction(37, 45)), |
72
|
|
|
'j': (Fraction(37, 45), Fraction(38, 45)), |
73
|
|
|
'i': (Fraction(38, 45), Fraction(13, 15)), |
74
|
|
|
'g': (Fraction(13, 15), Fraction(8, 9)), |
75
|
|
|
'f': (Fraction(8, 9), Fraction(41, 45)), |
76
|
|
|
'c': (Fraction(41, 45), Fraction(14, 15)), |
77
|
|
|
'b': (Fraction(14, 15), Fraction(43, 45)), |
78
|
|
|
'a': (Fraction(43, 45), Fraction(44, 45)), |
79
|
|
|
'\x00': (Fraction(44, 45), Fraction(1, 1))} |
80
|
|
|
""" |
81
|
1 |
|
text = text_type(text) |
82
|
1 |
|
if '\x00' in text: |
83
|
1 |
|
text = text.replace('\x00', ' ') |
84
|
1 |
|
counts = Counter(text) |
85
|
1 |
|
counts['\x00'] = 1 |
86
|
1 |
|
tot_letters = sum(counts.values()) |
87
|
|
|
|
88
|
1 |
|
tot = 0 |
89
|
1 |
|
prob_range = {} |
90
|
1 |
|
prev = Fraction(0) |
91
|
1 |
|
for char, count in sorted( |
92
|
|
|
counts.items(), key=lambda x: (x[1], x[0]), reverse=True |
|
|
|
|
93
|
|
|
): |
94
|
1 |
|
follow = Fraction(tot + count, tot_letters) |
95
|
1 |
|
prob_range[char] = (prev, follow) |
96
|
1 |
|
prev = follow |
97
|
1 |
|
tot = tot + count |
98
|
|
|
# assert tot == tot_letters |
99
|
|
|
|
100
|
1 |
|
return prob_range |
101
|
|
|
|
102
|
|
|
|
103
|
1 |
|
def ac_encode(text, probs): |
104
|
|
|
"""Encode a text using arithmetic coding with the provided probabilities. |
105
|
|
|
|
106
|
|
|
Text and the 0-order probability statistics -> longval, nbits |
107
|
|
|
|
108
|
|
|
The encoded number is Fraction(longval, 2**nbits) |
109
|
|
|
|
110
|
|
|
This is based on Andrew Dalke's public domain implementation |
111
|
|
|
:cite:`Dalke:2005`. It has been ported to use the fractions.Fraction class. |
112
|
|
|
|
113
|
|
|
:param str text: A string to encode |
114
|
|
|
:param dict probs: A probability statistics dictionary generated by |
115
|
|
|
ac_train |
116
|
|
|
:returns: The arithmetically coded text |
117
|
|
|
:rtype: tuple |
118
|
|
|
|
119
|
|
|
>>> pr = ac_train('the quick brown fox jumped over the lazy dog') |
120
|
|
|
>>> ac_encode('align', pr) |
121
|
|
|
(16720586181, 34) |
122
|
|
|
""" |
123
|
1 |
|
text = text_type(text) |
124
|
1 |
|
if '\x00' in text: |
125
|
1 |
|
text = text.replace('\x00', ' ') |
126
|
1 |
|
minval = Fraction(0) |
127
|
1 |
|
maxval = Fraction(1) |
128
|
1 |
|
for char in text + '\x00': |
129
|
1 |
|
prob_range = probs[char] |
130
|
1 |
|
delta = maxval - minval |
131
|
1 |
|
maxval = minval + prob_range[1] * delta |
132
|
1 |
|
minval = minval + prob_range[0] * delta |
133
|
|
|
|
134
|
|
|
# I tried without the /2 just to check. Doesn't work. |
135
|
|
|
# Keep scaling up until the error range is >= 1. That |
136
|
|
|
# gives me the minimum number of bits needed to resolve |
137
|
|
|
# down to the end-of-data character. |
138
|
1 |
|
delta = (maxval - minval) / 2 |
139
|
1 |
|
nbits = long(0) |
|
|
|
|
140
|
1 |
|
while delta < 1: |
141
|
1 |
|
nbits += 1 |
142
|
1 |
|
delta *= 2 |
143
|
|
|
# The below condition shouldn't ever be false |
144
|
|
|
if nbits == 0: # pragma: no cover |
145
|
|
|
return 0, 0 |
146
|
|
|
# using -1 instead of /2 |
147
|
1 |
|
avg = (maxval + minval) * 2 ** (nbits - 1) |
148
|
|
|
# Could return a rational instead ... |
149
|
|
|
# the division truncation is deliberate |
150
|
1 |
|
return avg.numerator // avg.denominator, nbits |
151
|
|
|
|
152
|
|
|
|
153
|
1 |
|
def ac_decode(longval, nbits, probs): |
154
|
|
|
"""Decode the number to a string using the given statistics. |
155
|
|
|
|
156
|
|
|
This is based on Andrew Dalke's public domain implementation |
157
|
|
|
:cite:`Dalke:2005`. It has been ported to use the fractions.Fraction class. |
158
|
|
|
|
159
|
|
|
:param int longval: The first part of an encoded tuple from ac_encode |
160
|
|
|
:param int nbits: The second part of an encoded tuple from ac_encode |
161
|
|
|
:param dict probs: A probability statistics dictionary generated by |
162
|
|
|
ac_train |
163
|
|
|
:returns: The arithmetically decoded text |
164
|
|
|
:rtype: str |
165
|
|
|
|
166
|
|
|
>>> pr = ac_train('the quick brown fox jumped over the lazy dog') |
167
|
|
|
>>> ac_decode(16720586181, 34, pr) |
168
|
|
|
'align' |
169
|
|
|
""" |
170
|
1 |
|
val = Fraction(longval, long(1) << nbits) |
|
|
|
|
171
|
1 |
|
letters = [] |
172
|
1 |
|
probs_items = [ |
173
|
|
|
(char, minval, maxval) for (char, (minval, maxval)) in probs.items() |
174
|
|
|
] |
175
|
|
|
|
176
|
1 |
|
char = '\x00' |
177
|
1 |
|
while True: |
178
|
1 |
|
for (char, minval, maxval) in probs_items: # noqa: B007 |
179
|
1 |
|
if minval <= val < maxval: |
180
|
1 |
|
break |
181
|
|
|
|
182
|
1 |
|
if char == '\x00': |
183
|
1 |
|
break |
184
|
1 |
|
letters.append(char) |
185
|
1 |
|
delta = maxval - minval |
|
|
|
|
186
|
1 |
|
val = (val - minval) / delta |
187
|
1 |
|
return ''.join(letters) |
188
|
|
|
|
189
|
|
|
|
190
|
|
|
if __name__ == '__main__': |
191
|
|
|
import doctest |
192
|
|
|
|
193
|
|
|
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE) |
194
|
|
|
|
This check looks for invalid names for a range of different identifiers.
You can set regular expressions to which the identifiers must conform if the defaults do not match your requirements.
If your project includes a Pylint configuration file, the settings contained in that file take precedence.
To find out more about Pylint, please refer to their site.