1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance._needleman_wunsch. |
20
|
|
|
|
21
|
|
|
Needleman-Wunsch score |
22
|
|
|
""" |
23
|
|
|
|
24
|
1 |
|
from __future__ import ( |
25
|
|
|
absolute_import, |
26
|
|
|
division, |
27
|
|
|
print_function, |
28
|
|
|
unicode_literals, |
29
|
|
|
) |
30
|
|
|
|
31
|
1 |
|
from deprecation import deprecated |
32
|
|
|
|
33
|
1 |
|
from numpy import float32 as np_float32 |
34
|
1 |
|
from numpy import zeros as np_zeros |
35
|
|
|
|
36
|
1 |
|
from six.moves import range |
37
|
|
|
|
38
|
1 |
|
from ._distance import _Distance |
39
|
1 |
|
from ._ident import sim_ident |
40
|
1 |
|
from .. import __version__ |
41
|
|
|
|
42
|
1 |
|
__all__ = ['NeedlemanWunsch', 'needleman_wunsch'] |
43
|
|
|
|
44
|
|
|
|
45
|
1 |
|
class NeedlemanWunsch(_Distance): |
46
|
|
|
"""Needleman-Wunsch score. |
47
|
|
|
|
48
|
|
|
The Needleman-Wunsch score :cite:`Needleman:1970` is a standard edit |
49
|
|
|
distance measure. |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
.. versionadded:: 0.3.6 |
53
|
|
|
""" |
54
|
|
|
|
55
|
1 |
|
@staticmethod |
56
|
1 |
|
def sim_matrix( |
57
|
|
|
src, |
58
|
|
|
tar, |
59
|
|
|
mat=None, |
60
|
|
|
mismatch_cost=0, |
61
|
|
|
match_cost=1, |
62
|
|
|
symmetric=True, |
63
|
|
|
alphabet=None, |
64
|
|
|
): |
65
|
|
|
"""Return the matrix similarity of two strings. |
66
|
|
|
|
67
|
|
|
With the default parameters, this is identical to sim_ident. |
68
|
|
|
It is possible for sim_matrix to return values outside of the range |
69
|
|
|
:math:`[0, 1]`, if values outside that range are present in mat, |
70
|
|
|
mismatch_cost, or match_cost. |
71
|
|
|
|
72
|
|
|
Parameters |
73
|
|
|
---------- |
74
|
|
|
src : str |
75
|
|
|
Source string for comparison |
76
|
|
|
tar : str |
77
|
|
|
Target string for comparison |
78
|
|
|
mat : dict |
79
|
|
|
A dict mapping tuples to costs; the tuples are (src, tar) pairs of |
80
|
|
|
symbols from the alphabet parameter |
81
|
|
|
mismatch_cost : float |
82
|
|
|
The value returned if (src, tar) is absent from mat when src does |
83
|
|
|
not equal tar |
84
|
|
|
match_cost : float |
85
|
|
|
The value returned if (src, tar) is absent from mat when src equals |
86
|
|
|
tar |
87
|
|
|
symmetric : bool |
88
|
|
|
True if the cost of src not matching tar is identical to the cost |
89
|
|
|
of tar not matching src; in this case, the values in mat need only |
90
|
|
|
contain (src, tar) or (tar, src), not both |
91
|
|
|
alphabet : str |
92
|
|
|
A collection of tokens from which src and tar are drawn; if this is |
93
|
|
|
defined a ValueError is raised if either tar or src is not found in |
94
|
|
|
alphabet |
95
|
|
|
|
96
|
|
|
Returns |
97
|
|
|
------- |
98
|
|
|
float |
99
|
|
|
Matrix similarity |
100
|
|
|
|
101
|
|
|
Raises |
102
|
|
|
------ |
103
|
|
|
ValueError |
104
|
|
|
src value not in alphabet |
105
|
|
|
ValueError |
106
|
|
|
tar value not in alphabet |
107
|
|
|
|
108
|
|
|
Examples |
109
|
|
|
-------- |
110
|
|
|
>>> NeedlemanWunsch.sim_matrix('cat', 'hat') |
111
|
|
|
0 |
112
|
|
|
>>> NeedlemanWunsch.sim_matrix('hat', 'hat') |
113
|
|
|
1 |
114
|
|
|
|
115
|
|
|
|
116
|
|
|
.. versionadded:: 0.1.0 |
117
|
|
|
.. versionchanged:: 0.3.6 |
118
|
|
|
Encapsulated in class |
119
|
|
|
|
120
|
|
|
""" |
121
|
1 |
|
if alphabet: |
122
|
1 |
|
alphabet = tuple(alphabet) |
123
|
1 |
|
for i in src: |
124
|
1 |
|
if i not in alphabet: |
125
|
1 |
|
raise ValueError('src value not in alphabet') |
126
|
1 |
|
for i in tar: |
127
|
1 |
|
if i not in alphabet: |
128
|
1 |
|
raise ValueError('tar value not in alphabet') |
129
|
|
|
|
130
|
1 |
|
if src == tar: |
131
|
1 |
|
if mat and (src, src) in mat: |
132
|
1 |
|
return mat[(src, src)] |
133
|
1 |
|
return match_cost |
134
|
1 |
|
if mat and (src, tar) in mat: |
135
|
1 |
|
return mat[(src, tar)] |
136
|
1 |
|
elif symmetric and mat and (tar, src) in mat: |
137
|
1 |
|
return mat[(tar, src)] |
138
|
1 |
|
return mismatch_cost |
139
|
|
|
|
140
|
1 |
|
def __init__(self, gap_cost=1, sim_func=None, **kwargs): |
141
|
|
|
"""Initialize NeedlemanWunsch instance. |
142
|
|
|
|
143
|
|
|
Parameters |
144
|
|
|
---------- |
145
|
|
|
gap_cost : float |
146
|
|
|
The cost of an alignment gap (1 by default) |
147
|
|
|
sim_func : function |
148
|
|
|
A function that returns the similarity of two characters (identity |
149
|
|
|
similarity by default) |
150
|
|
|
**kwargs |
151
|
|
|
Arbitrary keyword arguments |
152
|
|
|
|
153
|
|
|
|
154
|
|
|
.. versionadded:: 0.4.0 |
155
|
|
|
|
156
|
|
|
""" |
157
|
1 |
|
super(NeedlemanWunsch, self).__init__(**kwargs) |
158
|
1 |
|
self._gap_cost = gap_cost |
159
|
1 |
|
self._sim_func = sim_func |
160
|
1 |
|
if self._sim_func is None: |
161
|
1 |
|
self._sim_func = NeedlemanWunsch.sim_matrix |
162
|
|
|
|
163
|
1 |
|
def sim_score(self, src, tar): |
164
|
|
|
"""Return the Needleman-Wunsch score of two strings. |
165
|
|
|
|
166
|
|
|
Parameters |
167
|
|
|
---------- |
168
|
|
|
src : str |
169
|
|
|
Source string for comparison |
170
|
|
|
tar : str |
171
|
|
|
Target string for comparison |
172
|
|
|
|
173
|
|
|
Returns |
174
|
|
|
------- |
175
|
|
|
float |
176
|
|
|
Needleman-Wunsch score |
177
|
|
|
|
178
|
|
|
Examples |
179
|
|
|
-------- |
180
|
|
|
>>> cmp = NeedlemanWunsch() |
181
|
|
|
>>> cmp.sim_score('cat', 'hat') |
182
|
|
|
2.0 |
183
|
|
|
>>> cmp.sim_score('Niall', 'Neil') |
184
|
|
|
1.0 |
185
|
|
|
>>> cmp.sim_score('aluminum', 'Catalan') |
186
|
|
|
-1.0 |
187
|
|
|
>>> cmp.sim_score('ATCG', 'TAGC') |
188
|
|
|
0.0 |
189
|
|
|
|
190
|
|
|
|
191
|
|
|
.. versionadded:: 0.1.0 |
192
|
|
|
.. versionchanged:: 0.3.6 |
193
|
|
|
Encapsulated in class |
194
|
|
|
|
195
|
|
|
""" |
196
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
197
|
|
|
|
198
|
1 |
|
for i in range(len(src) + 1): |
199
|
1 |
|
d_mat[i, 0] = -(i * self._gap_cost) |
200
|
1 |
|
for j in range(len(tar) + 1): |
201
|
1 |
|
d_mat[0, j] = -(j * self._gap_cost) |
202
|
1 |
|
for i in range(1, len(src) + 1): |
203
|
1 |
|
for j in range(1, len(tar) + 1): |
204
|
1 |
|
match = d_mat[i - 1, j - 1] + self._sim_func( |
205
|
|
|
src[i - 1], tar[j - 1] |
206
|
|
|
) |
207
|
1 |
|
delete = d_mat[i - 1, j] - self._gap_cost |
208
|
1 |
|
insert = d_mat[i, j - 1] - self._gap_cost |
209
|
1 |
|
d_mat[i, j] = max(match, delete, insert) |
210
|
1 |
|
return d_mat[d_mat.shape[0] - 1, d_mat.shape[1] - 1] |
211
|
|
|
|
212
|
1 |
|
def sim(self, src, tar): |
213
|
|
|
"""Return the normalized Needleman-Wunsch score of two strings. |
214
|
|
|
|
215
|
|
|
Parameters |
216
|
|
|
---------- |
217
|
|
|
src : str |
218
|
|
|
Source string for comparison |
219
|
|
|
tar : str |
220
|
|
|
Target string for comparison |
221
|
|
|
|
222
|
|
|
Returns |
223
|
|
|
------- |
224
|
|
|
float |
225
|
|
|
Normalized Needleman-Wunsch score |
226
|
|
|
|
227
|
|
|
Examples |
228
|
|
|
-------- |
229
|
|
|
>>> cmp = NeedlemanWunsch() |
230
|
|
|
>>> cmp.sim('cat', 'hat') |
231
|
|
|
0.6666666666666667 |
232
|
|
|
>>> cmp.sim('Niall', 'Neil') |
233
|
|
|
0.22360679774997896 |
234
|
|
|
>>> round(cmp.sim('aluminum', 'Catalan'), 12) |
235
|
|
|
0.0 |
236
|
|
|
>>> cmp.sim('cat', 'hat') |
237
|
|
|
0.6666666666666667 |
238
|
|
|
|
239
|
|
|
|
240
|
|
|
.. versionadded:: 0.4.1 |
241
|
|
|
|
242
|
|
|
""" |
243
|
1 |
|
if src == tar: |
244
|
1 |
|
return 1.0 |
245
|
1 |
|
return max(0.0, self.sim_score(src, tar)) / ( |
246
|
|
|
self.sim_score(src, src) ** 0.5 * self.sim_score(tar, tar) ** 0.5 |
247
|
|
|
) |
248
|
|
|
|
249
|
|
|
|
250
|
1 |
|
@deprecated( |
251
|
|
|
deprecated_in='0.4.0', |
252
|
|
|
removed_in='0.6.0', |
253
|
|
|
current_version=__version__, |
254
|
|
|
details='Use the NeedlemanWunsch.dist_abs method instead.', |
255
|
|
|
) |
256
|
1 |
|
def needleman_wunsch(src, tar, gap_cost=1, sim_func=sim_ident): |
257
|
|
|
"""Return the Needleman-Wunsch score of two strings. |
258
|
|
|
|
259
|
|
|
This is a wrapper for :py:meth:`NeedlemanWunsch.dist_abs`. |
260
|
|
|
|
261
|
|
|
Parameters |
262
|
|
|
---------- |
263
|
|
|
src : str |
264
|
|
|
Source string for comparison |
265
|
|
|
tar : str |
266
|
|
|
Target string for comparison |
267
|
|
|
gap_cost : float |
268
|
|
|
The cost of an alignment gap (1 by default) |
269
|
|
|
sim_func : function |
270
|
|
|
A function that returns the similarity of two characters (identity |
271
|
|
|
similarity by default) |
272
|
|
|
|
273
|
|
|
Returns |
274
|
|
|
------- |
275
|
|
|
float |
276
|
|
|
Needleman-Wunsch score |
277
|
|
|
|
278
|
|
|
Examples |
279
|
|
|
-------- |
280
|
|
|
>>> needleman_wunsch('cat', 'hat') |
281
|
|
|
2.0 |
282
|
|
|
>>> needleman_wunsch('Niall', 'Neil') |
283
|
|
|
1.0 |
284
|
|
|
>>> needleman_wunsch('aluminum', 'Catalan') |
285
|
|
|
-1.0 |
286
|
|
|
>>> needleman_wunsch('ATCG', 'TAGC') |
287
|
|
|
0.0 |
288
|
|
|
|
289
|
|
|
|
290
|
|
|
.. versionadded:: 0.1.0 |
291
|
|
|
|
292
|
|
|
""" |
293
|
1 |
|
return NeedlemanWunsch(gap_cost, sim_func).sim_score(src, tar) |
294
|
|
|
|
295
|
|
|
|
296
|
|
|
if __name__ == '__main__': |
297
|
|
|
import doctest |
298
|
|
|
|
299
|
|
|
doctest.testmod() |
300
|
|
|
|