1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance._smith_waterman. |
20
|
|
|
|
21
|
|
|
Smith-Waterman score |
22
|
|
|
""" |
23
|
|
|
|
24
|
1 |
|
from __future__ import ( |
25
|
|
|
absolute_import, |
26
|
|
|
division, |
27
|
|
|
print_function, |
28
|
|
|
unicode_literals, |
29
|
|
|
) |
30
|
|
|
|
31
|
1 |
|
from deprecation import deprecated |
32
|
|
|
|
33
|
1 |
|
from numpy import float32 as np_float32 |
34
|
1 |
|
from numpy import zeros as np_zeros |
35
|
|
|
|
36
|
1 |
|
from six.moves import range |
37
|
|
|
|
38
|
1 |
|
from ._ident import sim_ident |
39
|
1 |
|
from ._needleman_wunsch import NeedlemanWunsch |
40
|
1 |
|
from .. import __version__ |
41
|
|
|
|
42
|
1 |
|
__all__ = ['SmithWaterman', 'smith_waterman'] |
43
|
|
|
|
44
|
|
|
|
45
|
1 |
|
class SmithWaterman(NeedlemanWunsch): |
46
|
|
|
"""Smith-Waterman score. |
47
|
|
|
|
48
|
|
|
The Smith-Waterman score :cite:`Smith:1981` is a standard edit distance |
49
|
|
|
measure, differing from Needleman-Wunsch in that it focuses on local |
50
|
|
|
alignment and disallows negative scores. |
51
|
|
|
|
52
|
|
|
.. versionadded:: 0.3.6 |
53
|
|
|
""" |
54
|
|
|
|
55
|
1 |
|
def __init__(self, gap_cost=1, sim_func=None, **kwargs): |
56
|
|
|
"""Initialize SmithWaterman instance. |
57
|
|
|
|
58
|
|
|
Parameters |
59
|
|
|
---------- |
60
|
|
|
gap_cost : float |
61
|
|
|
The cost of an alignment gap (1 by default) |
62
|
|
|
sim_func : function |
63
|
|
|
A function that returns the similarity of two characters (identity |
64
|
|
|
similarity by default) |
65
|
|
|
**kwargs |
66
|
|
|
Arbitrary keyword arguments |
67
|
|
|
|
68
|
|
|
|
69
|
|
|
.. versionadded:: 0.4.0 |
70
|
|
|
|
71
|
|
|
""" |
72
|
1 |
|
super(SmithWaterman, self).__init__(**kwargs) |
73
|
1 |
|
self._gap_cost = gap_cost |
74
|
1 |
|
self._sim_func = sim_func |
75
|
1 |
|
if self._sim_func is None: |
76
|
1 |
|
self._sim_func = NeedlemanWunsch.sim_matrix |
77
|
|
|
|
78
|
1 |
|
def sim_score(self, src, tar): |
79
|
|
|
"""Return the Smith-Waterman score of two strings. |
80
|
|
|
|
81
|
|
|
Parameters |
82
|
|
|
---------- |
83
|
|
|
src : str |
84
|
|
|
Source string for comparison |
85
|
|
|
tar : str |
86
|
|
|
Target string for comparison |
87
|
|
|
|
88
|
|
|
Returns |
89
|
|
|
------- |
90
|
|
|
float |
91
|
|
|
Smith-Waterman score |
92
|
|
|
|
93
|
|
|
Examples |
94
|
|
|
-------- |
95
|
|
|
>>> cmp = SmithWaterman() |
96
|
|
|
>>> cmp.sim_score('cat', 'hat') |
97
|
|
|
2.0 |
98
|
|
|
>>> cmp.sim_score('Niall', 'Neil') |
99
|
|
|
1.0 |
100
|
|
|
>>> cmp.sim_score('aluminum', 'Catalan') |
101
|
|
|
0.0 |
102
|
|
|
>>> cmp.sim_score('ATCG', 'TAGC') |
103
|
|
|
1.0 |
104
|
|
|
|
105
|
|
|
|
106
|
|
|
.. versionadded:: 0.1.0 |
107
|
|
|
.. versionchanged:: 0.3.6 |
108
|
|
|
Encapsulated in class |
109
|
|
|
|
110
|
|
|
""" |
111
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
112
|
|
|
|
113
|
1 |
|
for i in range(1, len(src) + 1): |
114
|
1 |
|
for j in range(1, len(tar) + 1): |
115
|
1 |
|
match = d_mat[i - 1, j - 1] + self._sim_func( |
116
|
|
|
src[i - 1], tar[j - 1] |
117
|
|
|
) |
118
|
1 |
|
delete = d_mat[i - 1, j] - self._gap_cost |
119
|
1 |
|
insert = d_mat[i, j - 1] - self._gap_cost |
120
|
1 |
|
d_mat[i, j] = max(0, match, delete, insert) |
121
|
1 |
|
return d_mat[d_mat.shape[0] - 1, d_mat.shape[1] - 1] |
122
|
|
|
|
123
|
1 |
|
def sim(self, src, tar): |
124
|
|
|
"""Return the normalized Smith-Waterman score of two strings. |
125
|
|
|
|
126
|
|
|
Parameters |
127
|
|
|
---------- |
128
|
|
|
src : str |
129
|
|
|
Source string for comparison |
130
|
|
|
tar : str |
131
|
|
|
Target string for comparison |
132
|
|
|
|
133
|
|
|
Returns |
134
|
|
|
------- |
135
|
|
|
float |
136
|
|
|
Normalized Smith-Waterman score |
137
|
|
|
|
138
|
|
|
Examples |
139
|
|
|
-------- |
140
|
|
|
>>> cmp = SmithWaterman() |
141
|
|
|
>>> cmp.sim('cat', 'hat') |
142
|
|
|
0.6666666666666667 |
143
|
|
|
>>> cmp.sim('Niall', 'Neil') |
144
|
|
|
0.22360679774997896 |
145
|
|
|
>>> round(cmp.sim('aluminum', 'Catalan'), 12) |
146
|
|
|
0.0 |
147
|
|
|
>>> cmp.sim('cat', 'hat') |
148
|
|
|
0.6666666666666667 |
149
|
|
|
|
150
|
|
|
|
151
|
|
|
.. versionadded:: 0.4.1 |
152
|
|
|
|
153
|
|
|
""" |
154
|
1 |
|
if src == tar: |
155
|
1 |
|
return 1.0 |
156
|
1 |
|
return max(0.0, self.sim_score(src, tar)) / ( |
157
|
|
|
self.sim_score(src, src) ** 0.5 * self.sim_score(tar, tar) ** 0.5 |
158
|
|
|
) |
159
|
|
|
|
160
|
|
|
|
161
|
1 |
|
@deprecated( |
162
|
|
|
deprecated_in='0.4.0', |
163
|
|
|
removed_in='0.6.0', |
164
|
|
|
current_version=__version__, |
165
|
|
|
details='Use the SmithWaterman.dist_abs method instead.', |
166
|
|
|
) |
167
|
1 |
|
def smith_waterman(src, tar, gap_cost=1, sim_func=sim_ident): |
168
|
|
|
"""Return the Smith-Waterman score of two strings. |
169
|
|
|
|
170
|
|
|
This is a wrapper for :py:meth:`SmithWaterman.dist_abs`. |
171
|
|
|
|
172
|
|
|
Parameters |
173
|
|
|
---------- |
174
|
|
|
src : str |
175
|
|
|
Source string for comparison |
176
|
|
|
tar : str |
177
|
|
|
Target string for comparison |
178
|
|
|
gap_cost : float |
179
|
|
|
The cost of an alignment gap (1 by default) |
180
|
|
|
sim_func : function |
181
|
|
|
A function that returns the similarity of two characters (identity |
182
|
|
|
similarity by default) |
183
|
|
|
|
184
|
|
|
Returns |
185
|
|
|
------- |
186
|
|
|
float |
187
|
|
|
Smith-Waterman score |
188
|
|
|
|
189
|
|
|
Examples |
190
|
|
|
-------- |
191
|
|
|
>>> smith_waterman('cat', 'hat') |
192
|
|
|
2.0 |
193
|
|
|
>>> smith_waterman('Niall', 'Neil') |
194
|
|
|
1.0 |
195
|
|
|
>>> smith_waterman('aluminum', 'Catalan') |
196
|
|
|
0.0 |
197
|
|
|
>>> smith_waterman('ATCG', 'TAGC') |
198
|
|
|
1.0 |
199
|
|
|
|
200
|
|
|
.. versionadded:: 0.1.0 |
201
|
|
|
|
202
|
|
|
""" |
203
|
1 |
|
return SmithWaterman(gap_cost, sim_func).sim_score(src, tar) |
204
|
|
|
|
205
|
|
|
|
206
|
|
|
if __name__ == '__main__': |
207
|
|
|
import doctest |
208
|
|
|
|
209
|
|
|
doctest.testmod() |
210
|
|
|
|