| Total Complexity | 413 | 
| Total Lines | 3419 | 
| Duplicated Lines | 4.3 % | 
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like abydos.distance often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*-  | 
            ||
| 
                                                                                                    
                        
                         | 
                |||
| 2 | |||
| 3 | # Copyright 2014-2018 by Christopher C. Little.  | 
            ||
| 4 | # This file is part of Abydos.  | 
            ||
| 5 | #  | 
            ||
| 6 | # Abydos is free software: you can redistribute it and/or modify  | 
            ||
| 7 | # it under the terms of the GNU General Public License as published by  | 
            ||
| 8 | # the Free Software Foundation, either version 3 of the License, or  | 
            ||
| 9 | # (at your option) any later version.  | 
            ||
| 10 | #  | 
            ||
| 11 | # Abydos is distributed in the hope that it will be useful,  | 
            ||
| 12 | # but WITHOUT ANY WARRANTY; without even the implied warranty of  | 
            ||
| 13 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the  | 
            ||
| 14 | # GNU General Public License for more details.  | 
            ||
| 15 | #  | 
            ||
| 16 | # You should have received a copy of the GNU General Public License  | 
            ||
| 17 | # along with Abydos. If not, see <http://www.gnu.org/licenses/>.  | 
            ||
| 18 | |||
| 19 | """abydos.distance.  | 
            ||
| 20 | |||
| 21 | The distance module implements string edit distance functions including:  | 
            ||
| 22 | |||
| 23 | - Levenshtein distance (incl. a [0, 1] normalized variant)  | 
            ||
| 24 | - Optimal String Alignment distance (incl. a [0, 1] normalized variant)  | 
            ||
| 25 | - Levenshtein-Damerau distance (incl. a [0, 1] normalized variant)  | 
            ||
| 26 | - Hamming distance (incl. a [0, 1] normalized variant)  | 
            ||
| 27 | - Tversky index  | 
            ||
| 28 | - Sørensen–Dice coefficient & distance  | 
            ||
| 29 | - Jaccard similarity coefficient & distance  | 
            ||
| 30 | - overlap similarity & distance  | 
            ||
| 31 | - Tanimoto coefficient & distance  | 
            ||
| 32 | - Minkowski distance & similarity (incl. a [0, 1] normalized option)  | 
            ||
| 33 | - Manhattan distance & similarity (incl. a [0, 1] normalized option)  | 
            ||
| 34 | - Euclidean distance & similarity (incl. a [0, 1] normalized option)  | 
            ||
| 35 | - Chebyshev distance & similarity (incl. a [0, 1] normalized option)  | 
            ||
| 36 | - cosine similarity & distance  | 
            ||
| 37 | - Jaro distance  | 
            ||
| 38 | - Jaro-Winkler distance (incl. the strcmp95 algorithm variant)  | 
            ||
| 39 | - Longest common substring  | 
            ||
| 40 | - Ratcliff-Obershelp similarity & distance  | 
            ||
| 41 | - Match Rating Algorithm similarity  | 
            ||
| 42 | - Normalized Compression Distance (NCD) & similarity  | 
            ||
| 43 | - Monge-Elkan similarity & distance  | 
            ||
| 44 | - Matrix similarity  | 
            ||
| 45 | - Needleman-Wunsch score  | 
            ||
| 46 | - Smither-Waterman score  | 
            ||
| 47 | - Gotoh score  | 
            ||
| 48 | - Length similarity  | 
            ||
| 49 | - Prefix, Suffix, and Identity similarity & distance  | 
            ||
| 50 | - Modified Language-Independent Product Name Search (MLIPNS) similarity &  | 
            ||
| 51 | distance  | 
            ||
| 52 | - Bag distance (incl. a [0, 1] normalized variant)  | 
            ||
| 53 | - Editex distance (incl. a [0, 1] normalized variant)  | 
            ||
| 54 | - Eudex distances  | 
            ||
| 55 | - Sift4 distance  | 
            ||
| 56 | - TF-IDF similarity  | 
            ||
| 57 | |||
| 58 | Functions beginning with the prefixes 'sim' and 'dist' are guaranteed to be  | 
            ||
| 59 | in the range [0, 1], and sim_X = 1 - dist_X since the two are complements.  | 
            ||
| 60 | If a sim_X function is supplied identical src & tar arguments, it is guaranteed  | 
            ||
| 61 | to return 1; the corresponding dist_X function is guaranteed to return 0.  | 
            ||
| 62 | """  | 
            ||
| 63 | |||
| 64 | from __future__ import division, unicode_literals  | 
            ||
| 65 | |||
| 66 | import codecs  | 
            ||
| 67 | import math  | 
            ||
| 68 | import sys  | 
            ||
| 69 | import types  | 
            ||
| 70 | import unicodedata  | 
            ||
| 71 | from collections import Counter, defaultdict  | 
            ||
| 72 | |||
| 73 | import numpy as np  | 
            ||
| 74 | |||
| 75 | from six import text_type  | 
            ||
| 76 | from six.moves import range  | 
            ||
| 77 | |||
| 78 | from .compression import ac_encode, ac_train, rle_encode  | 
            ||
| 79 | from .phonetic import eudex, mra  | 
            ||
| 80 | from .qgram import QGrams  | 
            ||
| 81 | |||
| 82 | try:  | 
            ||
| 83 | import lzma  | 
            ||
| 84 | except ImportError: # pragma: no cover  | 
            ||
| 85 | # If the system lacks the lzma library, that's fine, but lzma comrpession  | 
            ||
| 86 | # similarity won't be supported.  | 
            ||
| 87 | pass  | 
            ||
| 88 | |||
| 89 | |||
| 90 | def levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)):  | 
            ||
| 91 | """Return the Levenshtein distance between two strings.  | 
            ||
| 92 | |||
| 93 | Levenshtein distance  | 
            ||
| 94 | |||
| 95 | This is the standard edit distance measure. Cf.  | 
            ||
| 96 | https://en.wikipedia.org/wiki/Levenshtein_distance  | 
            ||
| 97 | |||
| 98 | Two additional variants: optimal string alignment (aka restricted  | 
            ||
| 99 | Damerau-Levenshtein distance) and the Damerau-Levenshtein distance  | 
            ||
| 100 | are also supported. Cf.  | 
            ||
| 101 | https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance  | 
            ||
| 102 | |||
| 103 | The ordinary Levenshtein & Optimal String Alignment distance both  | 
            ||
| 104 | employ the Wagner-Fischer dynamic programming algorithm. Cf.  | 
            ||
| 105 | https://en.wikipedia.org/wiki/Wagner%E2%80%93Fischer_algorithm  | 
            ||
| 106 | |||
| 107 | Levenshtein edit distance ordinarily has unit insertion, deletion, and  | 
            ||
| 108 | substitution costs.  | 
            ||
| 109 | |||
| 110 | :param str src, tar: two strings to be compared  | 
            ||
| 111 | :param str mode: specifies a mode for computing the Levenshtein distance:  | 
            ||
| 112 | |||
| 113 | - 'lev' (default) computes the ordinary Levenshtein distance,  | 
            ||
| 114 | in which edits may include inserts, deletes, and substitutions  | 
            ||
| 115 | - 'osa' computes the Optimal String Alignment distance, in which  | 
            ||
| 116 | edits may include inserts, deletes, substitutions, and  | 
            ||
| 117 | transpositions but substrings may only be edited once  | 
            ||
| 118 | - 'dam' computes the Damerau-Levenshtein distance, in which  | 
            ||
| 119 | edits may include inserts, deletes, substitutions, and  | 
            ||
| 120 | transpositions and substrings may undergo repeated edits  | 
            ||
| 121 | |||
| 122 | :param tuple cost: a 4-tuple representing the cost of the four possible  | 
            ||
| 123 | edits: inserts, deletes, substitutions, and transpositions,  | 
            ||
| 124 | respectively (by default: (1, 1, 1, 1))  | 
            ||
| 125 | :returns: the Levenshtein distance between src & tar  | 
            ||
| 126 | :rtype: int (may return a float if cost has float values)  | 
            ||
| 127 | |||
| 128 |     >>> levenshtein('cat', 'hat') | 
            ||
| 129 | 1  | 
            ||
| 130 |     >>> levenshtein('Niall', 'Neil') | 
            ||
| 131 | 3  | 
            ||
| 132 |     >>> levenshtein('aluminum', 'Catalan') | 
            ||
| 133 | 7  | 
            ||
| 134 |     >>> levenshtein('ATCG', 'TAGC') | 
            ||
| 135 | 3  | 
            ||
| 136 | |||
| 137 |     >>> levenshtein('ATCG', 'TAGC', mode='osa') | 
            ||
| 138 | 2  | 
            ||
| 139 |     >>> levenshtein('ACTG', 'TAGC', mode='osa') | 
            ||
| 140 | 4  | 
            ||
| 141 | |||
| 142 |     >>> levenshtein('ATCG', 'TAGC', mode='dam') | 
            ||
| 143 | 2  | 
            ||
| 144 |     >>> levenshtein('ACTG', 'TAGC', mode='dam') | 
            ||
| 145 | 3  | 
            ||
| 146 | """  | 
            ||
| 147 | ins_cost, del_cost, sub_cost, trans_cost = cost  | 
            ||
| 148 | |||
| 149 | if src == tar:  | 
            ||
| 150 | return 0  | 
            ||
| 151 | if not src:  | 
            ||
| 152 | return len(tar) * ins_cost  | 
            ||
| 153 | if not tar:  | 
            ||
| 154 | return len(src) * del_cost  | 
            ||
| 155 | |||
| 156 | if 'dam' in mode:  | 
            ||
| 157 | return damerau_levenshtein(src, tar, cost)  | 
            ||
| 158 | |||
| 159 | # pylint: disable=no-member  | 
            ||
| 160 | d_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.int)  | 
            ||
| 161 | # pylint: enable=no-member  | 
            ||
| 162 | for i in range(len(src)+1):  | 
            ||
| 163 | d_mat[i, 0] = i * del_cost  | 
            ||
| 164 | for j in range(len(tar)+1):  | 
            ||
| 165 | d_mat[0, j] = j * ins_cost  | 
            ||
| 166 | |||
| 167 | for i in range(len(src)):  | 
            ||
| 168 | for j in range(len(tar)):  | 
            ||
| 169 | d_mat[i+1, j+1] = min(  | 
            ||
| 170 | d_mat[i+1, j] + ins_cost, # ins  | 
            ||
| 171 | d_mat[i, j+1] + del_cost, # del  | 
            ||
| 172 | d_mat[i, j] + (sub_cost if src[i] != tar[j] else 0) # sub/==  | 
            ||
| 173 | )  | 
            ||
| 174 | |||
| 175 | if mode == 'osa':  | 
            ||
| 176 | if ((i+1 > 1 and j+1 > 1 and src[i] == tar[j-1] and  | 
            ||
| 177 | src[i-1] == tar[j])):  | 
            ||
| 178 | # transposition  | 
            ||
| 179 | d_mat[i+1, j+1] = min(d_mat[i+1, j+1],  | 
            ||
| 180 | d_mat[i-1, j-1] + trans_cost)  | 
            ||
| 181 | |||
| 182 | return d_mat[len(src), len(tar)]  | 
            ||
| 183 | |||
| 184 | |||
| 185 | def dist_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)):  | 
            ||
| 186 | """Return the normalized Levenshtein distance between two strings.  | 
            ||
| 187 | |||
| 188 | Levenshtein distance normalized to the interval [0, 1]  | 
            ||
| 189 | |||
| 190 | The Levenshtein distance is normalized by dividing the Levenshtein distance  | 
            ||
| 191 | (calculated by any of the three supported methods) by the greater of  | 
            ||
| 192 | the number of characters in src times the cost of a delete and  | 
            ||
| 193 | the number of characters in tar times the cost of an insert.  | 
            ||
| 194 | For the case in which all operations have :math:`cost = 1`, this is  | 
            ||
| 195 | equivalent to the greater of the length of the two strings src & tar.  | 
            ||
| 196 | |||
| 197 | :param str src, tar: two strings to be compared  | 
            ||
| 198 | :param str mode: specifies a mode for computing the Levenshtein distance:  | 
            ||
| 199 | |||
| 200 | - 'lev' (default) computes the ordinary Levenshtein distance,  | 
            ||
| 201 | in which edits may include inserts, deletes, and substitutions  | 
            ||
| 202 | - 'osa' computes the Optimal String Alignment distance, in which  | 
            ||
| 203 | edits may include inserts, deletes, substitutions, and  | 
            ||
| 204 | transpositions but substrings may only be edited once  | 
            ||
| 205 | - 'dam' computes the Damerau-Levenshtein distance, in which  | 
            ||
| 206 | edits may include inserts, deletes, substitutions, and  | 
            ||
| 207 | transpositions and substrings may undergo repeated edits  | 
            ||
| 208 | |||
| 209 | :param tuple cost: a 4-tuple representing the cost of the four possible  | 
            ||
| 210 | edits: inserts, deletes, substitutions, and transpositions,  | 
            ||
| 211 | respectively (by default: (1, 1, 1, 1))  | 
            ||
| 212 | :returns: normalized Levenshtein distance  | 
            ||
| 213 | :rtype: float  | 
            ||
| 214 | |||
| 215 |     >>> dist_levenshtein('cat', 'hat') | 
            ||
| 216 | 0.33333333333333331  | 
            ||
| 217 |     >>> dist_levenshtein('Niall', 'Neil') | 
            ||
| 218 | 0.59999999999999998  | 
            ||
| 219 |     >>> dist_levenshtein('aluminum', 'Catalan') | 
            ||
| 220 | 0.875  | 
            ||
| 221 |     >>> dist_levenshtein('ATCG', 'TAGC') | 
            ||
| 222 | 0.75  | 
            ||
| 223 | """  | 
            ||
| 224 | if src == tar:  | 
            ||
| 225 | return 0  | 
            ||
| 226 | ins_cost, del_cost = cost[:2]  | 
            ||
| 227 | return (levenshtein(src, tar, mode, cost) /  | 
            ||
| 228 | (max(len(src)*del_cost, len(tar)*ins_cost)))  | 
            ||
| 229 | |||
| 230 | |||
| 231 | def sim_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)):  | 
            ||
| 232 | """Return the Levenshtein similarity of two strings.  | 
            ||
| 233 | |||
| 234 | Levenshtein similarity normalized to the interval [0, 1]  | 
            ||
| 235 | |||
| 236 | Levenshtein similarity the complement of Levenshtein distance:  | 
            ||
| 237 |     :math:`sim_{Levenshtein} = 1 - dist_{Levenshtein}` | 
            ||
| 238 | |||
| 239 | The arguments are identical to those of the levenshtein() function.  | 
            ||
| 240 | |||
| 241 | :param str src, tar: two strings to be compared  | 
            ||
| 242 | :param str mode: specifies a mode for computing the Levenshtein distance:  | 
            ||
| 243 | |||
| 244 | - 'lev' (default) computes the ordinary Levenshtein distance,  | 
            ||
| 245 | in which edits may include inserts, deletes, and substitutions  | 
            ||
| 246 | - 'osa' computes the Optimal String Alignment distance, in which  | 
            ||
| 247 | edits may include inserts, deletes, substitutions, and  | 
            ||
| 248 | transpositions but substrings may only be edited once  | 
            ||
| 249 | - 'dam' computes the Damerau-Levenshtein distance, in which  | 
            ||
| 250 | edits may include inserts, deletes, substitutions, and  | 
            ||
| 251 | transpositions and substrings may undergo repeated edits  | 
            ||
| 252 | |||
| 253 | :param tuple cost: a 4-tuple representing the cost of the four possible  | 
            ||
| 254 | edits:  | 
            ||
| 255 | inserts, deletes, substitutions, and transpositions, respectively  | 
            ||
| 256 | (by default: (1, 1, 1, 1))  | 
            ||
| 257 | :returns: normalized Levenshtein similarity  | 
            ||
| 258 | :rtype: float  | 
            ||
| 259 | |||
| 260 |     >>> sim_levenshtein('cat', 'hat') | 
            ||
| 261 | 0.66666666666666674  | 
            ||
| 262 |     >>> sim_levenshtein('Niall', 'Neil') | 
            ||
| 263 | 0.40000000000000002  | 
            ||
| 264 |     >>> sim_levenshtein('aluminum', 'Catalan') | 
            ||
| 265 | 0.125  | 
            ||
| 266 |     >>> sim_levenshtein('ATCG', 'TAGC') | 
            ||
| 267 | 0.25  | 
            ||
| 268 | """  | 
            ||
| 269 | return 1 - dist_levenshtein(src, tar, mode, cost)  | 
            ||
| 270 | |||
| 271 | |||
| 272 | def damerau_levenshtein(src, tar, cost=(1, 1, 1, 1)):  | 
            ||
| 273 | """Return the Damerau-Levenshtein distance between two strings.  | 
            ||
| 274 | |||
| 275 | Damerau-Levenshtein distance  | 
            ||
| 276 | |||
| 277 | This computes the Damerau-Levenshtein distance. Cf.  | 
            ||
| 278 | https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance  | 
            ||
| 279 | |||
| 280 | Damerau-Levenshtein code based on Java code by Kevin L. Stern,  | 
            ||
| 281 | under the MIT license:  | 
            ||
| 282 | https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/string/DamerauLevenshteinAlgorithm.java  | 
            ||
| 283 | |||
| 284 | :param str src, tar: two strings to be compared  | 
            ||
| 285 | :param tuple cost: a 4-tuple representing the cost of the four possible  | 
            ||
| 286 | edits:  | 
            ||
| 287 | inserts, deletes, substitutions, and transpositions, respectively  | 
            ||
| 288 | (by default: (1, 1, 1, 1))  | 
            ||
| 289 | :returns: the Damerau-Levenshtein distance between src & tar  | 
            ||
| 290 | :rtype: int (may return a float if cost has float values)  | 
            ||
| 291 | |||
| 292 |     >>> damerau_levenshtein('cat', 'hat') | 
            ||
| 293 | 1  | 
            ||
| 294 |     >>> damerau_levenshtein('Niall', 'Neil') | 
            ||
| 295 | 3  | 
            ||
| 296 |     >>> damerau_levenshtein('aluminum', 'Catalan') | 
            ||
| 297 | 7  | 
            ||
| 298 |     >>> damerau_levenshtein('ATCG', 'TAGC') | 
            ||
| 299 | 2  | 
            ||
| 300 | """  | 
            ||
| 301 | ins_cost, del_cost, sub_cost, trans_cost = cost  | 
            ||
| 302 | |||
| 303 | if src == tar:  | 
            ||
| 304 | return 0  | 
            ||
| 305 | if not src:  | 
            ||
| 306 | return len(tar) * ins_cost  | 
            ||
| 307 | if not tar:  | 
            ||
| 308 | return len(src) * del_cost  | 
            ||
| 309 | |||
| 310 | if 2*trans_cost < ins_cost + del_cost:  | 
            ||
| 311 |         raise ValueError('Unsupported cost assignment; the cost of two ' + | 
            ||
| 312 | 'transpositions must not be less than the cost of ' +  | 
            ||
| 313 | 'an insert plus a delete.')  | 
            ||
| 314 | |||
| 315 | # pylint: disable=no-member  | 
            ||
| 316 | d_mat = (np.zeros((len(src))*(len(tar)), dtype=np.int).  | 
            ||
| 317 | reshape((len(src), len(tar))))  | 
            ||
| 318 | # pylint: enable=no-member  | 
            ||
| 319 | |||
| 320 | if src[0] != tar[0]:  | 
            ||
| 321 | d_mat[0, 0] = min(sub_cost, ins_cost + del_cost)  | 
            ||
| 322 | |||
| 323 |     src_index_by_character = {} | 
            ||
| 324 | src_index_by_character[src[0]] = 0  | 
            ||
| 325 | for i in range(1, len(src)):  | 
            ||
| 326 | del_distance = d_mat[i-1, 0] + del_cost  | 
            ||
| 327 | ins_distance = (i+1) * del_cost + ins_cost  | 
            ||
| 328 | match_distance = (i * del_cost +  | 
            ||
| 329 | (0 if src[i] == tar[0] else sub_cost))  | 
            ||
| 330 | d_mat[i, 0] = min(del_distance, ins_distance, match_distance)  | 
            ||
| 331 | |||
| 332 | for j in range(1, len(tar)):  | 
            ||
| 333 | del_distance = (j+1) * ins_cost + del_cost  | 
            ||
| 334 | ins_distance = d_mat[0, j-1] + ins_cost  | 
            ||
| 335 | match_distance = (j * ins_cost +  | 
            ||
| 336 | (0 if src[0] == tar[j] else sub_cost))  | 
            ||
| 337 | d_mat[0, j] = min(del_distance, ins_distance, match_distance)  | 
            ||
| 338 | |||
| 339 | for i in range(1, len(src)):  | 
            ||
| 340 | max_src_letter_match_index = (0 if src[i] == tar[0] else -1)  | 
            ||
| 341 | for j in range(1, len(tar)):  | 
            ||
| 342 | candidate_swap_index = (-1 if tar[j] not in  | 
            ||
| 343 | src_index_by_character else  | 
            ||
| 344 | src_index_by_character[tar[j]])  | 
            ||
| 345 | j_swap = max_src_letter_match_index  | 
            ||
| 346 | del_distance = d_mat[i-1, j] + del_cost  | 
            ||
| 347 | ins_distance = d_mat[i, j-1] + ins_cost  | 
            ||
| 348 | match_distance = d_mat[i-1, j-1]  | 
            ||
| 349 | if src[i] != tar[j]:  | 
            ||
| 350 | match_distance += sub_cost  | 
            ||
| 351 | else:  | 
            ||
| 352 | max_src_letter_match_index = j  | 
            ||
| 353 | |||
| 354 | if candidate_swap_index != -1 and j_swap != -1:  | 
            ||
| 355 | i_swap = candidate_swap_index  | 
            ||
| 356 | |||
| 357 | if i_swap == 0 and j_swap == 0:  | 
            ||
| 358 | pre_swap_cost = 0  | 
            ||
| 359 | else:  | 
            ||
| 360 | pre_swap_cost = d_mat[max(0, i_swap-1), max(0, j_swap-1)]  | 
            ||
| 361 | swap_distance = (pre_swap_cost + (i - i_swap - 1) *  | 
            ||
| 362 | del_cost + (j - j_swap - 1) * ins_cost +  | 
            ||
| 363 | trans_cost)  | 
            ||
| 364 | else:  | 
            ||
| 365 | swap_distance = sys.maxsize  | 
            ||
| 366 | |||
| 367 | d_mat[i, j] = min(del_distance, ins_distance,  | 
            ||
| 368 | match_distance, swap_distance)  | 
            ||
| 369 | src_index_by_character[src[i]] = i  | 
            ||
| 370 | |||
| 371 | return d_mat[len(src)-1, len(tar)-1]  | 
            ||
| 372 | |||
| 373 | |||
| 374 | def dist_damerau(src, tar, cost=(1, 1, 1, 1)):  | 
            ||
| 375 | """Return the Damerau-Levenshtein similarity of two strings.  | 
            ||
| 376 | |||
| 377 | Damerau-Levenshtein distance normalized to the interval [0, 1]  | 
            ||
| 378 | |||
| 379 | The Damerau-Levenshtein distance is normalized by dividing the  | 
            ||
| 380 | Damerau-Levenshtein distance by the greater of  | 
            ||
| 381 | the number of characters in src times the cost of a delete and  | 
            ||
| 382 | the number of characters in tar times the cost of an insert.  | 
            ||
| 383 | For the case in which all operations have :math:`cost = 1`, this is  | 
            ||
| 384 | equivalent to the greater of the length of the two strings src & tar.  | 
            ||
| 385 | |||
| 386 | The arguments are identical to those of the levenshtein() function.  | 
            ||
| 387 | |||
| 388 | :param str src, tar: two strings to be compared  | 
            ||
| 389 | :param tuple cost: a 4-tuple representing the cost of the four possible  | 
            ||
| 390 | edits:  | 
            ||
| 391 | inserts, deletes, substitutions, and transpositions, respectively  | 
            ||
| 392 | (by default: (1, 1, 1, 1))  | 
            ||
| 393 | :returns: normalized Damerau-Levenshtein distance  | 
            ||
| 394 | :rtype: float  | 
            ||
| 395 | |||
| 396 |     >>> dist_damerau('cat', 'hat') | 
            ||
| 397 | 0.33333333333333331  | 
            ||
| 398 |     >>> dist_damerau('Niall', 'Neil') | 
            ||
| 399 | 0.59999999999999998  | 
            ||
| 400 |     >>> dist_damerau('aluminum', 'Catalan') | 
            ||
| 401 | 0.875  | 
            ||
| 402 |     >>> dist_damerau('ATCG', 'TAGC') | 
            ||
| 403 | 0.5  | 
            ||
| 404 | """  | 
            ||
| 405 | if src == tar:  | 
            ||
| 406 | return 0  | 
            ||
| 407 | ins_cost, del_cost = cost[:2]  | 
            ||
| 408 | return (damerau_levenshtein(src, tar, cost) /  | 
            ||
| 409 | (max(len(src)*del_cost, len(tar)*ins_cost)))  | 
            ||
| 410 | |||
| 411 | |||
| 412 | def sim_damerau(src, tar, cost=(1, 1, 1, 1)):  | 
            ||
| 413 | """Return the Damerau-Levenshtein similarity of two strings.  | 
            ||
| 414 | |||
| 415 | Damerau-Levenshtein similarity normalized to the interval [0, 1]  | 
            ||
| 416 | |||
| 417 | Damerau-Levenshtein similarity the complement of Damerau-Levenshtein  | 
            ||
| 418 | distance:  | 
            ||
| 419 |     :math:`sim_{Damerau} = 1 - dist_{Damerau}` | 
            ||
| 420 | |||
| 421 | The arguments are identical to those of the levenshtein() function.  | 
            ||
| 422 | |||
| 423 | :param str src, tar: two strings to be compared  | 
            ||
| 424 | :param tuple cost: a 4-tuple representing the cost of the four possible  | 
            ||
| 425 | edits:  | 
            ||
| 426 | inserts, deletes, substitutions, and transpositions, respectively  | 
            ||
| 427 | (by default: (1, 1, 1, 1))  | 
            ||
| 428 | :returns: normalized Damerau-Levenshtein similarity  | 
            ||
| 429 | :rtype: float  | 
            ||
| 430 | |||
| 431 |     >>> sim_damerau('cat', 'hat') | 
            ||
| 432 | 0.66666666666666674  | 
            ||
| 433 |     >>> sim_damerau('Niall', 'Neil') | 
            ||
| 434 | 0.40000000000000002  | 
            ||
| 435 |     >>> sim_damerau('aluminum', 'Catalan') | 
            ||
| 436 | 0.125  | 
            ||
| 437 |     >>> sim_damerau('ATCG', 'TAGC') | 
            ||
| 438 | 0.5  | 
            ||
| 439 | """  | 
            ||
| 440 | return 1 - dist_damerau(src, tar, cost)  | 
            ||
| 441 | |||
| 442 | |||
| 443 | def hamming(src, tar, difflens=True):  | 
            ||
| 444 | """Return the Hamming distance between two strings.  | 
            ||
| 445 | |||
| 446 | Hamming distance  | 
            ||
| 447 | |||
| 448 | Hamming distance equals the number of character positions at which two  | 
            ||
| 449 | strings differ. For strings of unequal lengths, it is not normally defined.  | 
            ||
| 450 | By default, this implementation calculates the Hamming distance of the  | 
            ||
| 451 | first n characters where n is the lesser of the two strings' lengths and  | 
            ||
| 452 | adds to this the difference in string lengths.  | 
            ||
| 453 | |||
| 454 | :param str src, tar: two strings to be compared  | 
            ||
| 455 | :param bool allow_different_lengths:  | 
            ||
| 456 | If True (default), this returns the Hamming distance for those  | 
            ||
| 457 | characters that have a matching character in both strings plus the  | 
            ||
| 458 | difference in the strings' lengths. This is equivalent to extending  | 
            ||
| 459 | the shorter string with obligatorily non-matching characters.  | 
            ||
| 460 | If False, an exception is raised in the case of strings of unequal  | 
            ||
| 461 | lengths.  | 
            ||
| 462 | :returns: the Hamming distance between src & tar  | 
            ||
| 463 | :rtype: int  | 
            ||
| 464 | |||
| 465 |     >>> hamming('cat', 'hat') | 
            ||
| 466 | 1  | 
            ||
| 467 |     >>> hamming('Niall', 'Neil') | 
            ||
| 468 | 3  | 
            ||
| 469 |     >>> hamming('aluminum', 'Catalan') | 
            ||
| 470 | 8  | 
            ||
| 471 |     >>> hamming('ATCG', 'TAGC') | 
            ||
| 472 | 4  | 
            ||
| 473 | """  | 
            ||
| 474 | if not difflens and len(src) != len(tar):  | 
            ||
| 475 |         raise ValueError('Undefined for sequences of unequal length; set ' + | 
            ||
| 476 | 'difflens to True for Hamming distance between ' +  | 
            ||
| 477 | 'strings of unequal lengths.')  | 
            ||
| 478 | |||
| 479 | hdist = 0  | 
            ||
| 480 | if difflens:  | 
            ||
| 481 | hdist += abs(len(src)-len(tar))  | 
            ||
| 482 | hdist += sum(c1 != c2 for c1, c2 in zip(src, tar))  | 
            ||
| 483 | |||
| 484 | return hdist  | 
            ||
| 485 | |||
| 486 | |||
| 487 | def dist_hamming(src, tar, difflens=True):  | 
            ||
| 488 | """Return the normalized Hamming distance between two strings.  | 
            ||
| 489 | |||
| 490 | Hamming distance normalized to the interval [0, 1]  | 
            ||
| 491 | |||
| 492 | The Hamming distance is normalized by dividing it  | 
            ||
| 493 | by the greater of the number of characters in src & tar (unless difflens is  | 
            ||
| 494 | set to False, in which case an exception is raised).  | 
            ||
| 495 | |||
| 496 | The arguments are identical to those of the hamming() function.  | 
            ||
| 497 | |||
| 498 | :param str src, tar: two strings to be compared  | 
            ||
| 499 | :param bool allow_different_lengths:  | 
            ||
| 500 | If True (default), this returns the Hamming distance for those  | 
            ||
| 501 | characters that have a matching character in both strings plus the  | 
            ||
| 502 | difference in the strings' lengths. This is equivalent to extending  | 
            ||
| 503 | the shorter string with obligatorily non-matching characters.  | 
            ||
| 504 | If False, an exception is raised in the case of strings of unequal  | 
            ||
| 505 | lengths.  | 
            ||
| 506 | :returns: normalized Hamming distance  | 
            ||
| 507 | :rtype: float  | 
            ||
| 508 | |||
| 509 |     >>> dist_hamming('cat', 'hat') | 
            ||
| 510 | 0.3333333333333333  | 
            ||
| 511 |     >>> dist_hamming('Niall', 'Neil') | 
            ||
| 512 | 0.6  | 
            ||
| 513 |     >>> dist_hamming('aluminum', 'Catalan') | 
            ||
| 514 | 1.0  | 
            ||
| 515 |     >>> dist_hamming('ATCG', 'TAGC') | 
            ||
| 516 | 1.0  | 
            ||
| 517 | """  | 
            ||
| 518 | if src == tar:  | 
            ||
| 519 | return 0  | 
            ||
| 520 | return hamming(src, tar, difflens) / max(len(src), len(tar))  | 
            ||
| 521 | |||
| 522 | |||
| 523 | def sim_hamming(src, tar, difflens=True):  | 
            ||
| 524 | """Return the normalized Hamming similarity of two strings.  | 
            ||
| 525 | |||
| 526 | Hamming similarity normalized to the interval [0, 1]  | 
            ||
| 527 | |||
| 528 | Hamming similarity is the complement of normalized Hamming distance:  | 
            ||
| 529 |     :math:`sim_{Hamming} = 1 - dist{Hamming}` | 
            ||
| 530 | |||
| 531 | Provided that difflens==True, the Hamming similarity is identical to the  | 
            ||
| 532 | Language-Independent Product Name Search (LIPNS) similarity score. For  | 
            ||
| 533 | further information, see the sim_mlipns documentation.  | 
            ||
| 534 | |||
| 535 | The arguments are identical to those of the hamming() function.  | 
            ||
| 536 | |||
| 537 | :param str src, tar: two strings to be compared  | 
            ||
| 538 | :param bool allow_different_lengths:  | 
            ||
| 539 | If True (default), this returns the Hamming distance for those  | 
            ||
| 540 | characters that have a matching character in both strings plus the  | 
            ||
| 541 | difference in the strings' lengths. This is equivalent to extending  | 
            ||
| 542 | the shorter string with obligatorily non-matching characters.  | 
            ||
| 543 | If False, an exception is raised in the case of strings of unequal  | 
            ||
| 544 | lengths.  | 
            ||
| 545 | :returns: normalized Hamming similarity  | 
            ||
| 546 | :rtype: float  | 
            ||
| 547 | |||
| 548 |     >>> sim_hamming('cat', 'hat') | 
            ||
| 549 | 0.6666666666666667  | 
            ||
| 550 |     >>> sim_hamming('Niall', 'Neil') | 
            ||
| 551 | 0.4  | 
            ||
| 552 |     >>> sim_hamming('aluminum', 'Catalan') | 
            ||
| 553 | 0.0  | 
            ||
| 554 |     >>> sim_hamming('ATCG', 'TAGC') | 
            ||
| 555 | 0.0  | 
            ||
| 556 | """  | 
            ||
| 557 | return 1 - dist_hamming(src, tar, difflens)  | 
            ||
| 558 | |||
| 559 | |||
| 560 | def _get_qgrams(src, tar, qval):  | 
            ||
| 561 | """Return the Q-Grams in src & tar.  | 
            ||
| 562 | |||
| 563 | :param str src, tar: two strings to be compared  | 
            ||
| 564 | (or QGrams/Counter objects)  | 
            ||
| 565 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 566 | version  | 
            ||
| 567 | :return: Q-Grams  | 
            ||
| 568 | """  | 
            ||
| 569 | if isinstance(src, Counter) and isinstance(tar, Counter):  | 
            ||
| 570 | return src, tar  | 
            ||
| 571 | if qval and qval > 0:  | 
            ||
| 572 | return QGrams(src, qval), QGrams(tar, qval)  | 
            ||
| 573 | return Counter(src.strip().split()), Counter(tar.strip().split())  | 
            ||
| 574 | |||
| 575 | |||
| 576 | def sim_tversky(src, tar, qval=2, alpha=1, beta=1, bias=None):  | 
            ||
| 577 | r"""Return the Tversky index of two strings.  | 
            ||
| 578 | |||
| 579 | Tversky index  | 
            ||
| 580 | |||
| 581 | The Tversky index is defined as:  | 
            ||
| 582 | For two sets X and Y:  | 
            ||
| 583 |     :math:`sim_{Tversky}(X, Y) = \\frac{|X \\cap Y|} | 
            ||
| 584 |     {|X \\cap Y| + \\alpha|X - Y| + \\beta|Y - X|}` | 
            ||
| 585 | |||
| 586 | Cf. https://en.wikipedia.org/wiki/Tversky_index  | 
            ||
| 587 | |||
| 588 | :math:`\\alpha = \\beta = 1` is equivalent to the Jaccard & Tanimoto  | 
            ||
| 589 | similarity coefficients.  | 
            ||
| 590 | |||
| 591 | :math:`\\alpha = \\beta = 0.5` is equivalent to the Sørensen-Dice  | 
            ||
| 592 | similarity coefficient.  | 
            ||
| 593 | |||
| 594 | Unequal α and β will tend to emphasize one or the other set's  | 
            ||
| 595 | contributions:  | 
            ||
| 596 | |||
| 597 | - :math:`\\alpha > \\beta` emphasizes the contributions of X over Y  | 
            ||
| 598 | - :math:`\\alpha < \\beta` emphasizes the contributions of Y over X)  | 
            ||
| 599 | |||
| 600 | Parameter values' relation to 1 emphasizes different types of  | 
            ||
| 601 | contributions:  | 
            ||
| 602 | |||
| 603 | - :math:`\\alpha and \\beta > 1` emphsize unique contributions over the  | 
            ||
| 604 | intersection  | 
            ||
| 605 | - :math:`\\alpha and \\beta < 1` emphsize the intersection over unique  | 
            ||
| 606 | contributions  | 
            ||
| 607 | |||
| 608 | The symmetric variant is defined in Jiminez, Sergio, Claudio Becerra, and  | 
            ||
| 609 | Alexander Gelbukh. 2013. SOFTCARDINALITY-CORE: Improving Text Overlap with  | 
            ||
| 610 | Distributional Measures for Semantic Textual Similarity. This is activated  | 
            ||
| 611 | by specifying a bias parameter.  | 
            ||
| 612 | Cf. http://aclweb.org/anthology/S/S13/S13-1028.pdf  | 
            ||
| 613 | |||
| 614 | :param str src, tar: two strings to be compared  | 
            ||
| 615 | (or QGrams/Counter objects)  | 
            ||
| 616 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 617 | version  | 
            ||
| 618 | :param float alpha, beta: two Tversky index parameters as indicated in the  | 
            ||
| 619 | description below  | 
            ||
| 620 | :returns: Tversky similarity  | 
            ||
| 621 | :rtype: float  | 
            ||
| 622 | |||
| 623 |     >>> sim_tversky('cat', 'hat') | 
            ||
| 624 | 0.3333333333333333  | 
            ||
| 625 |     >>> sim_tversky('Niall', 'Neil') | 
            ||
| 626 | 0.2222222222222222  | 
            ||
| 627 |     >>> sim_tversky('aluminum', 'Catalan') | 
            ||
| 628 | 0.0625  | 
            ||
| 629 |     >>> sim_tversky('ATCG', 'TAGC') | 
            ||
| 630 | 0.0  | 
            ||
| 631 | """  | 
            ||
| 632 | if alpha < 0 or beta < 0:  | 
            ||
| 633 |         raise ValueError('Unsupported weight assignment; alpha and beta ' + | 
            ||
| 634 | 'must be greater than or equal to 0.')  | 
            ||
| 635 | |||
| 636 | if src == tar:  | 
            ||
| 637 | return 1.0  | 
            ||
| 638 | elif not src or not tar:  | 
            ||
| 639 | return 0.0  | 
            ||
| 640 | |||
| 641 | q_src, q_tar = _get_qgrams(src, tar, qval)  | 
            ||
| 642 | q_src_mag = sum(q_src.values())  | 
            ||
| 643 | q_tar_mag = sum(q_tar.values())  | 
            ||
| 644 | q_intersection_mag = sum((q_src & q_tar).values())  | 
            ||
| 645 | |||
| 646 | if not q_src or not q_tar:  | 
            ||
| 647 | return 0.0  | 
            ||
| 648 | |||
| 649 | if bias is None:  | 
            ||
| 650 | return q_intersection_mag / (q_intersection_mag + alpha *  | 
            ||
| 651 | (q_src_mag - q_intersection_mag) +  | 
            ||
| 652 | beta * (q_tar_mag - q_intersection_mag))  | 
            ||
| 653 | |||
| 654 | a_val = min(q_src_mag - q_intersection_mag,  | 
            ||
| 655 | q_tar_mag - q_intersection_mag)  | 
            ||
| 656 | b_val = max(q_src_mag - q_intersection_mag,  | 
            ||
| 657 | q_tar_mag - q_intersection_mag)  | 
            ||
| 658 | c_val = q_intersection_mag + bias  | 
            ||
| 659 | return c_val / (beta * (alpha * a_val + (1 - alpha) * b_val) + c_val)  | 
            ||
| 660 | |||
| 661 | |||
| 662 | def dist_tversky(src, tar, qval=2, alpha=1, beta=1, bias=None):  | 
            ||
| 663 | """Return the Tverssky distance between two strings.  | 
            ||
| 664 | |||
| 665 | Tversky distance  | 
            ||
| 666 | |||
| 667 | Tversky distance is the complement of the Tvesrsky index (similarity):  | 
            ||
| 668 |     :math:`dist_{Tversky} = 1-sim_{Tversky}` | 
            ||
| 669 | |||
| 670 | The symmetric variant is defined in Jiminez, Sergio, Claudio Becerra, and  | 
            ||
| 671 | Alexander Gelbukh. 2013. SOFTCARDINALITY-CORE: Improving Text Overlap with  | 
            ||
| 672 | Distributional Measures for Semantic Textual Similarity. This is activated  | 
            ||
| 673 | by specifying a bias parameter.  | 
            ||
| 674 | Cf. http://aclweb.org/anthology/S/S13/S13-1028.pdf  | 
            ||
| 675 | |||
| 676 | :param str src, tar: two strings to be compared  | 
            ||
| 677 | (or QGrams/Counter objects)  | 
            ||
| 678 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 679 | version  | 
            ||
| 680 | :param float alpha, beta: two Tversky index parameters as indicated in the  | 
            ||
| 681 | description below  | 
            ||
| 682 | :returns: Tversky distance  | 
            ||
| 683 | :rtype: float  | 
            ||
| 684 | |||
| 685 |     >>> dist_tversky('cat', 'hat') | 
            ||
| 686 | 0.6666666666666667  | 
            ||
| 687 |     >>> dist_tversky('Niall', 'Neil') | 
            ||
| 688 | 0.7777777777777778  | 
            ||
| 689 |     >>> dist_tversky('aluminum', 'Catalan') | 
            ||
| 690 | 0.9375  | 
            ||
| 691 |     >>> dist_tversky('ATCG', 'TAGC') | 
            ||
| 692 | 1.0  | 
            ||
| 693 | """  | 
            ||
| 694 | return 1 - sim_tversky(src, tar, qval, alpha, beta, bias)  | 
            ||
| 695 | |||
| 696 | |||
| 697 | def sim_dice(src, tar, qval=2):  | 
            ||
| 698 | r"""Return the Sørensen–Dice coefficient of two strings.  | 
            ||
| 699 | |||
| 700 | Sørensen–Dice coefficient  | 
            ||
| 701 | |||
| 702 | For two sets X and Y, the Sørensen–Dice coefficient is  | 
            ||
| 703 |     :math:`sim_{dice}(X, Y) = \\frac{2 \\cdot |X \\cap Y|}{|X| + |Y|}` | 
            ||
| 704 | |||
| 705 | This is identical to the Tanimoto similarity coefficient  | 
            ||
| 706 | and the Tversky index for :math:`\\alpha = \\beta = 0.5`  | 
            ||
| 707 | |||
| 708 | :param str src, tar: two strings to be compared (or QGrams/Counter objects)  | 
            ||
| 709 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 710 | version  | 
            ||
| 711 | :returns: Sørensen–Dice similarity  | 
            ||
| 712 | :rtype: float  | 
            ||
| 713 | |||
| 714 |     >>> sim_dice('cat', 'hat') | 
            ||
| 715 | 0.5  | 
            ||
| 716 |     >>> sim_dice('Niall', 'Neil') | 
            ||
| 717 | 0.36363636363636365  | 
            ||
| 718 |     >>> sim_dice('aluminum', 'Catalan') | 
            ||
| 719 | 0.11764705882352941  | 
            ||
| 720 |     >>> sim_dice('ATCG', 'TAGC') | 
            ||
| 721 | 0.0  | 
            ||
| 722 | """  | 
            ||
| 723 | return sim_tversky(src, tar, qval, 0.5, 0.5)  | 
            ||
| 724 | |||
| 725 | |||
| 726 | def dist_dice(src, tar, qval=2):  | 
            ||
| 727 | """Return the Sørensen–Dice distance between two strings.  | 
            ||
| 728 | |||
| 729 | Sørensen–Dice distance  | 
            ||
| 730 | |||
| 731 | Sørensen–Dice distance is the complemenjt of the Sørensen–Dice coefficient:  | 
            ||
| 732 |     :math:`dist_{dice} = 1 - sim_{dice}` | 
            ||
| 733 | |||
| 734 | :param str src, tar: two strings to be compared (or QGrams/Counter objects)  | 
            ||
| 735 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 736 | version  | 
            ||
| 737 | :returns: Sørensen–Dice distance  | 
            ||
| 738 | :rtype: float  | 
            ||
| 739 | |||
| 740 |     >>> dist_dice('cat', 'hat') | 
            ||
| 741 | 0.5  | 
            ||
| 742 |     >>> dist_dice('Niall', 'Neil') | 
            ||
| 743 | 0.6363636363636364  | 
            ||
| 744 |     >>> dist_dice('aluminum', 'Catalan') | 
            ||
| 745 | 0.8823529411764706  | 
            ||
| 746 |     >>> dist_dice('ATCG', 'TAGC') | 
            ||
| 747 | 1.0  | 
            ||
| 748 | """  | 
            ||
| 749 | return 1 - sim_dice(src, tar, qval)  | 
            ||
| 750 | |||
| 751 | |||
| 752 | def sim_jaccard(src, tar, qval=2):  | 
            ||
| 753 | r"""Return the Jaccard similarity of two strings.  | 
            ||
| 754 | |||
| 755 | Jaccard similarity coefficient  | 
            ||
| 756 | |||
| 757 | For two sets X and Y, the Jaccard similarity coefficient is  | 
            ||
| 758 |     :math:`sim_{jaccard}(X, Y) = \\frac{|X \\cap Y|}{|X \\cup Y|}` | 
            ||
| 759 | |||
| 760 | This is identical to the Tanimoto similarity coefficient  | 
            ||
| 761 | and the Tversky index for :math:`\\alpha = \\beta = 1`  | 
            ||
| 762 | |||
| 763 | :param str src, tar: two strings to be compared (or QGrams/Counter objects)  | 
            ||
| 764 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 765 | version  | 
            ||
| 766 | :returns: Jaccard similarity  | 
            ||
| 767 | :rtype: float  | 
            ||
| 768 | |||
| 769 |     >>> sim_jaccard('cat', 'hat') | 
            ||
| 770 | 0.3333333333333333  | 
            ||
| 771 |     >>> sim_jaccard('Niall', 'Neil') | 
            ||
| 772 | 0.2222222222222222  | 
            ||
| 773 |     >>> sim_jaccard('aluminum', 'Catalan') | 
            ||
| 774 | 0.0625  | 
            ||
| 775 |     >>> sim_jaccard('ATCG', 'TAGC') | 
            ||
| 776 | 0.0  | 
            ||
| 777 | """  | 
            ||
| 778 | return sim_tversky(src, tar, qval, 1, 1)  | 
            ||
| 779 | |||
| 780 | |||
| 781 | def dist_jaccard(src, tar, qval=2):  | 
            ||
| 782 | """Return the Jaccard distance between two strings.  | 
            ||
| 783 | |||
| 784 | Jaccard distance  | 
            ||
| 785 | |||
| 786 | Jaccard distance is the complement of the Jaccard similarity coefficient:  | 
            ||
| 787 |     :math:`dist_{Jaccard} = 1 - sim_{Jaccard}` | 
            ||
| 788 | |||
| 789 | :param str src, tar: two strings to be compared (or QGrams/Counter objects)  | 
            ||
| 790 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 791 | version  | 
            ||
| 792 | :returns: Jaccard distance  | 
            ||
| 793 | :rtype: float  | 
            ||
| 794 | |||
| 795 |     >>> dist_jaccard('cat', 'hat') | 
            ||
| 796 | 0.6666666666666667  | 
            ||
| 797 |     >>> dist_jaccard('Niall', 'Neil') | 
            ||
| 798 | 0.7777777777777778  | 
            ||
| 799 |     >>> dist_jaccard('aluminum', 'Catalan') | 
            ||
| 800 | 0.9375  | 
            ||
| 801 |     >>> dist_jaccard('ATCG', 'TAGC') | 
            ||
| 802 | 1.0  | 
            ||
| 803 | """  | 
            ||
| 804 | return 1 - sim_jaccard(src, tar, qval)  | 
            ||
| 805 | |||
| 806 | |||
| 807 | def sim_overlap(src, tar, qval=2):  | 
            ||
| 808 | r"""Return the overlap coefficient of two strings.  | 
            ||
| 809 | |||
| 810 | Overlap coefficient  | 
            ||
| 811 | |||
| 812 | For two sets X and Y, the overlap coefficient is  | 
            ||
| 813 |     :math:`sim_{overlap}(X, Y) = \\frac{|X \\cap Y|}{min(|X|, |Y|)}` | 
            ||
| 814 | |||
| 815 | :param str src, tar: two strings to be compared (or QGrams/Counter objects)  | 
            ||
| 816 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 817 | version  | 
            ||
| 818 | :returns: overlap similarity  | 
            ||
| 819 | :rtype: float  | 
            ||
| 820 | |||
| 821 |     >>> sim_overlap('cat', 'hat') | 
            ||
| 822 | 0.5  | 
            ||
| 823 |     >>> sim_overlap('Niall', 'Neil') | 
            ||
| 824 | 0.4  | 
            ||
| 825 |     >>> sim_overlap('aluminum', 'Catalan') | 
            ||
| 826 | 0.125  | 
            ||
| 827 |     >>> sim_overlap('ATCG', 'TAGC') | 
            ||
| 828 | 0.0  | 
            ||
| 829 | """  | 
            ||
| 830 | if src == tar:  | 
            ||
| 831 | return 1.0  | 
            ||
| 832 | elif not src or not tar:  | 
            ||
| 833 | return 0.0  | 
            ||
| 834 | |||
| 835 | q_src, q_tar = _get_qgrams(src, tar, qval)  | 
            ||
| 836 | q_src_mag = sum(q_src.values())  | 
            ||
| 837 | q_tar_mag = sum(q_tar.values())  | 
            ||
| 838 | q_intersection_mag = sum((q_src & q_tar).values())  | 
            ||
| 839 | |||
| 840 | return q_intersection_mag / min(q_src_mag, q_tar_mag)  | 
            ||
| 841 | |||
| 842 | |||
| 843 | def dist_overlap(src, tar, qval=2):  | 
            ||
| 844 | """Return the overlap distance between two strings.  | 
            ||
| 845 | |||
| 846 | Overlap distance  | 
            ||
| 847 | |||
| 848 | Overlap distance is the complement of the overlap coefficient:  | 
            ||
| 849 |     :math:`sim_{overlap} = 1 - dist_{overlap}` | 
            ||
| 850 | |||
| 851 | :param str src, tar: two strings to be compared (or QGrams/Counter objects)  | 
            ||
| 852 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 853 | version  | 
            ||
| 854 | :returns: overlap distance  | 
            ||
| 855 | :rtype: float  | 
            ||
| 856 | |||
| 857 |     >>> dist_overlap('cat', 'hat') | 
            ||
| 858 | 0.5  | 
            ||
| 859 |     >>> dist_overlap('Niall', 'Neil') | 
            ||
| 860 | 0.6  | 
            ||
| 861 |     >>> dist_overlap('aluminum', 'Catalan') | 
            ||
| 862 | 0.875  | 
            ||
| 863 |     >>> dist_overlap('ATCG', 'TAGC') | 
            ||
| 864 | 1.0  | 
            ||
| 865 | """  | 
            ||
| 866 | return 1 - sim_overlap(src, tar, qval)  | 
            ||
| 867 | |||
| 868 | |||
| 869 | def sim_tanimoto(src, tar, qval=2):  | 
            ||
| 870 | r"""Return the Tanimoto similarity of two strings.  | 
            ||
| 871 | |||
| 872 | Tanimoto similarity  | 
            ||
| 873 | |||
| 874 | For two sets X and Y, the Tanimoto similarity coefficient is  | 
            ||
| 875 |     :math:`sim_{Tanimoto}(X, Y) = \\frac{|X \\cap Y|}{|X \\cup Y|}` | 
            ||
| 876 | This is identical to the Jaccard similarity coefficient  | 
            ||
| 877 | and the Tversky index for :math:`\\alpha = \\beta = 1`  | 
            ||
| 878 | |||
| 879 | :param str src, tar: two strings to be compared (or QGrams/Counter objects)  | 
            ||
| 880 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 881 | version  | 
            ||
| 882 | :returns: Tanimoto similarity  | 
            ||
| 883 | :rtype: float  | 
            ||
| 884 | |||
| 885 |     >>> sim_tanimoto('cat', 'hat') | 
            ||
| 886 | 0.3333333333333333  | 
            ||
| 887 |     >>> sim_tanimoto('Niall', 'Neil') | 
            ||
| 888 | 0.2222222222222222  | 
            ||
| 889 |     >>> sim_tanimoto('aluminum', 'Catalan') | 
            ||
| 890 | 0.0625  | 
            ||
| 891 |     >>> sim_tanimoto('ATCG', 'TAGC') | 
            ||
| 892 | 0.0  | 
            ||
| 893 | """  | 
            ||
| 894 | return sim_jaccard(src, tar, qval)  | 
            ||
| 895 | |||
| 896 | |||
| 897 | def tanimoto(src, tar, qval=2):  | 
            ||
| 898 | """Return the Tanimoto distance between two strings.  | 
            ||
| 899 | |||
| 900 | Tanimoto distance  | 
            ||
| 901 | |||
| 902 |     Tanimoto distance is :math:`-log_{2}sim_{Tanimoto}` | 
            ||
| 903 | |||
| 904 | :param str src, tar: two strings to be compared (or QGrams/Counter objects)  | 
            ||
| 905 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 906 | version  | 
            ||
| 907 | :returns: Tanimoto distance  | 
            ||
| 908 | :rtype: float  | 
            ||
| 909 | |||
| 910 |     >>> tanimoto('cat', 'hat') | 
            ||
| 911 | -1.5849625007211563  | 
            ||
| 912 |     >>> tanimoto('Niall', 'Neil') | 
            ||
| 913 | -2.1699250014423126  | 
            ||
| 914 |     >>> tanimoto('aluminum', 'Catalan') | 
            ||
| 915 | -4.0  | 
            ||
| 916 |     >>> tanimoto('ATCG', 'TAGC') | 
            ||
| 917 | -inf  | 
            ||
| 918 | """  | 
            ||
| 919 | coeff = sim_jaccard(src, tar, qval)  | 
            ||
| 920 | if coeff != 0:  | 
            ||
| 921 | return math.log(coeff, 2)  | 
            ||
| 922 | |||
| 923 |     return float('-inf') | 
            ||
| 924 | |||
| 925 | |||
| 926 | def minkowski(src, tar, qval=2, pval=1, normalize=False):  | 
            ||
| 927 | """Return the Minkowski distance (:math:`L^p-norm`) of two strings.  | 
            ||
| 928 | |||
| 929 | :param src:  | 
            ||
| 930 | :param tar:  | 
            ||
| 931 | :param qval:  | 
            ||
| 932 | :param pval:  | 
            ||
| 933 | :return:  | 
            ||
| 934 | """  | 
            ||
| 935 | q_src, q_tar = _get_qgrams(src, tar, qval)  | 
            ||
| 936 | diffs = ((q_src - q_tar) + (q_tar - q_src)).values()  | 
            ||
| 937 | |||
| 938 | normalizer = 1  | 
            ||
| 939 | if normalize:  | 
            ||
| 940 | totals = (q_src + q_tar).values()  | 
            ||
| 941 | if pval == 0:  | 
            ||
| 942 | normalizer = len(totals)  | 
            ||
| 943 | else:  | 
            ||
| 944 | normalizer = sum(_**pval for _ in totals)**(1 / pval)  | 
            ||
| 945 | |||
| 946 |     if pval == float('inf'): | 
            ||
| 947 | # Chebyshev distance  | 
            ||
| 948 | return max(diffs)/normalizer  | 
            ||
| 949 | if pval == 0:  | 
            ||
| 950 | # This is the l_0 "norm" as developed by David Donoho  | 
            ||
| 951 | return len(diffs)  | 
            ||
| 952 | return sum(_**pval for _ in diffs)**(1 / pval)/normalizer  | 
            ||
| 953 | |||
| 954 | |||
| 955 | def dist_minkowski(src, tar, qval=2, pval=1):  | 
            ||
| 956 | """Return Minkowski distance of two strings, normalized to [0, 1].  | 
            ||
| 957 | |||
| 958 | :param src:  | 
            ||
| 959 | :param tar:  | 
            ||
| 960 | :param qval2:  | 
            ||
| 961 | :param pval:  | 
            ||
| 962 | :return:  | 
            ||
| 963 | """  | 
            ||
| 964 | return minkowski(src, tar, qval, pval, True)  | 
            ||
| 965 | |||
| 966 | |||
| 967 | def sim_minkowski(src, tar, qval=2, pval=1):  | 
            ||
| 968 | """Return Minkowski similarity of two strings, normalized to [0, 1].  | 
            ||
| 969 | |||
| 970 | :param src:  | 
            ||
| 971 | :param tar:  | 
            ||
| 972 | :param qval2:  | 
            ||
| 973 | :param pval:  | 
            ||
| 974 | :return:  | 
            ||
| 975 | """  | 
            ||
| 976 | return 1-minkowski(src, tar, qval, pval, True)  | 
            ||
| 977 | |||
| 978 | |||
| 979 | def manhattan(src, tar, qval=2, normalize=False):  | 
            ||
| 980 | """Return the Manhattan distance between two strings.  | 
            ||
| 981 | |||
| 982 | :param src:  | 
            ||
| 983 | :param tar:  | 
            ||
| 984 | :param qval:  | 
            ||
| 985 | :return:  | 
            ||
| 986 | """  | 
            ||
| 987 | return minkowski(src, tar, qval, 1, normalize)  | 
            ||
| 988 | |||
| 989 | |||
| 990 | def dist_manhattan(src, tar, qval=2):  | 
            ||
| 991 | """Return the Manhattan distance between two strings, normalized to [0, 1].  | 
            ||
| 992 | |||
| 993 | This is identical to Canberra distance.  | 
            ||
| 994 | |||
| 995 | :param src:  | 
            ||
| 996 | :param tar:  | 
            ||
| 997 | :param qval:  | 
            ||
| 998 | :return:  | 
            ||
| 999 | """  | 
            ||
| 1000 | return manhattan(src, tar, qval, 1, True)  | 
            ||
| 1001 | |||
| 1002 | |||
| 1003 | def sim_manhattan(src, tar, qval=2):  | 
            ||
| 1004 | """Return the Manhattan similarity of two strings, normalized to [0, 1].  | 
            ||
| 1005 | |||
| 1006 | :param src:  | 
            ||
| 1007 | :param tar:  | 
            ||
| 1008 | :param qval:  | 
            ||
| 1009 | :return:  | 
            ||
| 1010 | """  | 
            ||
| 1011 | return 1-manhattan(src, tar, qval, 1, True)  | 
            ||
| 1012 | |||
| 1013 | |||
| 1014 | def euclidean(src, tar, qval=2, normalize=False):  | 
            ||
| 1015 | """Return the Euclidean distance between two strings.  | 
            ||
| 1016 | |||
| 1017 | :param src:  | 
            ||
| 1018 | :param tar:  | 
            ||
| 1019 | :param qval:  | 
            ||
| 1020 | :return:  | 
            ||
| 1021 | """  | 
            ||
| 1022 | return minkowski(src, tar, qval, 2, normalize)  | 
            ||
| 1023 | |||
| 1024 | |||
| 1025 | def dist_euclidean(src, tar, qval=2):  | 
            ||
| 1026 | """Return the Euclidean distance between two strings, normalized to [0, 1].  | 
            ||
| 1027 | |||
| 1028 | :param src:  | 
            ||
| 1029 | :param tar:  | 
            ||
| 1030 | :param qval:  | 
            ||
| 1031 | :return:  | 
            ||
| 1032 | """  | 
            ||
| 1033 | return euclidean(src, tar, qval, True)  | 
            ||
| 1034 | |||
| 1035 | |||
| 1036 | def sim_euclidean(src, tar, qval=2):  | 
            ||
| 1037 | """Return the Euclidean similarity of two strings, normalized to [0, 1].  | 
            ||
| 1038 | |||
| 1039 | :param src:  | 
            ||
| 1040 | :param tar:  | 
            ||
| 1041 | :param qval:  | 
            ||
| 1042 | :return:  | 
            ||
| 1043 | """  | 
            ||
| 1044 | return 1-euclidean(src, tar, qval, True)  | 
            ||
| 1045 | |||
| 1046 | |||
| 1047 | def chebyshev(src, tar, qval=2, normalize=False):  | 
            ||
| 1048 | """Return the Chebyshev distance between two strings.  | 
            ||
| 1049 | |||
| 1050 | :param src:  | 
            ||
| 1051 | :param tar:  | 
            ||
| 1052 | :param qval:  | 
            ||
| 1053 | :return:  | 
            ||
| 1054 | """  | 
            ||
| 1055 |     return minkowski(src, tar, qval, float('inf'), normalize) | 
            ||
| 1056 | |||
| 1057 | |||
| 1058 | def dist_chebyshev(src, tar, qval=2):  | 
            ||
| 1059 | """Return the Chebyshev distance between two strings, normalized to [0, 1].  | 
            ||
| 1060 | |||
| 1061 | :param src:  | 
            ||
| 1062 | :param tar:  | 
            ||
| 1063 | :param qval:  | 
            ||
| 1064 | :return:  | 
            ||
| 1065 | """  | 
            ||
| 1066 | return chebyshev(src, tar, qval, True)  | 
            ||
| 1067 | |||
| 1068 | |||
| 1069 | def sim_chebyshev(src, tar, qval=2):  | 
            ||
| 1070 | """Return the Chebyshev similarity of two strings, normalized to [0, 1].  | 
            ||
| 1071 | |||
| 1072 | :param src:  | 
            ||
| 1073 | :param tar:  | 
            ||
| 1074 | :param qval:  | 
            ||
| 1075 | :return:  | 
            ||
| 1076 | """  | 
            ||
| 1077 | return 1 - chebyshev(src, tar, qval, True)  | 
            ||
| 1078 | |||
| 1079 | |||
| 1080 | def sim_cosine(src, tar, qval=2):  | 
            ||
| 1081 | r"""Return the cosine similarity of two strings.  | 
            ||
| 1082 | |||
| 1083 | Cosine similarity (Ochiai coefficient)  | 
            ||
| 1084 | |||
| 1085 | For two sets X and Y, the cosine similarity (Ochiai coefficient) is:  | 
            ||
| 1086 |     :math:`sim_{cosine}(X, Y) = \\frac{|X \\cap Y|}{\\sqrt{|X| \\cdot |Y|}}` | 
            ||
| 1087 | |||
| 1088 | :param str src, tar: two strings to be compared (or QGrams/Counter objects)  | 
            ||
| 1089 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 1090 | version  | 
            ||
| 1091 | :returns: cosine similarity  | 
            ||
| 1092 | :rtype: float  | 
            ||
| 1093 | |||
| 1094 |     >>> sim_cosine('cat', 'hat') | 
            ||
| 1095 | 0.5  | 
            ||
| 1096 |     >>> sim_cosine('Niall', 'Neil') | 
            ||
| 1097 | 0.3651483716701107  | 
            ||
| 1098 |     >>> sim_cosine('aluminum', 'Catalan') | 
            ||
| 1099 | 0.11785113019775793  | 
            ||
| 1100 |     >>> sim_cosine('ATCG', 'TAGC') | 
            ||
| 1101 | 0.0  | 
            ||
| 1102 | """  | 
            ||
| 1103 | if src == tar:  | 
            ||
| 1104 | return 1.0  | 
            ||
| 1105 | if not src or not tar:  | 
            ||
| 1106 | return 0.0  | 
            ||
| 1107 | |||
| 1108 | q_src, q_tar = _get_qgrams(src, tar, qval)  | 
            ||
| 1109 | q_src_mag = sum(q_src.values())  | 
            ||
| 1110 | q_tar_mag = sum(q_tar.values())  | 
            ||
| 1111 | q_intersection_mag = sum((q_src & q_tar).values())  | 
            ||
| 1112 | |||
| 1113 | return q_intersection_mag / math.sqrt(q_src_mag * q_tar_mag)  | 
            ||
| 1114 | |||
| 1115 | |||
| 1116 | def dist_cosine(src, tar, qval=2):  | 
            ||
| 1117 | """Return the cosine distance between two strings.  | 
            ||
| 1118 | |||
| 1119 | Cosine distance  | 
            ||
| 1120 | |||
| 1121 | Cosine distance is the complement of cosine similarity:  | 
            ||
| 1122 |     :math:`dist_{cosine} = 1 - sim_{cosine}` | 
            ||
| 1123 | |||
| 1124 | :param str src, tar: two strings to be compared (or QGrams/Counter objects)  | 
            ||
| 1125 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 1126 | version  | 
            ||
| 1127 | :returns: cosine distance  | 
            ||
| 1128 | :rtype: float  | 
            ||
| 1129 | |||
| 1130 |     >>> dist_cosine('cat', 'hat') | 
            ||
| 1131 | 0.5  | 
            ||
| 1132 |     >>> dist_cosine('Niall', 'Neil') | 
            ||
| 1133 | 0.6348516283298893  | 
            ||
| 1134 |     >>> dist_cosine('aluminum', 'Catalan') | 
            ||
| 1135 | 0.882148869802242  | 
            ||
| 1136 |     >>> dist_cosine('ATCG', 'TAGC') | 
            ||
| 1137 | 1.0  | 
            ||
| 1138 | """  | 
            ||
| 1139 | return 1 - sim_cosine(src, tar, qval)  | 
            ||
| 1140 | |||
| 1141 | |||
| 1142 | def sim_strcmp95(src, tar, long_strings=False):  | 
            ||
| 1143 | """Return the strcmp95 similarity of two strings.  | 
            ||
| 1144 | |||
| 1145 | strcmp95 similarity  | 
            ||
| 1146 | |||
| 1147 | This is a Python translation of the C code for strcmp95:  | 
            ||
| 1148 | http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c  | 
            ||
| 1149 | The above file is a US Government publication and, accordingly,  | 
            ||
| 1150 | in the public domain.  | 
            ||
| 1151 | |||
| 1152 | This is based on the Jaro-Winkler distance, but also attempts to correct  | 
            ||
| 1153 | for some common typos and frequently confused characters. It is also  | 
            ||
| 1154 | limited to uppercase ASCII characters, so it is appropriate to American  | 
            ||
| 1155 | names, but not much else.  | 
            ||
| 1156 | |||
| 1157 | :param str src, tar: two strings to be compared  | 
            ||
| 1158 | :param bool long_strings: set to True to "Increase the probability of a  | 
            ||
| 1159 | match when the number of matched characters is large. This option  | 
            ||
| 1160 | allows for a little more tolerance when the strings are large. It is  | 
            ||
| 1161 | not an appropriate test when comparing fixed length fields such as  | 
            ||
| 1162 | phone and social security numbers."  | 
            ||
| 1163 | :returns: strcmp95 similarity  | 
            ||
| 1164 | :rtype: float  | 
            ||
| 1165 | |||
| 1166 |     >>> sim_strcmp95('cat', 'hat') | 
            ||
| 1167 | 0.7777777777777777  | 
            ||
| 1168 |     >>> sim_strcmp95('Niall', 'Neil') | 
            ||
| 1169 | 0.8454999999999999  | 
            ||
| 1170 |     >>> sim_strcmp95('aluminum', 'Catalan') | 
            ||
| 1171 | 0.6547619047619048  | 
            ||
| 1172 |     >>> sim_strcmp95('ATCG', 'TAGC') | 
            ||
| 1173 | 0.8333333333333334  | 
            ||
| 1174 | """  | 
            ||
| 1175 | def _inrange(char):  | 
            ||
| 1176 | """Return True if char is in the range (0, 91)."""  | 
            ||
| 1177 | return ord(char) > 0 and ord(char) < 91  | 
            ||
| 1178 | |||
| 1179 | ying = src.strip().upper()  | 
            ||
| 1180 | yang = tar.strip().upper()  | 
            ||
| 1181 | |||
| 1182 | if ying == yang:  | 
            ||
| 1183 | return 1.0  | 
            ||
| 1184 | # If either string is blank - return - added in Version 2  | 
            ||
| 1185 | if not ying or not yang:  | 
            ||
| 1186 | return 0.0  | 
            ||
| 1187 | |||
| 1188 | adjwt = defaultdict(int)  | 
            ||
| 1189 | sp_mx = (  | 
            ||
| 1190 |         ('A', 'E'), ('A', 'I'), ('A', 'O'), ('A', 'U'), ('B', 'V'), ('E', 'I'), | 
            ||
| 1191 |         ('E', 'O'), ('E', 'U'), ('I', 'O'), ('I', 'U'), ('O', 'U'), ('I', 'Y'), | 
            ||
| 1192 |         ('E', 'Y'), ('C', 'G'), ('E', 'F'), ('W', 'U'), ('W', 'V'), ('X', 'K'), | 
            ||
| 1193 |         ('S', 'Z'), ('X', 'S'), ('Q', 'C'), ('U', 'V'), ('M', 'N'), ('L', 'I'), | 
            ||
| 1194 |         ('Q', 'O'), ('P', 'R'), ('I', 'J'), ('2', 'Z'), ('5', 'S'), ('8', 'B'), | 
            ||
| 1195 |         ('1', 'I'), ('1', 'L'), ('0', 'O'), ('0', 'Q'), ('C', 'K'), ('G', 'J') | 
            ||
| 1196 | )  | 
            ||
| 1197 | |||
| 1198 | # Initialize the adjwt array on the first call to the function only.  | 
            ||
| 1199 | # The adjwt array is used to give partial credit for characters that  | 
            ||
| 1200 | # may be errors due to known phonetic or character recognition errors.  | 
            ||
| 1201 | # A typical example is to match the letter "O" with the number "0"  | 
            ||
| 1202 | for i in sp_mx:  | 
            ||
| 1203 | adjwt[(i[0], i[1])] = 3  | 
            ||
| 1204 | adjwt[(i[1], i[0])] = 3  | 
            ||
| 1205 | |||
| 1206 | if len(ying) > len(yang):  | 
            ||
| 1207 | search_range = len(ying)  | 
            ||
| 1208 | minv = len(yang)  | 
            ||
| 1209 | else:  | 
            ||
| 1210 | search_range = len(yang)  | 
            ||
| 1211 | minv = len(ying)  | 
            ||
| 1212 | |||
| 1213 | # Blank out the flags  | 
            ||
| 1214 | ying_flag = [0] * search_range  | 
            ||
| 1215 | yang_flag = [0] * search_range  | 
            ||
| 1216 | search_range = max(0, search_range // 2 - 1)  | 
            ||
| 1217 | |||
| 1218 | # Looking only within the search range, count and flag the matched pairs.  | 
            ||
| 1219 | num_com = 0  | 
            ||
| 1220 | yl1 = len(yang) - 1  | 
            ||
| 1221 | for i in range(len(ying)):  | 
            ||
| 1222 | lowlim = (i - search_range) if (i >= search_range) else 0  | 
            ||
| 1223 | hilim = (i + search_range) if ((i + search_range) <= yl1) else yl1  | 
            ||
| 1224 | for j in range(lowlim, hilim+1):  | 
            ||
| 1225 | if (yang_flag[j] == 0) and (yang[j] == ying[i]):  | 
            ||
| 1226 | yang_flag[j] = 1  | 
            ||
| 1227 | ying_flag[i] = 1  | 
            ||
| 1228 | num_com += 1  | 
            ||
| 1229 | break  | 
            ||
| 1230 | |||
| 1231 | # If no characters in common - return  | 
            ||
| 1232 | if num_com == 0:  | 
            ||
| 1233 | return 0.0  | 
            ||
| 1234 | |||
| 1235 | # Count the number of transpositions  | 
            ||
| 1236 | k = n_trans = 0  | 
            ||
| 1237 | for i in range(len(ying)):  | 
            ||
| 1238 | if ying_flag[i] != 0:  | 
            ||
| 1239 | for j in range(k, len(yang)):  | 
            ||
| 1240 | if yang_flag[j] != 0:  | 
            ||
| 1241 | k = j + 1  | 
            ||
| 1242 | break  | 
            ||
| 1243 | if ying[i] != yang[j]:  | 
            ||
| 1244 | n_trans += 1  | 
            ||
| 1245 | n_trans = n_trans // 2  | 
            ||
| 1246 | |||
| 1247 | # Adjust for similarities in unmatched characters  | 
            ||
| 1248 | n_simi = 0  | 
            ||
| 1249 | if minv > num_com:  | 
            ||
| 1250 | for i in range(len(ying)):  | 
            ||
| 1251 | if ying_flag[i] == 0 and _inrange(ying[i]):  | 
            ||
| 1252 | for j in range(len(yang)):  | 
            ||
| 1253 | if yang_flag[j] == 0 and _inrange(yang[j]):  | 
            ||
| 1254 | if (ying[i], yang[j]) in adjwt:  | 
            ||
| 1255 | n_simi += adjwt[(ying[i], yang[j])]  | 
            ||
| 1256 | yang_flag[j] = 2  | 
            ||
| 1257 | break  | 
            ||
| 1258 | num_sim = n_simi/10.0 + num_com  | 
            ||
| 1259 | |||
| 1260 | # Main weight computation  | 
            ||
| 1261 | weight = num_sim / len(ying) + num_sim / len(yang) + \  | 
            ||
| 1262 | (num_com - n_trans) / num_com  | 
            ||
| 1263 | weight = weight / 3.0  | 
            ||
| 1264 | |||
| 1265 | # Continue to boost the weight if the strings are similar  | 
            ||
| 1266 | if weight > 0.7:  | 
            ||
| 1267 | |||
| 1268 | # Adjust for having up to the first 4 characters in common  | 
            ||
| 1269 | j = 4 if (minv >= 4) else minv  | 
            ||
| 1270 | i = 0  | 
            ||
| 1271 | while (i < j) and (ying[i] == yang[i]) and (not ying[i].isdigit()):  | 
            ||
| 1272 | i += 1  | 
            ||
| 1273 | if i:  | 
            ||
| 1274 | weight += i * 0.1 * (1.0 - weight)  | 
            ||
| 1275 | |||
| 1276 | # Optionally adjust for long strings.  | 
            ||
| 1277 | |||
| 1278 | # After agreeing beginning chars, at least two more must agree and  | 
            ||
| 1279 | # the agreeing characters must be > .5 of remaining characters.  | 
            ||
| 1280 | if (((long_strings) and (minv > 4) and (num_com > i+1) and  | 
            ||
| 1281 | (2*num_com >= minv+i))):  | 
            ||
| 1282 | if not ying[0].isdigit():  | 
            ||
| 1283 | weight += (1.0-weight) * ((num_com-i-1) /  | 
            ||
| 1284 | (len(ying)+len(yang)-i*2+2))  | 
            ||
| 1285 | |||
| 1286 | return weight  | 
            ||
| 1287 | |||
| 1288 | |||
| 1289 | def dist_strcmp95(src, tar, long_strings=False):  | 
            ||
| 1290 | """Return the strcmp95 distance between two strings.  | 
            ||
| 1291 | |||
| 1292 | strcmp95 distance  | 
            ||
| 1293 | |||
| 1294 | strcmp95 distance is 1 - strcmp95 similarity  | 
            ||
| 1295 | |||
| 1296 | :param str src, tar: two strings to be compared  | 
            ||
| 1297 | :param bool long_strings: set to True to "Increase the probability of a  | 
            ||
| 1298 | match when the number of matched characters is large. This option  | 
            ||
| 1299 | allows for a little more tolerance when the strings are large. It is  | 
            ||
| 1300 | not an appropriate test when comparing fixed length fields such as  | 
            ||
| 1301 | phone and social security numbers."  | 
            ||
| 1302 | :returns: strcmp95 distance  | 
            ||
| 1303 | :rtype: float  | 
            ||
| 1304 | |||
| 1305 |     >>> dist_strcmp95('cat', 'hat') | 
            ||
| 1306 | 0.22222222222222232  | 
            ||
| 1307 |     >>> dist_strcmp95('Niall', 'Neil') | 
            ||
| 1308 | 0.15450000000000008  | 
            ||
| 1309 |     >>> dist_strcmp95('aluminum', 'Catalan') | 
            ||
| 1310 | 0.34523809523809523  | 
            ||
| 1311 |     >>> dist_strcmp95('ATCG', 'TAGC') | 
            ||
| 1312 | 0.16666666666666663  | 
            ||
| 1313 | """  | 
            ||
| 1314 | return 1 - sim_strcmp95(src, tar, long_strings)  | 
            ||
| 1315 | |||
| 1316 | |||
| 1317 | def sim_jaro_winkler(src, tar, qval=1, mode='winkler', long_strings=False,  | 
            ||
| 1318 | boost_threshold=0.7, scaling_factor=0.1):  | 
            ||
| 1319 | """Return the Jaro or Jaro-Winkler similarity of two strings.  | 
            ||
| 1320 | |||
| 1321 | Jaro(-Winkler) distance  | 
            ||
| 1322 | |||
| 1323 | This is Python based on the C code for strcmp95:  | 
            ||
| 1324 | http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c  | 
            ||
| 1325 | The above file is a US Government publication and, accordingly,  | 
            ||
| 1326 | in the public domain.  | 
            ||
| 1327 | |||
| 1328 | :param str src, tar: two strings to be compared  | 
            ||
| 1329 | :param int qval: the length of each q-gram (defaults to 1: character-wise  | 
            ||
| 1330 | matching)  | 
            ||
| 1331 | :param str mode: indicates which variant of this distance metric to  | 
            ||
| 1332 | compute:  | 
            ||
| 1333 | |||
| 1334 | - 'winkler' -- computes the Jaro-Winkler distance (default) which  | 
            ||
| 1335 | increases the score for matches near the start of the word  | 
            ||
| 1336 | - 'jaro' -- computes the Jaro distance  | 
            ||
| 1337 | |||
| 1338 | The following arguments apply only when mode is 'winkler':  | 
            ||
| 1339 | |||
| 1340 | :param bool long_strings: set to True to "Increase the probability of a  | 
            ||
| 1341 | match when the number of matched characters is large. This option  | 
            ||
| 1342 | allows for a little more tolerance when the strings are large. It is  | 
            ||
| 1343 | not an appropriate test when comparing fixed length fields such as  | 
            ||
| 1344 | phone and social security numbers."  | 
            ||
| 1345 | :param float boost_threshold: a value between 0 and 1, below which the  | 
            ||
| 1346 | Winkler boost is not applied (defaults to 0.7)  | 
            ||
| 1347 | :param float scaling_factor: a value between 0 and 0.25, indicating by how  | 
            ||
| 1348 | much to boost scores for matching prefixes (defaults to 0.1)  | 
            ||
| 1349 | |||
| 1350 | :returns: Jaro or Jaro-Winkler similarity  | 
            ||
| 1351 | :rtype: float  | 
            ||
| 1352 | |||
| 1353 |     >>> sim_jaro_winkler('cat', 'hat') | 
            ||
| 1354 | 0.7777777777777777  | 
            ||
| 1355 |     >>> sim_jaro_winkler('Niall', 'Neil') | 
            ||
| 1356 | 0.8049999999999999  | 
            ||
| 1357 |     >>> sim_jaro_winkler('aluminum', 'Catalan') | 
            ||
| 1358 | 0.6011904761904762  | 
            ||
| 1359 |     >>> sim_jaro_winkler('ATCG', 'TAGC') | 
            ||
| 1360 | 0.8333333333333334  | 
            ||
| 1361 | |||
| 1362 |     >>> sim_jaro_winkler('cat', 'hat', mode='jaro') | 
            ||
| 1363 | 0.7777777777777777  | 
            ||
| 1364 |     >>> sim_jaro_winkler('Niall', 'Neil', mode='jaro') | 
            ||
| 1365 | 0.7833333333333333  | 
            ||
| 1366 |     >>> sim_jaro_winkler('aluminum', 'Catalan', mode='jaro') | 
            ||
| 1367 | 0.6011904761904762  | 
            ||
| 1368 |     >>> sim_jaro_winkler('ATCG', 'TAGC', mode='jaro') | 
            ||
| 1369 | 0.8333333333333334  | 
            ||
| 1370 | """  | 
            ||
| 1371 | if mode == 'winkler':  | 
            ||
| 1372 | if boost_threshold > 1 or boost_threshold < 0:  | 
            ||
| 1373 |             raise ValueError('Unsupported boost_threshold assignment; ' + | 
            ||
| 1374 | 'boost_threshold must be between 0 and 1.')  | 
            ||
| 1375 | if scaling_factor > 0.25 or scaling_factor < 0:  | 
            ||
| 1376 |             raise ValueError('Unsupported scaling_factor assignment; ' + | 
            ||
| 1377 | 'scaling_factor must be between 0 and 0.25.')  | 
            ||
| 1378 | |||
| 1379 | if src == tar:  | 
            ||
| 1380 | return 1.0  | 
            ||
| 1381 | |||
| 1382 | src = QGrams(src.strip(), qval).ordered_list  | 
            ||
| 1383 | tar = QGrams(tar.strip(), qval).ordered_list  | 
            ||
| 1384 | |||
| 1385 | lens = len(src)  | 
            ||
| 1386 | lent = len(tar)  | 
            ||
| 1387 | |||
| 1388 | # If either string is blank - return - added in Version 2  | 
            ||
| 1389 | if lens == 0 or lent == 0:  | 
            ||
| 1390 | return 0.0  | 
            ||
| 1391 | |||
| 1392 | if lens > lent:  | 
            ||
| 1393 | search_range = lens  | 
            ||
| 1394 | minv = lent  | 
            ||
| 1395 | else:  | 
            ||
| 1396 | search_range = lent  | 
            ||
| 1397 | minv = lens  | 
            ||
| 1398 | |||
| 1399 | # Zero out the flags  | 
            ||
| 1400 | src_flag = [0] * search_range  | 
            ||
| 1401 | tar_flag = [0] * search_range  | 
            ||
| 1402 | search_range = max(0, search_range//2 - 1)  | 
            ||
| 1403 | |||
| 1404 | # Looking only within the search range, count and flag the matched pairs.  | 
            ||
| 1405 | num_com = 0  | 
            ||
| 1406 | yl1 = lent - 1  | 
            ||
| 1407 | for i in range(lens):  | 
            ||
| 1408 | lowlim = (i - search_range) if (i >= search_range) else 0  | 
            ||
| 1409 | hilim = (i + search_range) if ((i + search_range) <= yl1) else yl1  | 
            ||
| 1410 | for j in range(lowlim, hilim+1):  | 
            ||
| 1411 | if (tar_flag[j] == 0) and (tar[j] == src[i]):  | 
            ||
| 1412 | tar_flag[j] = 1  | 
            ||
| 1413 | src_flag[i] = 1  | 
            ||
| 1414 | num_com += 1  | 
            ||
| 1415 | break  | 
            ||
| 1416 | |||
| 1417 | # If no characters in common - return  | 
            ||
| 1418 | if num_com == 0:  | 
            ||
| 1419 | return 0.0  | 
            ||
| 1420 | |||
| 1421 | # Count the number of transpositions  | 
            ||
| 1422 | k = n_trans = 0  | 
            ||
| 1423 | for i in range(lens):  | 
            ||
| 1424 | if src_flag[i] != 0:  | 
            ||
| 1425 | for j in range(k, lent):  | 
            ||
| 1426 | if tar_flag[j] != 0:  | 
            ||
| 1427 | k = j + 1  | 
            ||
| 1428 | break  | 
            ||
| 1429 | if src[i] != tar[j]:  | 
            ||
| 1430 | n_trans += 1  | 
            ||
| 1431 | n_trans = n_trans // 2  | 
            ||
| 1432 | |||
| 1433 | # Main weight computation for Jaro distance  | 
            ||
| 1434 | weight = num_com / lens + num_com / lent + (num_com - n_trans) / num_com  | 
            ||
| 1435 | weight = weight / 3.0  | 
            ||
| 1436 | |||
| 1437 | # Continue to boost the weight if the strings are similar  | 
            ||
| 1438 | # This is the Winkler portion of Jaro-Winkler distance  | 
            ||
| 1439 | if mode == 'winkler' and weight > boost_threshold:  | 
            ||
| 1440 | |||
| 1441 | # Adjust for having up to the first 4 characters in common  | 
            ||
| 1442 | j = 4 if (minv >= 4) else minv  | 
            ||
| 1443 | i = 0  | 
            ||
| 1444 | while (i < j) and (src[i] == tar[i]):  | 
            ||
| 1445 | i += 1  | 
            ||
| 1446 | if i:  | 
            ||
| 1447 | weight += i * scaling_factor * (1.0 - weight)  | 
            ||
| 1448 | |||
| 1449 | # Optionally adjust for long strings.  | 
            ||
| 1450 | |||
| 1451 | # After agreeing beginning chars, at least two more must agree and  | 
            ||
| 1452 | # the agreeing characters must be > .5 of remaining characters.  | 
            ||
| 1453 | if (((long_strings) and (minv > 4) and (num_com > i+1) and  | 
            ||
| 1454 | (2*num_com >= minv+i))):  | 
            ||
| 1455 | weight += (1.0-weight) * ((num_com-i-1) / (lens+lent-i*2+2))  | 
            ||
| 1456 | |||
| 1457 | return weight  | 
            ||
| 1458 | |||
| 1459 | |||
| 1460 | def dist_jaro_winkler(src, tar, qval=1, mode='winkler', long_strings=False,  | 
            ||
| 1461 | boost_threshold=0.7, scaling_factor=0.1):  | 
            ||
| 1462 | """Return the Jaro or Jaro-Winkler distance between two strings.  | 
            ||
| 1463 | |||
| 1464 | Jaro(-Winkler) distance  | 
            ||
| 1465 | |||
| 1466 | Jaro-Winkler distance is 1 - the Jaro-Winkler similarity  | 
            ||
| 1467 | |||
| 1468 | :param str src, tar: two strings to be compared  | 
            ||
| 1469 | :param int qval: the length of each q-gram (defaults to 1: character-wise  | 
            ||
| 1470 | matching)  | 
            ||
| 1471 | :param str mode: indicates which variant of this distance metric to  | 
            ||
| 1472 | compute:  | 
            ||
| 1473 | |||
| 1474 | - 'winkler' -- computes the Jaro-Winkler distance (default) which  | 
            ||
| 1475 | increases the score for matches near the start of the word  | 
            ||
| 1476 | - 'jaro' -- computes the Jaro distance  | 
            ||
| 1477 | |||
| 1478 | The following arguments apply only when mode is 'winkler':  | 
            ||
| 1479 | |||
| 1480 | :param bool long_strings: set to True to "Increase the probability of a  | 
            ||
| 1481 | match when the number of matched characters is large. This option  | 
            ||
| 1482 | allows for a little more tolerance when the strings are large. It is  | 
            ||
| 1483 | not an appropriate test when comparing fixed length fields such as  | 
            ||
| 1484 | phone and social security numbers."  | 
            ||
| 1485 | :param float boost_threshold: a value between 0 and 1, below which the  | 
            ||
| 1486 | Winkler boost is not applied (defaults to 0.7)  | 
            ||
| 1487 | :param float scaling_factor: a value between 0 and 0.25, indicating by how  | 
            ||
| 1488 | much to boost scores for matching prefixes (defaults to 0.1)  | 
            ||
| 1489 | |||
| 1490 | :returns: Jaro or Jaro-Winkler distance  | 
            ||
| 1491 | :rtype: float  | 
            ||
| 1492 | |||
| 1493 |     >>> dist_jaro_winkler('cat', 'hat') | 
            ||
| 1494 | 0.22222222222222232  | 
            ||
| 1495 |     >>> dist_jaro_winkler('Niall', 'Neil') | 
            ||
| 1496 | 0.19500000000000006  | 
            ||
| 1497 |     >>> dist_jaro_winkler('aluminum', 'Catalan') | 
            ||
| 1498 | 0.39880952380952384  | 
            ||
| 1499 |     >>> dist_jaro_winkler('ATCG', 'TAGC') | 
            ||
| 1500 | 0.16666666666666663  | 
            ||
| 1501 | |||
| 1502 |     >>> dist_jaro_winkler('cat', 'hat', mode='jaro') | 
            ||
| 1503 | 0.22222222222222232  | 
            ||
| 1504 |     >>> dist_jaro_winkler('Niall', 'Neil', mode='jaro') | 
            ||
| 1505 | 0.21666666666666667  | 
            ||
| 1506 |     >>> dist_jaro_winkler('aluminum', 'Catalan', mode='jaro') | 
            ||
| 1507 | 0.39880952380952384  | 
            ||
| 1508 |     >>> dist_jaro_winkler('ATCG', 'TAGC', mode='jaro') | 
            ||
| 1509 | 0.16666666666666663  | 
            ||
| 1510 | """  | 
            ||
| 1511 | return 1 - sim_jaro_winkler(src, tar, qval, mode, long_strings,  | 
            ||
| 1512 | boost_threshold, scaling_factor)  | 
            ||
| 1513 | |||
| 1514 | |||
| 1515 | def lcsseq(src, tar):  | 
            ||
| 1516 | """Return the longest common subsequence of two strings.  | 
            ||
| 1517 | |||
| 1518 | Longest common subsequence (LCSseq)  | 
            ||
| 1519 | |||
| 1520 | Based on the dynamic programming algorithm from  | 
            ||
| 1521 | http://rosettacode.org/wiki/Longest_common_subsequence#Dynamic_Programming_6  | 
            ||
| 1522 | This is licensed GFDL 1.2  | 
            ||
| 1523 | |||
| 1524 | Modifications include:  | 
            ||
| 1525 | conversion to a numpy array in place of a list of lists  | 
            ||
| 1526 | |||
| 1527 | :param str src, tar: two strings to be compared  | 
            ||
| 1528 | :returns: the longes common subsequence  | 
            ||
| 1529 | :rtype: str  | 
            ||
| 1530 | |||
| 1531 |     >>> lcsseq('cat', 'hat') | 
            ||
| 1532 | 'at'  | 
            ||
| 1533 |     >>> lcsseq('Niall', 'Neil') | 
            ||
| 1534 | 'Nil'  | 
            ||
| 1535 |     >>> lcsseq('aluminum', 'Catalan') | 
            ||
| 1536 | 'aln'  | 
            ||
| 1537 |     >>> lcsseq('ATCG', 'TAGC') | 
            ||
| 1538 | 'AC'  | 
            ||
| 1539 | """  | 
            ||
| 1540 | # pylint: disable=no-member  | 
            ||
| 1541 | lengths = np.zeros((len(src)+1, len(tar)+1), dtype=np.int)  | 
            ||
| 1542 | # pylint: enable=no-member  | 
            ||
| 1543 | |||
| 1544 | # row 0 and column 0 are initialized to 0 already  | 
            ||
| 1545 | for i, src_char in enumerate(src):  | 
            ||
| 1546 | for j, tar_char in enumerate(tar):  | 
            ||
| 1547 | if src_char == tar_char:  | 
            ||
| 1548 | lengths[i+1, j+1] = lengths[i, j] + 1  | 
            ||
| 1549 | else:  | 
            ||
| 1550 | lengths[i+1, j+1] = max(lengths[i+1, j], lengths[i, j+1])  | 
            ||
| 1551 | |||
| 1552 | # read the substring out from the matrix  | 
            ||
| 1553 | result = ''  | 
            ||
| 1554 | i, j = len(src), len(tar)  | 
            ||
| 1555 | while i != 0 and j != 0:  | 
            ||
| 1556 | if lengths[i, j] == lengths[i-1, j]:  | 
            ||
| 1557 | i -= 1  | 
            ||
| 1558 | elif lengths[i, j] == lengths[i, j-1]:  | 
            ||
| 1559 | j -= 1  | 
            ||
| 1560 | else:  | 
            ||
| 1561 | result = src[i-1] + result  | 
            ||
| 1562 | i -= 1  | 
            ||
| 1563 | j -= 1  | 
            ||
| 1564 | return result  | 
            ||
| 1565 | |||
| 1566 | |||
| 1567 | def sim_lcsseq(src, tar):  | 
            ||
| 1568 | r"""Return the longest common subsequence similarity of two strings.  | 
            ||
| 1569 | |||
| 1570 |     Longest common subsequence similarity (:math:`sim_{LCSseq}`) | 
            ||
| 1571 | |||
| 1572 | This employs the LCSseq function to derive a similarity metric:  | 
            ||
| 1573 |     :math:`sim_{LCSseq}(s,t) = \\frac{|LCSseq(s,t)|}{max(|s|, |t|)}` | 
            ||
| 1574 | |||
| 1575 | :param str src, tar: two strings to be compared  | 
            ||
| 1576 | :returns: LCSseq similarity  | 
            ||
| 1577 | :rtype: float  | 
            ||
| 1578 | |||
| 1579 |     >>> sim_lcsseq('cat', 'hat') | 
            ||
| 1580 | 0.6666666666666666  | 
            ||
| 1581 |     >>> sim_lcsseq('Niall', 'Neil') | 
            ||
| 1582 | 0.6  | 
            ||
| 1583 |     >>> sim_lcsseq('aluminum', 'Catalan') | 
            ||
| 1584 | 0.375  | 
            ||
| 1585 |     >>> sim_lcsseq('ATCG', 'TAGC') | 
            ||
| 1586 | 0.5  | 
            ||
| 1587 | """  | 
            ||
| 1588 | if src == tar:  | 
            ||
| 1589 | return 1.0  | 
            ||
| 1590 | elif not src or not tar:  | 
            ||
| 1591 | return 0.0  | 
            ||
| 1592 | return len(lcsseq(src, tar)) / max(len(src), len(tar))  | 
            ||
| 1593 | |||
| 1594 | |||
| 1595 | def dist_lcsseq(src, tar):  | 
            ||
| 1596 | """Return the longest common subsequence distance between two strings.  | 
            ||
| 1597 | |||
| 1598 |     Longest common subsequence distance (:math:`dist_{LCSseq}`) | 
            ||
| 1599 | |||
| 1600 | This employs the LCSseq function to derive a similarity metric:  | 
            ||
| 1601 |     :math:`dist_{LCSseq}(s,t) = 1 - sim_{LCSseq}(s,t)` | 
            ||
| 1602 | |||
| 1603 | :param str src, tar: two strings to be compared  | 
            ||
| 1604 | :returns: LCSseq distance  | 
            ||
| 1605 | :rtype: float  | 
            ||
| 1606 | |||
| 1607 |     >>> dist_lcsseq('cat', 'hat') | 
            ||
| 1608 | 0.33333333333333337  | 
            ||
| 1609 |     >>> dist_lcsseq('Niall', 'Neil') | 
            ||
| 1610 | 0.4  | 
            ||
| 1611 |     >>> dist_lcsseq('aluminum', 'Catalan') | 
            ||
| 1612 | 0.625  | 
            ||
| 1613 |     >>> dist_lcsseq('ATCG', 'TAGC') | 
            ||
| 1614 | 0.5  | 
            ||
| 1615 | """  | 
            ||
| 1616 | return 1 - sim_lcsseq(src, tar)  | 
            ||
| 1617 | |||
| 1618 | |||
| 1619 | def lcsstr(src, tar):  | 
            ||
| 1620 | """Return the longest common substring of two strings.  | 
            ||
| 1621 | |||
| 1622 | Longest common substring (LCSstr)  | 
            ||
| 1623 | |||
| 1624 | Based on the code from  | 
            ||
| 1625 | https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Longest_common_substring#Python  | 
            ||
| 1626 | This is licensed Creative Commons: Attribution-ShareAlike 3.0  | 
            ||
| 1627 | |||
| 1628 | Modifications include:  | 
            ||
| 1629 | |||
| 1630 | - conversion to a numpy array in place of a list of lists  | 
            ||
| 1631 | - conversion to Python 2/3-safe range from xrange via six  | 
            ||
| 1632 | |||
| 1633 | :param str src, tar: two strings to be compared  | 
            ||
| 1634 | :returns: the longes common substring  | 
            ||
| 1635 | :rtype: float  | 
            ||
| 1636 | |||
| 1637 |     >>> lcsstr('cat', 'hat') | 
            ||
| 1638 | 'at'  | 
            ||
| 1639 |     >>> lcsstr('Niall', 'Neil') | 
            ||
| 1640 | 'N'  | 
            ||
| 1641 |     >>> lcsstr('aluminum', 'Catalan') | 
            ||
| 1642 | 'al'  | 
            ||
| 1643 |     >>> lcsstr('ATCG', 'TAGC') | 
            ||
| 1644 | 'A'  | 
            ||
| 1645 | """  | 
            ||
| 1646 | # pylint: disable=no-member  | 
            ||
| 1647 | lengths = np.zeros((len(src)+1, len(tar)+1), dtype=np.int)  | 
            ||
| 1648 | # pylint: enable=no-member  | 
            ||
| 1649 | longest, i_longest = 0, 0  | 
            ||
| 1650 | for i in range(1, len(src)+1):  | 
            ||
| 1651 | for j in range(1, len(tar)+1):  | 
            ||
| 1652 | if src[i-1] == tar[j-1]:  | 
            ||
| 1653 | lengths[i, j] = lengths[i-1, j-1] + 1  | 
            ||
| 1654 | if lengths[i, j] > longest:  | 
            ||
| 1655 | longest = lengths[i, j]  | 
            ||
| 1656 | i_longest = i  | 
            ||
| 1657 | else:  | 
            ||
| 1658 | lengths[i, j] = 0  | 
            ||
| 1659 | return src[i_longest - longest:i_longest]  | 
            ||
| 1660 | |||
| 1661 | |||
| 1662 | def sim_lcsstr(src, tar):  | 
            ||
| 1663 | r"""Return the longest common substring similarity of two strings.  | 
            ||
| 1664 | |||
| 1665 |     Longest common substring similarity (:math:`sim_{LCSstr}`) | 
            ||
| 1666 | |||
| 1667 | This employs the LCS function to derive a similarity metric:  | 
            ||
| 1668 |     :math:`sim_{LCSstr}(s,t) = \\frac{|LCSstr(s,t)|}{max(|s|, |t|)}` | 
            ||
| 1669 | |||
| 1670 | :param str src, tar: two strings to be compared  | 
            ||
| 1671 | :returns: LCSstr similarity  | 
            ||
| 1672 | :rtype: float  | 
            ||
| 1673 | |||
| 1674 |     >>> sim_lcsstr('cat', 'hat') | 
            ||
| 1675 | 0.6666666666666666  | 
            ||
| 1676 |     >>> sim_lcsstr('Niall', 'Neil') | 
            ||
| 1677 | 0.2  | 
            ||
| 1678 |     >>> sim_lcsstr('aluminum', 'Catalan') | 
            ||
| 1679 | 0.25  | 
            ||
| 1680 |     >>> sim_lcsstr('ATCG', 'TAGC') | 
            ||
| 1681 | 0.25  | 
            ||
| 1682 | """  | 
            ||
| 1683 | if src == tar:  | 
            ||
| 1684 | return 1.0  | 
            ||
| 1685 | elif not src or not tar:  | 
            ||
| 1686 | return 0.0  | 
            ||
| 1687 | return len(lcsstr(src, tar)) / max(len(src), len(tar))  | 
            ||
| 1688 | |||
| 1689 | |||
| 1690 | def dist_lcsstr(src, tar):  | 
            ||
| 1691 | """Return the longest common substring distance between two strings.  | 
            ||
| 1692 | |||
| 1693 |     Longest common substring distance (:math:`dist_{LCSstr}`) | 
            ||
| 1694 | |||
| 1695 | This employs the LCS function to derive a similarity metric:  | 
            ||
| 1696 |     :math:`dist_{LCSstr}(s,t) = 1 - sim_{LCSstr}(s,t)` | 
            ||
| 1697 | |||
| 1698 | :param str src, tar: two strings to be compared  | 
            ||
| 1699 | :returns: LCSstr distance  | 
            ||
| 1700 | :rtype: float  | 
            ||
| 1701 | |||
| 1702 |     >>> dist_lcsstr('cat', 'hat') | 
            ||
| 1703 | 0.33333333333333337  | 
            ||
| 1704 |     >>> dist_lcsstr('Niall', 'Neil') | 
            ||
| 1705 | 0.8  | 
            ||
| 1706 |     >>> dist_lcsstr('aluminum', 'Catalan') | 
            ||
| 1707 | 0.75  | 
            ||
| 1708 |     >>> dist_lcsstr('ATCG', 'TAGC') | 
            ||
| 1709 | 0.75  | 
            ||
| 1710 | """  | 
            ||
| 1711 | return 1 - sim_lcsstr(src, tar)  | 
            ||
| 1712 | |||
| 1713 | |||
| 1714 | def sim_ratcliff_obershelp(src, tar):  | 
            ||
| 1715 | """Return the Ratcliff-Obershelp similarity of two strings.  | 
            ||
| 1716 | |||
| 1717 | Ratcliff-Obershelp similarity  | 
            ||
| 1718 | |||
| 1719 | This follows the Ratcliff-Obershelp algorithm to derive a similarity  | 
            ||
| 1720 | measure:  | 
            ||
| 1721 | |||
| 1722 | 1. Find the length of the longest common substring in src & tar.  | 
            ||
| 1723 | 2. Recurse on the strings to the left & right of each this substring  | 
            ||
| 1724 | in src & tar. The base case is a 0 length common substring, in which  | 
            ||
| 1725 | case, return 0. Otherwise, return the sum of the current longest  | 
            ||
| 1726 | common substring and the left & right recursed sums.  | 
            ||
| 1727 | 3. Multiply this length by 2 and divide by the sum of the lengths of  | 
            ||
| 1728 | src & tar.  | 
            ||
| 1729 | |||
| 1730 | Cf.  | 
            ||
| 1731 | http://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970  | 
            ||
| 1732 | |||
| 1733 | :param str src, tar: two strings to be compared  | 
            ||
| 1734 | :returns: Ratcliff-Obserhelp similarity  | 
            ||
| 1735 | :rtype: float  | 
            ||
| 1736 | |||
| 1737 |     >>> sim_ratcliff_obershelp('cat', 'hat') | 
            ||
| 1738 | 0.66666666666666663  | 
            ||
| 1739 |     >>> sim_ratcliff_obershelp('Niall', 'Neil') | 
            ||
| 1740 | 0.66666666666666663  | 
            ||
| 1741 |     >>> sim_ratcliff_obershelp('aluminum', 'Catalan') | 
            ||
| 1742 | 0.40000000000000002  | 
            ||
| 1743 |     >>> sim_ratcliff_obershelp('ATCG', 'TAGC') | 
            ||
| 1744 | 0.5  | 
            ||
| 1745 | """  | 
            ||
| 1746 | def _lcsstr_stl(src, tar):  | 
            ||
| 1747 | """Return start positions & length for Ratcliff-Obershelp.  | 
            ||
| 1748 | |||
| 1749 | Return the start position in the source string, start position in  | 
            ||
| 1750 | the target string, and length of the longest common substring of  | 
            ||
| 1751 | strings src and tar.  | 
            ||
| 1752 | """  | 
            ||
| 1753 | # pylint: disable=no-member  | 
            ||
| 1754 | lengths = np.zeros((len(src)+1, len(tar)+1), dtype=np.int)  | 
            ||
| 1755 | # pylint: enable=no-member  | 
            ||
| 1756 | longest, src_longest, tar_longest = 0, 0, 0  | 
            ||
| 1757 | for i in range(1, len(src)+1):  | 
            ||
| 1758 | for j in range(1, len(tar)+1):  | 
            ||
| 1759 | if src[i-1] == tar[j-1]:  | 
            ||
| 1760 | lengths[i, j] = lengths[i-1, j-1] + 1  | 
            ||
| 1761 | if lengths[i, j] > longest:  | 
            ||
| 1762 | longest = lengths[i, j]  | 
            ||
| 1763 | src_longest = i  | 
            ||
| 1764 | tar_longest = j  | 
            ||
| 1765 | else:  | 
            ||
| 1766 | lengths[i, j] = 0  | 
            ||
| 1767 | return (src_longest-longest, tar_longest-longest, longest)  | 
            ||
| 1768 | |||
| 1769 | def _sstr_matches(src, tar):  | 
            ||
| 1770 | """Return the sum of substring match lengths.  | 
            ||
| 1771 | |||
| 1772 | This follows the Ratcliff-Obershelp algorithm:  | 
            ||
| 1773 | 1. Find the length of the longest common substring in src & tar.  | 
            ||
| 1774 | 2. Recurse on the strings to the left & right of each this  | 
            ||
| 1775 | substring in src & tar.  | 
            ||
| 1776 | 3. Base case is a 0 length common substring, in which case,  | 
            ||
| 1777 | return 0.  | 
            ||
| 1778 | 4. Return the sum.  | 
            ||
| 1779 | """  | 
            ||
| 1780 | src_start, tar_start, length = _lcsstr_stl(src, tar)  | 
            ||
| 1781 | if length == 0:  | 
            ||
| 1782 | return 0  | 
            ||
| 1783 | return (_sstr_matches(src[:src_start], tar[:tar_start]) +  | 
            ||
| 1784 | length +  | 
            ||
| 1785 | _sstr_matches(src[src_start+length:], tar[tar_start+length:]))  | 
            ||
| 1786 | |||
| 1787 | if src == tar:  | 
            ||
| 1788 | return 1.0  | 
            ||
| 1789 | elif not src or not tar:  | 
            ||
| 1790 | return 0.0  | 
            ||
| 1791 | return 2*_sstr_matches(src, tar)/(len(src)+len(tar))  | 
            ||
| 1792 | |||
| 1793 | |||
| 1794 | def dist_ratcliff_obershelp(src, tar):  | 
            ||
| 1795 | """Return the Ratcliff-Obershelp distance between two strings.  | 
            ||
| 1796 | |||
| 1797 | Ratcliff-Obershelp distance  | 
            ||
| 1798 | |||
| 1799 | Ratcliff-Obsershelp distance the complement of Ratcliff-Obershelp  | 
            ||
| 1800 | similarity:  | 
            ||
| 1801 |     :math:`dist_{Ratcliff-Obershelp} = 1 - sim_{Ratcliff-Obershelp}` | 
            ||
| 1802 | |||
| 1803 | :param str src, tar: two strings to be compared  | 
            ||
| 1804 | :returns: Ratcliffe-Obershelp distance  | 
            ||
| 1805 | :rtype: float  | 
            ||
| 1806 | |||
| 1807 |     >>> dist_ratcliff_obershelp('cat', 'hat') | 
            ||
| 1808 | 0.33333333333333337  | 
            ||
| 1809 |     >>> dist_ratcliff_obershelp('Niall', 'Neil') | 
            ||
| 1810 | 0.33333333333333337  | 
            ||
| 1811 |     >>> dist_ratcliff_obershelp('aluminum', 'Catalan') | 
            ||
| 1812 | 0.59999999999999998  | 
            ||
| 1813 |     >>> dist_ratcliff_obershelp('ATCG', 'TAGC') | 
            ||
| 1814 | 0.5  | 
            ||
| 1815 | """  | 
            ||
| 1816 | return 1 - sim_ratcliff_obershelp(src, tar)  | 
            ||
| 1817 | |||
| 1818 | |||
| 1819 | def mra_compare(src, tar):  | 
            ||
| 1820 | """Return the MRA comparison rating of two strings.  | 
            ||
| 1821 | |||
| 1822 | Western Airlines Surname Match Rating Algorithm comparison rating  | 
            ||
| 1823 | |||
| 1824 | A description of the algorithm can be found on page 18 of  | 
            ||
| 1825 | https://archive.org/details/accessingindivid00moor  | 
            ||
| 1826 | |||
| 1827 | :param str src, tar: two strings to be compared  | 
            ||
| 1828 | :returns: MRA comparison rating  | 
            ||
| 1829 | :rtype: int  | 
            ||
| 1830 | |||
| 1831 |     >>> mra_compare('cat', 'hat') | 
            ||
| 1832 | 5  | 
            ||
| 1833 |     >>> mra_compare('Niall', 'Neil') | 
            ||
| 1834 | 6  | 
            ||
| 1835 |     >>> mra_compare('aluminum', 'Catalan') | 
            ||
| 1836 | 0  | 
            ||
| 1837 |     >>> mra_compare('ATCG', 'TAGC') | 
            ||
| 1838 | 5  | 
            ||
| 1839 | """  | 
            ||
| 1840 | if src == tar:  | 
            ||
| 1841 | return 6  | 
            ||
| 1842 | if src == '' or tar == '':  | 
            ||
| 1843 | return 0  | 
            ||
| 1844 | src = list(mra(src))  | 
            ||
| 1845 | tar = list(mra(tar))  | 
            ||
| 1846 | |||
| 1847 | if abs(len(src)-len(tar)) > 2:  | 
            ||
| 1848 | return 0  | 
            ||
| 1849 | |||
| 1850 | length_sum = len(src) + len(tar)  | 
            ||
| 1851 | if length_sum < 5:  | 
            ||
| 1852 | min_rating = 5  | 
            ||
| 1853 | elif length_sum < 8:  | 
            ||
| 1854 | min_rating = 4  | 
            ||
| 1855 | elif length_sum < 12:  | 
            ||
| 1856 | min_rating = 3  | 
            ||
| 1857 | else:  | 
            ||
| 1858 | min_rating = 2  | 
            ||
| 1859 | |||
| 1860 | for _ in range(2):  | 
            ||
| 1861 | new_src = []  | 
            ||
| 1862 | new_tar = []  | 
            ||
| 1863 | minlen = min(len(src), len(tar))  | 
            ||
| 1864 | for i in range(minlen):  | 
            ||
| 1865 | if src[i] != tar[i]:  | 
            ||
| 1866 | new_src.append(src[i])  | 
            ||
| 1867 | new_tar.append(tar[i])  | 
            ||
| 1868 | src = new_src+src[minlen:]  | 
            ||
| 1869 | tar = new_tar+tar[minlen:]  | 
            ||
| 1870 | src.reverse()  | 
            ||
| 1871 | tar.reverse()  | 
            ||
| 1872 | |||
| 1873 | similarity = 6 - max(len(src), len(tar))  | 
            ||
| 1874 | |||
| 1875 | if similarity >= min_rating:  | 
            ||
| 1876 | return similarity  | 
            ||
| 1877 | return 0  | 
            ||
| 1878 | |||
| 1879 | |||
| 1880 | def sim_mra(src, tar):  | 
            ||
| 1881 | """Return the normalized MRA similarity of two strings.  | 
            ||
| 1882 | |||
| 1883 | Normalized Match Rating Algorithm similarity  | 
            ||
| 1884 | |||
| 1885 | This is the MRA normalized to :math:`[0, 1]`, given that MRA itself is  | 
            ||
| 1886 | constrained to the range :math:`[0, 6]`.  | 
            ||
| 1887 | |||
| 1888 | :param str src, tar: two strings to be compared  | 
            ||
| 1889 | :returns: normalized MRA similarity  | 
            ||
| 1890 | :rtype: float  | 
            ||
| 1891 | |||
| 1892 |     >>> sim_mra('cat', 'hat') | 
            ||
| 1893 | 0.8333333333333334  | 
            ||
| 1894 |     >>> sim_mra('Niall', 'Neil') | 
            ||
| 1895 | 1.0  | 
            ||
| 1896 |     >>> sim_mra('aluminum', 'Catalan') | 
            ||
| 1897 | 0.0  | 
            ||
| 1898 |     >>> sim_mra('ATCG', 'TAGC') | 
            ||
| 1899 | 0.8333333333333334  | 
            ||
| 1900 | """  | 
            ||
| 1901 | return mra_compare(src, tar)/6  | 
            ||
| 1902 | |||
| 1903 | |||
| 1904 | def dist_mra(src, tar):  | 
            ||
| 1905 | """Return the normalized MRA distance between two strings.  | 
            ||
| 1906 | |||
| 1907 | Normalized Match Rating Algorithm distance  | 
            ||
| 1908 | |||
| 1909 | MRA distance is the complement of MRA similarity:  | 
            ||
| 1910 |     :math:`dist_{MRA} = 1 - sim_{MRA}` | 
            ||
| 1911 | |||
| 1912 | :param str src, tar: two strings to be compared  | 
            ||
| 1913 | :returns: normalized MRA distance  | 
            ||
| 1914 | :rtype: float  | 
            ||
| 1915 | |||
| 1916 |     >>> dist_mra('cat', 'hat') | 
            ||
| 1917 | 0.16666666666666663  | 
            ||
| 1918 |     >>> dist_mra('Niall', 'Neil') | 
            ||
| 1919 | 0.0  | 
            ||
| 1920 |     >>> dist_mra('aluminum', 'Catalan') | 
            ||
| 1921 | 1.0  | 
            ||
| 1922 |     >>> dist_mra('ATCG', 'TAGC') | 
            ||
| 1923 | 0.16666666666666663  | 
            ||
| 1924 | """  | 
            ||
| 1925 | return 1 - sim_mra(src, tar)  | 
            ||
| 1926 | |||
| 1927 | |||
| 1928 | def dist_compression(src, tar, compressor='bz2', probs=None):  | 
            ||
| 1929 | """Return the normalized compression distance between two strings.  | 
            ||
| 1930 | |||
| 1931 | Normalized compression distance (NCD)  | 
            ||
| 1932 | |||
| 1933 | Cf.  | 
            ||
| 1934 | https://en.wikipedia.org/wiki/Normalized_compression_distance#Normalized_compression_distance  | 
            ||
| 1935 | |||
| 1936 | :param str src, tar: two strings to be compared  | 
            ||
| 1937 | :param str compressor: a compression scheme to use for the similarity  | 
            ||
| 1938 | calculation, from the following:  | 
            ||
| 1939 | |||
| 1940 | - `zlib` -- standard zlib/gzip  | 
            ||
| 1941 | - `bz2` -- bzip2 (default)  | 
            ||
| 1942 | - `lzma` -- Lempel–Ziv–Markov chain algorithm  | 
            ||
| 1943 | - `arith` -- arithmetic coding  | 
            ||
| 1944 | - `rle` -- run-length encoding  | 
            ||
| 1945 | - `bwtrle` -- Burrows-Wheeler transform followed by run-length  | 
            ||
| 1946 | encoding  | 
            ||
| 1947 | |||
| 1948 | :param doct probs: a dictionary trained with ac_train (for the arith  | 
            ||
| 1949 | compressor only)  | 
            ||
| 1950 | :returns: compression distance  | 
            ||
| 1951 | :rtype: float  | 
            ||
| 1952 | |||
| 1953 |     >>> dist_compression('cat', 'hat') | 
            ||
| 1954 | 0.08  | 
            ||
| 1955 |     >>> dist_compression('Niall', 'Neil') | 
            ||
| 1956 | 0.037037037037037035  | 
            ||
| 1957 |     >>> dist_compression('aluminum', 'Catalan') | 
            ||
| 1958 | 0.20689655172413793  | 
            ||
| 1959 |     >>> dist_compression('ATCG', 'TAGC') | 
            ||
| 1960 | 0.037037037037037035  | 
            ||
| 1961 | |||
| 1962 |     >>> dist_compression('Niall', 'Neil', compressor='zlib') | 
            ||
| 1963 | 0.45454545454545453  | 
            ||
| 1964 |     >>> dist_compression('Niall', 'Neil', compressor='bz2') | 
            ||
| 1965 | 0.037037037037037035  | 
            ||
| 1966 |     >>> dist_compression('Niall', 'Neil', compressor='lzma') | 
            ||
| 1967 | 0.16  | 
            ||
| 1968 |     >>> dist_compression('Niall', 'Neil', compressor='arith') | 
            ||
| 1969 | 0.6875  | 
            ||
| 1970 |     >>> dist_compression('Niall', 'Neil', compressor='rle') | 
            ||
| 1971 | 1.0  | 
            ||
| 1972 |     >>> dist_compression('Niall', 'Neil', compressor='bwtrle') | 
            ||
| 1973 | 0.8333333333333334  | 
            ||
| 1974 | """  | 
            ||
| 1975 | if src == tar:  | 
            ||
| 1976 | return 0.0  | 
            ||
| 1977 | |||
| 1978 |     if compressor not in {'arith', 'rle', 'bwtrle'}: | 
            ||
| 1979 |         src = src.encode('utf-8') | 
            ||
| 1980 |         tar = tar.encode('utf-8') | 
            ||
| 1981 | |||
| 1982 | if compressor == 'bz2':  | 
            ||
| 1983 | src_comp = codecs.encode(src, 'bz2_codec')[15:]  | 
            ||
| 1984 | tar_comp = codecs.encode(tar, 'bz2_codec')[15:]  | 
            ||
| 1985 | concat_comp = codecs.encode(src+tar, 'bz2_codec')[15:]  | 
            ||
| 1986 | concat_comp2 = codecs.encode(tar+src, 'bz2_codec')[15:]  | 
            ||
| 1987 | elif compressor == 'lzma':  | 
            ||
| 1988 | if 'lzma' in sys.modules:  | 
            ||
| 1989 | src_comp = lzma.compress(src)[14:]  | 
            ||
| 1990 | tar_comp = lzma.compress(tar)[14:]  | 
            ||
| 1991 | concat_comp = lzma.compress(src+tar)[14:]  | 
            ||
| 1992 | concat_comp2 = lzma.compress(tar+src)[14:]  | 
            ||
| 1993 | else: # pragma: no cover  | 
            ||
| 1994 |             raise ValueError('Install the PylibLZMA module in order to use ' + | 
            ||
| 1995 | 'lzma compression similarity')  | 
            ||
| 1996 | elif compressor == 'arith':  | 
            ||
| 1997 | if probs is None:  | 
            ||
| 1998 | # lacking a reasonable dictionary, train on the strings themselves  | 
            ||
| 1999 | probs = ac_train(src+tar)  | 
            ||
| 2000 | src_comp = ac_encode(src, probs)[1]  | 
            ||
| 2001 | tar_comp = ac_encode(tar, probs)[1]  | 
            ||
| 2002 | concat_comp = ac_encode(src+tar, probs)[1]  | 
            ||
| 2003 | concat_comp2 = ac_encode(tar+src, probs)[1]  | 
            ||
| 2004 | return ((min(concat_comp, concat_comp2) - min(src_comp, tar_comp)) /  | 
            ||
| 2005 | max(src_comp, tar_comp))  | 
            ||
| 2006 |     elif compressor in {'rle', 'bwtrle'}: | 
            ||
| 2007 | src_comp = rle_encode(src, (compressor == 'bwtrle'))  | 
            ||
| 2008 | tar_comp = rle_encode(tar, (compressor == 'bwtrle'))  | 
            ||
| 2009 | concat_comp = rle_encode(src+tar, (compressor == 'bwtrle'))  | 
            ||
| 2010 | concat_comp2 = rle_encode(tar+src, (compressor == 'bwtrle'))  | 
            ||
| 2011 | else: # zlib  | 
            ||
| 2012 | src_comp = codecs.encode(src, 'zlib_codec')[2:]  | 
            ||
| 2013 | tar_comp = codecs.encode(tar, 'zlib_codec')[2:]  | 
            ||
| 2014 | concat_comp = codecs.encode(src+tar, 'zlib_codec')[2:]  | 
            ||
| 2015 | concat_comp2 = codecs.encode(tar+src, 'zlib_codec')[2:]  | 
            ||
| 2016 | return ((min(len(concat_comp), len(concat_comp2)) -  | 
            ||
| 2017 | min(len(src_comp), len(tar_comp))) /  | 
            ||
| 2018 | max(len(src_comp), len(tar_comp)))  | 
            ||
| 2019 | |||
| 2020 | |||
| 2021 | def sim_compression(src, tar, compressor='bz2', probs=None):  | 
            ||
| 2022 | """Return the normalized compression similarity of two strings.  | 
            ||
| 2023 | |||
| 2024 | Normalized compression similarity (NCS)  | 
            ||
| 2025 | |||
| 2026 | Normalized compression similarity is the complement of normalized  | 
            ||
| 2027 | compression distance:  | 
            ||
| 2028 |     :math:`sim_{NCS} = 1 - dist_{NCD}` | 
            ||
| 2029 | |||
| 2030 | :param str src, tar: two strings to be compared  | 
            ||
| 2031 | :param str compressor: a compression scheme to use for the similarity  | 
            ||
| 2032 | calculation:  | 
            ||
| 2033 | |||
| 2034 | - `zlib` -- standard zlib/gzip  | 
            ||
| 2035 | - `bz2` -- bzip2 (default)  | 
            ||
| 2036 | - `lzma` -- Lempel–Ziv–Markov chain algorithm  | 
            ||
| 2037 | - `arith` -- arithmetic coding  | 
            ||
| 2038 | - `rle` -- run-length encoding  | 
            ||
| 2039 | - `bwtrle` -- Burrows-Wheeler transform followed by run-length  | 
            ||
| 2040 | encoding  | 
            ||
| 2041 | |||
| 2042 | :param dict probs: a dictionary trained with ac_train (for the arith  | 
            ||
| 2043 | compressor only)  | 
            ||
| 2044 | :returns: compression similarity  | 
            ||
| 2045 | :rtype: float  | 
            ||
| 2046 | |||
| 2047 |     >>> sim_compression('cat', 'hat') | 
            ||
| 2048 | 0.92  | 
            ||
| 2049 |     >>> sim_compression('Niall', 'Neil') | 
            ||
| 2050 | 0.962962962962963  | 
            ||
| 2051 |     >>> sim_compression('aluminum', 'Catalan') | 
            ||
| 2052 | 0.7931034482758621  | 
            ||
| 2053 |     >>> sim_compression('ATCG', 'TAGC') | 
            ||
| 2054 | 0.962962962962963  | 
            ||
| 2055 | |||
| 2056 |     >>> sim_compression('Niall', 'Neil', compressor='zlib') | 
            ||
| 2057 | 0.5454545454545454  | 
            ||
| 2058 |     >>> sim_compression('Niall', 'Neil', compressor='bz2') | 
            ||
| 2059 | 0.962962962962963  | 
            ||
| 2060 |     >>> sim_compression('Niall', 'Neil', compressor='lzma') | 
            ||
| 2061 | 0.84  | 
            ||
| 2062 |     >>> sim_compression('Niall', 'Neil', compressor='arith') | 
            ||
| 2063 | 0.3125  | 
            ||
| 2064 |     >>> sim_compression('Niall', 'Neil', compressor='rle') | 
            ||
| 2065 | 0.0  | 
            ||
| 2066 |     >>> sim_compression('Niall', 'Neil', compressor='bwtrle') | 
            ||
| 2067 | 0.16666666666666663  | 
            ||
| 2068 | """  | 
            ||
| 2069 | return 1 - dist_compression(src, tar, compressor, probs)  | 
            ||
| 2070 | |||
| 2071 | |||
| 2072 | def sim_monge_elkan(src, tar, sim_func=sim_levenshtein, symmetric=False):  | 
            ||
| 2073 | """Return the Monge-Elkan similarity of two strings.  | 
            ||
| 2074 | |||
| 2075 | Monge-Elkan similarity  | 
            ||
| 2076 | |||
| 2077 | Monge-Elkan is defined in:  | 
            ||
| 2078 | Monge, Alvaro E. and Charles P. Elkan. 1996. "The field matching problem:  | 
            ||
| 2079 | Algorithms and applications." KDD-9 Proceedings.  | 
            ||
| 2080 | http://www.aaai.org/Papers/KDD/1996/KDD96-044.pdf  | 
            ||
| 2081 | |||
| 2082 | Note: Monge-Elkan is NOT a symmetric similarity algoritm. Thus, the  | 
            ||
| 2083 | similarity of src to tar is not necessarily equal to the similarity of  | 
            ||
| 2084 | tar to src. If the sym argument is True, a symmetric value is calculated,  | 
            ||
| 2085 | at the cost of doubling the computation time (since the  | 
            ||
| 2086 |     :math:`sim_{Monge-Elkan}(src, tar)` and | 
            ||
| 2087 |     :math:`sim_{Monge-Elkan}(tar, src)` are both calculated and then averaged). | 
            ||
| 2088 | |||
| 2089 | :param str src, tar: two strings to be compared  | 
            ||
| 2090 | :param function sim_func: the internal similarity metric to emply  | 
            ||
| 2091 | :param bool symmetric: return a symmetric similarity measure  | 
            ||
| 2092 | :returns: Monge-Elkan similarity  | 
            ||
| 2093 | :rtype: float  | 
            ||
| 2094 | |||
| 2095 |     >>> sim_monge_elkan('cat', 'hat') | 
            ||
| 2096 | 0.75  | 
            ||
| 2097 |     >>> sim_monge_elkan('Niall', 'Neil') | 
            ||
| 2098 | 0.66666666666666663  | 
            ||
| 2099 |     >>> sim_monge_elkan('aluminum', 'Catalan') | 
            ||
| 2100 | 0.3888888888888889  | 
            ||
| 2101 |     >>> sim_monge_elkan('ATCG', 'TAGC') | 
            ||
| 2102 | 0.5  | 
            ||
| 2103 | """  | 
            ||
| 2104 | if src == tar:  | 
            ||
| 2105 | return 1.0  | 
            ||
| 2106 | |||
| 2107 | q_src = sorted(QGrams(src).elements())  | 
            ||
| 2108 | q_tar = sorted(QGrams(tar).elements())  | 
            ||
| 2109 | |||
| 2110 | if not q_src or not q_tar:  | 
            ||
| 2111 | return 0.0  | 
            ||
| 2112 | |||
| 2113 | sum_of_maxes = 0  | 
            ||
| 2114 | for q_s in q_src:  | 
            ||
| 2115 |         max_sim = float('-inf') | 
            ||
| 2116 | for q_t in q_tar:  | 
            ||
| 2117 | max_sim = max(max_sim, sim_func(q_s, q_t))  | 
            ||
| 2118 | sum_of_maxes += max_sim  | 
            ||
| 2119 | sim_em = sum_of_maxes / len(q_src)  | 
            ||
| 2120 | |||
| 2121 | if symmetric:  | 
            ||
| 2122 | sim_em = (sim_em + sim_monge_elkan(tar, src, sim, False))/2  | 
            ||
| 2123 | |||
| 2124 | return sim_em  | 
            ||
| 2125 | |||
| 2126 | |||
| 2127 | def dist_monge_elkan(src, tar, sim_func=sim_levenshtein, symmetric=False):  | 
            ||
| 2128 | """Return the Monge-Elkan distance between two strings.  | 
            ||
| 2129 | |||
| 2130 | Monge-Elkan distance  | 
            ||
| 2131 | |||
| 2132 | Monge-Elkan is defined in:  | 
            ||
| 2133 | Monge, Alvaro E. and Charles P. Elkan. 1996. "The field matching problem:  | 
            ||
| 2134 | Algorithms and applications." KDD-9 Proceedings.  | 
            ||
| 2135 | http://www.aaai.org/Papers/KDD/1996/KDD96-044.pdf  | 
            ||
| 2136 | |||
| 2137 | Note: Monge-Elkan is NOT a symmetric similarity algoritm. Thus, the  | 
            ||
| 2138 | distance between src and tar is not necessarily equal to the distance  | 
            ||
| 2139 | between tar and src. If the sym argument is True, a symmetric value is  | 
            ||
| 2140 | calculated, at the cost of doubling the computation time (since the  | 
            ||
| 2141 |     :math:`sim_{Monge-Elkan}(src, tar)` and :math:`sim_{Monge-Elkan}(tar, src)` | 
            ||
| 2142 | are both calculated and then averaged).  | 
            ||
| 2143 | |||
| 2144 | :param str src, tar: two strings to be compared  | 
            ||
| 2145 | :param function sim_func: the internal similarity metric to emply  | 
            ||
| 2146 | :param bool symmetric: return a symmetric similarity measure  | 
            ||
| 2147 | :returns: Monge-Elkan distance  | 
            ||
| 2148 | :rtype: float  | 
            ||
| 2149 | |||
| 2150 |     >>> dist_monge_elkan('cat', 'hat') | 
            ||
| 2151 | 0.25  | 
            ||
| 2152 |     >>> dist_monge_elkan('Niall', 'Neil') | 
            ||
| 2153 | 0.33333333333333337  | 
            ||
| 2154 |     >>> dist_monge_elkan('aluminum', 'Catalan') | 
            ||
| 2155 | 0.61111111111111116  | 
            ||
| 2156 |     >>> dist_monge_elkan('ATCG', 'TAGC') | 
            ||
| 2157 | 0.5  | 
            ||
| 2158 | """  | 
            ||
| 2159 | return 1 - sim_monge_elkan(src, tar, sim_func, symmetric)  | 
            ||
| 2160 | |||
| 2161 | |||
| 2162 | def sim_ident(src, tar):  | 
            ||
| 2163 | """Return the identity similarity of two strings.  | 
            ||
| 2164 | |||
| 2165 | Identity similarity  | 
            ||
| 2166 | |||
| 2167 | This is 1 if the two strings are identical, otherwise 0.  | 
            ||
| 2168 | |||
| 2169 | :param str src, tar: two strings to be compared  | 
            ||
| 2170 | :returns: identity similarity  | 
            ||
| 2171 | :rtype: int  | 
            ||
| 2172 | |||
| 2173 |     >>> sim_ident('cat', 'hat') | 
            ||
| 2174 | 0  | 
            ||
| 2175 |     >>> sim_ident('cat', 'cat') | 
            ||
| 2176 | 1  | 
            ||
| 2177 | """  | 
            ||
| 2178 | return int(src == tar)  | 
            ||
| 2179 | |||
| 2180 | |||
| 2181 | def dist_ident(src, tar):  | 
            ||
| 2182 | """Return the identity distance between two strings.  | 
            ||
| 2183 | |||
| 2184 | Identity distance  | 
            ||
| 2185 | |||
| 2186 | This is 0 if the two strings are identical, otherwise 1, i.e.  | 
            ||
| 2187 |     :math:`dist_{identity} = 1 - sim_{identity}` | 
            ||
| 2188 | |||
| 2189 | :param str src, tar: two strings to be compared  | 
            ||
| 2190 | :returns: indentity distance  | 
            ||
| 2191 | :rtype: int  | 
            ||
| 2192 | |||
| 2193 |     >>> dist_ident('cat', 'hat') | 
            ||
| 2194 | 1  | 
            ||
| 2195 |     >>> dist_ident('cat', 'cat') | 
            ||
| 2196 | 0  | 
            ||
| 2197 | """  | 
            ||
| 2198 | return 1 - sim_ident(src, tar)  | 
            ||
| 2199 | |||
| 2200 | |||
| 2201 | def sim_matrix(src, tar, mat=None, mismatch_cost=0, match_cost=1,  | 
            ||
| 2202 | symmetric=True, alphabet=None):  | 
            ||
| 2203 | """Return the matrix similarity of two strings.  | 
            ||
| 2204 | |||
| 2205 | Matrix similarity  | 
            ||
| 2206 | |||
| 2207 | With the default parameters, this is identical to sim_ident.  | 
            ||
| 2208 | It is possible for sim_matrix to return values outside of the range  | 
            ||
| 2209 | :math:`[0, 1]`, if values outside that range are present in mat,  | 
            ||
| 2210 | mismatch_cost, or match_cost.  | 
            ||
| 2211 | |||
| 2212 | :param str src, tar: two strings to be compared  | 
            ||
| 2213 | :param dict mat: a dict mapping tuples to costs; the tuples are (src, tar)  | 
            ||
| 2214 | pairs of symbols from the alphabet parameter  | 
            ||
| 2215 | :param float mismatch_cost: the value returned if (src, tar) is absent from  | 
            ||
| 2216 | mat when src does not equal tar  | 
            ||
| 2217 | :param float match_cost: the value returned if (src, tar) is absent from  | 
            ||
| 2218 | mat when src equals tar  | 
            ||
| 2219 | :param bool symmetric: True if the cost of src not matching tar is  | 
            ||
| 2220 | identical to the cost of tar not matching src; in this case, the values  | 
            ||
| 2221 | in mat need only contain (src, tar) or (tar, src), not both  | 
            ||
| 2222 | :param str alphabet: a collection of tokens from which src and tar are  | 
            ||
| 2223 | drawn; if this is defined a ValueError is raised if either tar or src  | 
            ||
| 2224 | is not found in alphabet  | 
            ||
| 2225 | :returns: matrix similarity  | 
            ||
| 2226 | :rtype: float  | 
            ||
| 2227 | |||
| 2228 |     >>> sim_matrix('cat', 'hat') | 
            ||
| 2229 | 0  | 
            ||
| 2230 |     >>> sim_matrix('hat', 'hat') | 
            ||
| 2231 | 1  | 
            ||
| 2232 | """  | 
            ||
| 2233 | if alphabet:  | 
            ||
| 2234 | alphabet = tuple(alphabet)  | 
            ||
| 2235 | for i in src:  | 
            ||
| 2236 | if i not in alphabet:  | 
            ||
| 2237 |                 raise ValueError('src value not in alphabet') | 
            ||
| 2238 | for i in tar:  | 
            ||
| 2239 | if i not in alphabet:  | 
            ||
| 2240 |                 raise ValueError('tar value not in alphabet') | 
            ||
| 2241 | |||
| 2242 | if src == tar:  | 
            ||
| 2243 | if mat and (src, src) in mat:  | 
            ||
| 2244 | return mat[(src, src)]  | 
            ||
| 2245 | return match_cost  | 
            ||
| 2246 | if mat and (src, tar) in mat:  | 
            ||
| 2247 | return mat[(src, tar)]  | 
            ||
| 2248 | elif symmetric and mat and (tar, src) in mat:  | 
            ||
| 2249 | return mat[(tar, src)]  | 
            ||
| 2250 | return mismatch_cost  | 
            ||
| 2251 | |||
| 2252 | |||
| 2253 | View Code Duplication | def needleman_wunsch(src, tar, gap_cost=1, sim_func=sim_ident):  | 
            |
| 2254 | """Return the Needleman-Wunsch score of two strings.  | 
            ||
| 2255 | |||
| 2256 | Needleman-Wunsch score  | 
            ||
| 2257 | |||
| 2258 | This is the standard edit distance measure.  | 
            ||
| 2259 | |||
| 2260 | Cf. https://en.wikipedia.org/wiki/Needleman–Wunsch_algorithm  | 
            ||
| 2261 | |||
| 2262 | Cf.  | 
            ||
| 2263 | http://csb.stanford.edu/class/public/readings/Bioinformatics_I_Lecture6/Needleman_Wunsch_JMB_70_Global_alignment.pdf  | 
            ||
| 2264 | |||
| 2265 | :param str src, tar: two strings to be compared  | 
            ||
| 2266 | :param float gap_cost: the cost of an alignment gap (1 by default)  | 
            ||
| 2267 | :param function sim_func: a function that returns the similarity of two  | 
            ||
| 2268 | characters (identity similarity by default)  | 
            ||
| 2269 | :returns: Needleman-Wunsch score  | 
            ||
| 2270 | :rtype: int (in fact dependent on the gap_cost & return value of sim_func)  | 
            ||
| 2271 | |||
| 2272 |     >>> needleman_wunsch('cat', 'hat') | 
            ||
| 2273 | 2.0  | 
            ||
| 2274 |     >>> needleman_wunsch('Niall', 'Neil') | 
            ||
| 2275 | 1.0  | 
            ||
| 2276 |     >>> needleman_wunsch('aluminum', 'Catalan') | 
            ||
| 2277 | -1.0  | 
            ||
| 2278 |     >>> needleman_wunsch('ATCG', 'TAGC') | 
            ||
| 2279 | 0.0  | 
            ||
| 2280 | """  | 
            ||
| 2281 | # pylint: disable=no-member  | 
            ||
| 2282 | d_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.float)  | 
            ||
| 2283 | # pylint: enable=no-member  | 
            ||
| 2284 | |||
| 2285 | for i in range(len(src)+1):  | 
            ||
| 2286 | d_mat[i, 0] = -(i * gap_cost)  | 
            ||
| 2287 | for j in range(len(tar)+1):  | 
            ||
| 2288 | d_mat[0, j] = -(j * gap_cost)  | 
            ||
| 2289 | for i in range(1, len(src)+1):  | 
            ||
| 2290 | for j in range(1, len(tar)+1):  | 
            ||
| 2291 | match = d_mat[i-1, j-1] + sim_func(src[i-1], tar[j-1])  | 
            ||
| 2292 | delete = d_mat[i-1, j] - gap_cost  | 
            ||
| 2293 | insert = d_mat[i, j-1] - gap_cost  | 
            ||
| 2294 | d_mat[i, j] = max(match, delete, insert)  | 
            ||
| 2295 | return d_mat[d_mat.shape[0]-1, d_mat.shape[1]-1]  | 
            ||
| 2296 | |||
| 2297 | |||
| 2298 | View Code Duplication | def smith_waterman(src, tar, gap_cost=1, sim_func=sim_ident):  | 
            |
| 2299 | """Return the Smith-Waterman score of two strings.  | 
            ||
| 2300 | |||
| 2301 | Smith-Waterman score  | 
            ||
| 2302 | |||
| 2303 | This is the standard edit distance measure.  | 
            ||
| 2304 | |||
| 2305 | Cf. https://en.wikipedia.org/wiki/Smith–Waterman_algorithm  | 
            ||
| 2306 | |||
| 2307 | :param str src, tar: two strings to be compared  | 
            ||
| 2308 | :param float gap_cost: the cost of an alignment gap (1 by default)  | 
            ||
| 2309 | :param function sim_func: a function that returns the similarity of two  | 
            ||
| 2310 | characters (identity similarity by default)  | 
            ||
| 2311 | :returns: Smith-Waterman score  | 
            ||
| 2312 | :rtype: int (in fact dependent on the gap_cost & return value of sim_func)  | 
            ||
| 2313 | |||
| 2314 |     >>> smith_waterman('cat', 'hat') | 
            ||
| 2315 | 2.0  | 
            ||
| 2316 |     >>> smith_waterman('Niall', 'Neil') | 
            ||
| 2317 | 1.0  | 
            ||
| 2318 |     >>> smith_waterman('aluminum', 'Catalan') | 
            ||
| 2319 | 0.0  | 
            ||
| 2320 |     >>> smith_waterman('ATCG', 'TAGC') | 
            ||
| 2321 | 1.0  | 
            ||
| 2322 | """  | 
            ||
| 2323 | # pylint: disable=no-member  | 
            ||
| 2324 | d_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.float)  | 
            ||
| 2325 | # pylint: enable=no-member  | 
            ||
| 2326 | |||
| 2327 | for i in range(len(src)+1):  | 
            ||
| 2328 | d_mat[i, 0] = 0  | 
            ||
| 2329 | for j in range(len(tar)+1):  | 
            ||
| 2330 | d_mat[0, j] = 0  | 
            ||
| 2331 | for i in range(1, len(src)+1):  | 
            ||
| 2332 | for j in range(1, len(tar)+1):  | 
            ||
| 2333 | match = d_mat[i-1, j-1] + sim_func(src[i-1], tar[j-1])  | 
            ||
| 2334 | delete = d_mat[i-1, j] - gap_cost  | 
            ||
| 2335 | insert = d_mat[i, j-1] - gap_cost  | 
            ||
| 2336 | d_mat[i, j] = max(0, match, delete, insert)  | 
            ||
| 2337 | return d_mat[d_mat.shape[0]-1, d_mat.shape[1]-1]  | 
            ||
| 2338 | |||
| 2339 | |||
| 2340 | def gotoh(src, tar, gap_open=1, gap_ext=0.4, sim_func=sim_ident):  | 
            ||
| 2341 | """Return the Gotoh score of two strings.  | 
            ||
| 2342 | |||
| 2343 | Gotoh score  | 
            ||
| 2344 | |||
| 2345 | Gotoh's algorithm is essentially Needleman-Wunsch with affine gap  | 
            ||
| 2346 | penalties:  | 
            ||
| 2347 | https://www.cs.umd.edu/class/spring2003/cmsc838t/papers/gotoh1982.pdf  | 
            ||
| 2348 | |||
| 2349 | :param str src, tar: two strings to be compared  | 
            ||
| 2350 | :param float gap_open: the cost of an open alignment gap (1 by default)  | 
            ||
| 2351 | :param float gap_ext: the cost of an alignment gap extension (0.4 by  | 
            ||
| 2352 | default)  | 
            ||
| 2353 | :param function sim_func: a function that returns the similarity of two  | 
            ||
| 2354 | characters (identity similarity by default)  | 
            ||
| 2355 | :returns: Gotoh score  | 
            ||
| 2356 | :rtype: float (in fact dependent on the gap_cost & return value of  | 
            ||
| 2357 | sim_func)  | 
            ||
| 2358 | |||
| 2359 |     >>> gotoh('cat', 'hat') | 
            ||
| 2360 | 2.0  | 
            ||
| 2361 |     >>> gotoh('Niall', 'Neil') | 
            ||
| 2362 | 1.0  | 
            ||
| 2363 |     >>> gotoh('aluminum', 'Catalan') | 
            ||
| 2364 | -0.40000000000000002  | 
            ||
| 2365 |     >>> gotoh('cat', 'hat') | 
            ||
| 2366 | 2.0  | 
            ||
| 2367 | """  | 
            ||
| 2368 | # pylint: disable=no-member  | 
            ||
| 2369 | d_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.float)  | 
            ||
| 2370 | p_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.float)  | 
            ||
| 2371 | q_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.float)  | 
            ||
| 2372 | # pylint: enable=no-member  | 
            ||
| 2373 | |||
| 2374 | d_mat[0, 0] = 0  | 
            ||
| 2375 |     p_mat[0, 0] = float('-inf') | 
            ||
| 2376 |     q_mat[0, 0] = float('-inf') | 
            ||
| 2377 | for i in range(1, len(src)+1):  | 
            ||
| 2378 |         d_mat[i, 0] = float('-inf') | 
            ||
| 2379 | p_mat[i, 0] = -gap_open - gap_ext*(i-1)  | 
            ||
| 2380 |         q_mat[i, 0] = float('-inf') | 
            ||
| 2381 | q_mat[i, 1] = -gap_open  | 
            ||
| 2382 | for j in range(1, len(tar)+1):  | 
            ||
| 2383 |         d_mat[0, j] = float('-inf') | 
            ||
| 2384 |         p_mat[0, j] = float('-inf') | 
            ||
| 2385 | p_mat[1, j] = -gap_open  | 
            ||
| 2386 | q_mat[0, j] = -gap_open - gap_ext*(j-1)  | 
            ||
| 2387 | |||
| 2388 | for i in range(1, len(src)+1):  | 
            ||
| 2389 | for j in range(1, len(tar)+1):  | 
            ||
| 2390 | sim_val = sim_func(src[i-1], tar[j-1])  | 
            ||
| 2391 | d_mat[i, j] = max(d_mat[i-1, j-1] + sim_val,  | 
            ||
| 2392 | p_mat[i-1, j-1] + sim_val,  | 
            ||
| 2393 | q_mat[i-1, j-1] + sim_val)  | 
            ||
| 2394 | |||
| 2395 | p_mat[i, j] = max(d_mat[i-1, j] - gap_open,  | 
            ||
| 2396 | p_mat[i-1, j] - gap_ext)  | 
            ||
| 2397 | |||
| 2398 | q_mat[i, j] = max(d_mat[i, j-1] - gap_open,  | 
            ||
| 2399 | q_mat[i, j-1] - gap_ext)  | 
            ||
| 2400 | |||
| 2401 | i, j = (n - 1 for n in d_mat.shape)  | 
            ||
| 2402 | return max(d_mat[i, j], p_mat[i, j], q_mat[i, j])  | 
            ||
| 2403 | |||
| 2404 | |||
| 2405 | def sim_length(src, tar):  | 
            ||
| 2406 | """Return the length similarty of two strings.  | 
            ||
| 2407 | |||
| 2408 | Length similarity  | 
            ||
| 2409 | |||
| 2410 | This is the ratio of the length of the shorter string to the longer.  | 
            ||
| 2411 | |||
| 2412 | :param str src, tar: two strings to be compared  | 
            ||
| 2413 | :returns: length similarity  | 
            ||
| 2414 | :rtype: float  | 
            ||
| 2415 | |||
| 2416 |     >>> sim_length('cat', 'hat') | 
            ||
| 2417 | 1.0  | 
            ||
| 2418 |     >>> sim_length('Niall', 'Neil') | 
            ||
| 2419 | 0.8  | 
            ||
| 2420 |     >>> sim_length('aluminum', 'Catalan') | 
            ||
| 2421 | 0.875  | 
            ||
| 2422 |     >>> sim_length('ATCG', 'TAGC') | 
            ||
| 2423 | 1.0  | 
            ||
| 2424 | """  | 
            ||
| 2425 | if src == tar:  | 
            ||
| 2426 | return 1.0  | 
            ||
| 2427 | if not src or not tar:  | 
            ||
| 2428 | return 0.0  | 
            ||
| 2429 | return len(src)/len(tar) if len(src) < len(tar) else len(tar)/len(src)  | 
            ||
| 2430 | |||
| 2431 | |||
| 2432 | def dist_length(src, tar):  | 
            ||
| 2433 | """Return the length distance between two strings.  | 
            ||
| 2434 | |||
| 2435 | Length distance  | 
            ||
| 2436 | |||
| 2437 | Length distance is the complement of length similarity:  | 
            ||
| 2438 |     :math:`dist_{length} = 1 - sim_{length}` | 
            ||
| 2439 | |||
| 2440 | :param str src, tar: two strings to be compared  | 
            ||
| 2441 | :returns: length distance  | 
            ||
| 2442 | :rtype: float  | 
            ||
| 2443 | |||
| 2444 |     >>> dist_length('cat', 'hat') | 
            ||
| 2445 | 0.0  | 
            ||
| 2446 |     >>> dist_length('Niall', 'Neil') | 
            ||
| 2447 | 0.19999999999999996  | 
            ||
| 2448 |     >>> dist_length('aluminum', 'Catalan') | 
            ||
| 2449 | 0.125  | 
            ||
| 2450 |     >>> dist_length('ATCG', 'TAGC') | 
            ||
| 2451 | 0.0  | 
            ||
| 2452 | """  | 
            ||
| 2453 | return 1 - sim_length(src, tar)  | 
            ||
| 2454 | |||
| 2455 | |||
| 2456 | View Code Duplication | def sim_prefix(src, tar):  | 
            |
| 2457 | """Return the prefix similarty of two strings.  | 
            ||
| 2458 | |||
| 2459 | Prefix similarity  | 
            ||
| 2460 | |||
| 2461 | Prefix similarity is the ratio of the length of the shorter term that  | 
            ||
| 2462 | exactly matches the longer term to the length of the shorter term,  | 
            ||
| 2463 | beginning at the start of both terms.  | 
            ||
| 2464 | |||
| 2465 | :param str src, tar: two strings to be compared  | 
            ||
| 2466 | :returns: prefix similarity  | 
            ||
| 2467 | :rtype: float  | 
            ||
| 2468 | |||
| 2469 |     >>> sim_prefix('cat', 'hat') | 
            ||
| 2470 | 0.0  | 
            ||
| 2471 |     >>> sim_prefix('Niall', 'Neil') | 
            ||
| 2472 | 0.25  | 
            ||
| 2473 |     >>> sim_prefix('aluminum', 'Catalan') | 
            ||
| 2474 | 0.0  | 
            ||
| 2475 |     >>> sim_prefix('ATCG', 'TAGC') | 
            ||
| 2476 | 0.0  | 
            ||
| 2477 | """  | 
            ||
| 2478 | if src == tar:  | 
            ||
| 2479 | return 1.0  | 
            ||
| 2480 | if not src or not tar:  | 
            ||
| 2481 | return 0.0  | 
            ||
| 2482 | min_word, max_word = (src, tar) if len(src) < len(tar) else (tar, src)  | 
            ||
| 2483 | min_len = len(min_word)  | 
            ||
| 2484 | for i in range(min_len, 0, -1):  | 
            ||
| 2485 | if min_word[:i] == max_word[:i]:  | 
            ||
| 2486 | return i/min_len  | 
            ||
| 2487 | return 0.0  | 
            ||
| 2488 | |||
| 2489 | |||
| 2490 | def dist_prefix(src, tar):  | 
            ||
| 2491 | """Return the prefix distance between two strings.  | 
            ||
| 2492 | |||
| 2493 | Prefix distance  | 
            ||
| 2494 | |||
| 2495 | Prefix distance is the complement of prefix similarity:  | 
            ||
| 2496 |     :math:`dist_{prefix} = 1 - sim_{prefix}` | 
            ||
| 2497 | |||
| 2498 | :param str src, tar: two strings to be compared  | 
            ||
| 2499 | :returns: prefix distance  | 
            ||
| 2500 | :rtype: float  | 
            ||
| 2501 | |||
| 2502 |         >>> dist_prefix('cat', 'hat') | 
            ||
| 2503 | 1.0  | 
            ||
| 2504 |     >>> dist_prefix('Niall', 'Neil') | 
            ||
| 2505 | 0.75  | 
            ||
| 2506 |     >>> dist_prefix('aluminum', 'Catalan') | 
            ||
| 2507 | 1.0  | 
            ||
| 2508 |     >>> dist_prefix('ATCG', 'TAGC') | 
            ||
| 2509 | 1.0  | 
            ||
| 2510 | """  | 
            ||
| 2511 | return 1 - sim_prefix(src, tar)  | 
            ||
| 2512 | |||
| 2513 | |||
| 2514 | View Code Duplication | def sim_suffix(src, tar):  | 
            |
| 2515 | """Return the suffix similarity of two strings.  | 
            ||
| 2516 | |||
| 2517 | Suffix similarity  | 
            ||
| 2518 | |||
| 2519 | Suffix similarity is the ratio of the length of the shorter term that  | 
            ||
| 2520 | exactly matches the longer term to the length of the shorter term,  | 
            ||
| 2521 | beginning at the end of both terms.  | 
            ||
| 2522 | |||
| 2523 | :param str src, tar: two strings to be compared  | 
            ||
| 2524 | :returns: suffix similarity  | 
            ||
| 2525 | :rtype: float  | 
            ||
| 2526 | |||
| 2527 |     >>> sim_suffix('cat', 'hat') | 
            ||
| 2528 | 0.6666666666666666  | 
            ||
| 2529 |     >>> sim_suffix('Niall', 'Neil') | 
            ||
| 2530 | 0.25  | 
            ||
| 2531 |     >>> sim_suffix('aluminum', 'Catalan') | 
            ||
| 2532 | 0.0  | 
            ||
| 2533 |     >>> sim_suffix('ATCG', 'TAGC') | 
            ||
| 2534 | 0.0  | 
            ||
| 2535 | """  | 
            ||
| 2536 | if src == tar:  | 
            ||
| 2537 | return 1.0  | 
            ||
| 2538 | if not src or not tar:  | 
            ||
| 2539 | return 0.0  | 
            ||
| 2540 | min_word, max_word = (src, tar) if len(src) < len(tar) else (tar, src)  | 
            ||
| 2541 | min_len = len(min_word)  | 
            ||
| 2542 | for i in range(min_len, 0, -1):  | 
            ||
| 2543 | if min_word[-i:] == max_word[-i:]:  | 
            ||
| 2544 | return i/min_len  | 
            ||
| 2545 | return 0.0  | 
            ||
| 2546 | |||
| 2547 | |||
| 2548 | def dist_suffix(src, tar):  | 
            ||
| 2549 | """Return the suffix distance between two strings.  | 
            ||
| 2550 | |||
| 2551 | Suffix distance  | 
            ||
| 2552 | |||
| 2553 | Suffix distance is the complement of suffix similarity:  | 
            ||
| 2554 |     :math:`dist_{suffix} = 1 - sim_{suffix}` | 
            ||
| 2555 | |||
| 2556 | :param str src, tar: two strings to be compared  | 
            ||
| 2557 | :returns: suffix distance  | 
            ||
| 2558 | :rtype: float  | 
            ||
| 2559 | |||
| 2560 |     >>> dist_suffix('cat', 'hat') | 
            ||
| 2561 | 0.33333333333333337  | 
            ||
| 2562 |     >>> dist_suffix('Niall', 'Neil') | 
            ||
| 2563 | 0.75  | 
            ||
| 2564 |     >>> dist_suffix('aluminum', 'Catalan') | 
            ||
| 2565 | 1.0  | 
            ||
| 2566 |     >>> dist_suffix('ATCG', 'TAGC') | 
            ||
| 2567 | 1.0  | 
            ||
| 2568 | """  | 
            ||
| 2569 | return 1 - sim_suffix(src, tar)  | 
            ||
| 2570 | |||
| 2571 | |||
| 2572 | def sim_mlipns(src, tar, threshold=0.25, maxmismatches=2):  | 
            ||
| 2573 | """Return the MLIPNS similarity of two strings.  | 
            ||
| 2574 | |||
| 2575 | Modified Language-Independent Product Name Search (MLIPNS)  | 
            ||
| 2576 | |||
| 2577 | The MLIPNS algorithm is described in Shannaq, Boumedyen A. N. and Victor V.  | 
            ||
| 2578 | Alexandrov. 2010. "Using Product Similarity for Adding Business." Global  | 
            ||
| 2579 | Journal of Computer Science and Technology. 10(12). 2-8.  | 
            ||
| 2580 | http://www.sial.iias.spb.su/files/386-386-1-PB.pdf  | 
            ||
| 2581 | |||
| 2582 | This function returns only 1.0 (similar) or 0.0 (not similar).  | 
            ||
| 2583 | |||
| 2584 | LIPNS similarity is identical to normalized Hamming similarity.  | 
            ||
| 2585 | |||
| 2586 | :param str src, tar: two strings to be compared  | 
            ||
| 2587 | :param float threshold: a number [0, 1] indicating the maximum similarity  | 
            ||
| 2588 | score, below which the strings are considered 'similar' (0.25 by  | 
            ||
| 2589 | default)  | 
            ||
| 2590 | :param int maxmismatches: a number indicating the allowable number of  | 
            ||
| 2591 | mismatches to remove before declaring two strings not similar (2 by  | 
            ||
| 2592 | default)  | 
            ||
| 2593 | :returns: MLIPNS similarity  | 
            ||
| 2594 | :rtype: float  | 
            ||
| 2595 | |||
| 2596 |     >>> sim_mlipns('cat', 'hat') | 
            ||
| 2597 | 1.0  | 
            ||
| 2598 |     >>> sim_mlipns('Niall', 'Neil') | 
            ||
| 2599 | 0.0  | 
            ||
| 2600 |     >>> sim_mlipns('aluminum', 'Catalan') | 
            ||
| 2601 | 0.0  | 
            ||
| 2602 |     >>> sim_mlipns('ATCG', 'TAGC') | 
            ||
| 2603 | 0.0  | 
            ||
| 2604 | """  | 
            ||
| 2605 | if tar == src:  | 
            ||
| 2606 | return 1.0  | 
            ||
| 2607 | if not src or not tar:  | 
            ||
| 2608 | return 0.0  | 
            ||
| 2609 | |||
| 2610 | mismatches = 0  | 
            ||
| 2611 | ham = hamming(src, tar, difflens=True)  | 
            ||
| 2612 | maxlen = max(len(src), len(tar))  | 
            ||
| 2613 | while src and tar and mismatches <= maxmismatches:  | 
            ||
| 2614 | if maxlen < 1 or (1-(maxlen-ham)/maxlen) <= threshold:  | 
            ||
| 2615 | return 1.0  | 
            ||
| 2616 | else:  | 
            ||
| 2617 | mismatches += 1  | 
            ||
| 2618 | ham -= 1  | 
            ||
| 2619 | maxlen -= 1  | 
            ||
| 2620 | |||
| 2621 | if maxlen < 1:  | 
            ||
| 2622 | return 1.0  | 
            ||
| 2623 | return 0.0  | 
            ||
| 2624 | |||
| 2625 | |||
| 2626 | def dist_mlipns(src, tar, threshold=0.25, maxmismatches=2):  | 
            ||
| 2627 | """Return the MLIPNS distance between two strings.  | 
            ||
| 2628 | |||
| 2629 | Modified Language-Independent Product Name Search (MLIPNS)  | 
            ||
| 2630 | |||
| 2631 | MLIPNS distance is the complement of MLIPNS similarity:  | 
            ||
| 2632 |     :math:`dist_{MLIPNS} = 1 - sim_{MLIPNS}` | 
            ||
| 2633 | |||
| 2634 | This function returns only 0.0 (distant) or 1.0 (not distant)  | 
            ||
| 2635 | |||
| 2636 | :param str src, tar: two strings to be compared  | 
            ||
| 2637 | :param float threshold: a number [0, 1] indicating the maximum similarity  | 
            ||
| 2638 | score, below which the strings are considered 'similar' (0.25 by  | 
            ||
| 2639 | default)  | 
            ||
| 2640 | :param int maxmismatches: a number indicating the allowable number of  | 
            ||
| 2641 | mismatches to remove before declaring two strings not similar (2 by  | 
            ||
| 2642 | default)  | 
            ||
| 2643 | :returns: MLIPNS distance  | 
            ||
| 2644 | :rtype: float  | 
            ||
| 2645 | |||
| 2646 |     >>> dist_mlipns('cat', 'hat') | 
            ||
| 2647 | 0.0  | 
            ||
| 2648 |     >>> dist_mlipns('Niall', 'Neil') | 
            ||
| 2649 | 1.0  | 
            ||
| 2650 |     >>> dist_mlipns('aluminum', 'Catalan') | 
            ||
| 2651 | 1.0  | 
            ||
| 2652 |     >>> dist_mlipns('ATCG', 'TAGC') | 
            ||
| 2653 | 1.0  | 
            ||
| 2654 | """  | 
            ||
| 2655 | return 1.0 - sim_mlipns(src, tar, threshold, maxmismatches)  | 
            ||
| 2656 | |||
| 2657 | |||
| 2658 | def bag(src, tar):  | 
            ||
| 2659 | """Return the bag distance between two strings.  | 
            ||
| 2660 | |||
| 2661 | Bag distance  | 
            ||
| 2662 | |||
| 2663 | Bag distance is proposed in Bartolini, Illaria, Paolo Ciaccia, and Marco  | 
            ||
| 2664 | Patella. 2002. "String Matching with Metric Trees Using and Approximate  | 
            ||
| 2665 | Distance. Proceedings of the 9th International Symposium on String  | 
            ||
| 2666 | Processing and Information Retrieval, Lisbone, Portugal, September 2002.  | 
            ||
| 2667 | 271-283.  | 
            ||
| 2668 | http://www-db.disi.unibo.it/research/papers/SPIRE02.pdf  | 
            ||
| 2669 | |||
| 2670 | It is defined as:  | 
            ||
| 2671 | :math:`max( |multiset(src)-multiset(tar)|, |multiset(tar)-multiset(src)| )`  | 
            ||
| 2672 | |||
| 2673 | :param str src, tar: two strings to be compared  | 
            ||
| 2674 | :returns: bag distance  | 
            ||
| 2675 | :rtype: int  | 
            ||
| 2676 | |||
| 2677 |     >>> bag('cat', 'hat') | 
            ||
| 2678 | 1  | 
            ||
| 2679 |     >>> bag('Niall', 'Neil') | 
            ||
| 2680 | 2  | 
            ||
| 2681 |     >>> bag('aluminum', 'Catalan') | 
            ||
| 2682 | 5  | 
            ||
| 2683 |     >>> bag('ATCG', 'TAGC') | 
            ||
| 2684 | 0  | 
            ||
| 2685 |     >>> bag('abcdefg', 'hijklm') | 
            ||
| 2686 | 7  | 
            ||
| 2687 |     >>> bag('abcdefg', 'hijklmno') | 
            ||
| 2688 | 8  | 
            ||
| 2689 | """  | 
            ||
| 2690 | if tar == src:  | 
            ||
| 2691 | return 0  | 
            ||
| 2692 | elif not src:  | 
            ||
| 2693 | return len(tar)  | 
            ||
| 2694 | elif not tar:  | 
            ||
| 2695 | return len(src)  | 
            ||
| 2696 | |||
| 2697 | src_bag = Counter(src)  | 
            ||
| 2698 | tar_bag = Counter(tar)  | 
            ||
| 2699 | return max(sum((src_bag-tar_bag).values()),  | 
            ||
| 2700 | sum((tar_bag-src_bag).values()))  | 
            ||
| 2701 | |||
| 2702 | |||
| 2703 | def dist_bag(src, tar):  | 
            ||
| 2704 | """Return the normalized bag distance between two strings.  | 
            ||
| 2705 | |||
| 2706 | Normalized bag distance  | 
            ||
| 2707 | |||
| 2708 | Bag distance is normalized by dividing by :math:`max( |src|, |tar| )`.  | 
            ||
| 2709 | |||
| 2710 | :param str src, tar: two strings to be compared  | 
            ||
| 2711 | :returns: normalized bag distance  | 
            ||
| 2712 | :rtype: float  | 
            ||
| 2713 | |||
| 2714 |     >>> dist_bag('cat', 'hat') | 
            ||
| 2715 | 0.3333333333333333  | 
            ||
| 2716 |     >>> dist_bag('Niall', 'Neil') | 
            ||
| 2717 | 0.4  | 
            ||
| 2718 |     >>> dist_bag('aluminum', 'Catalan') | 
            ||
| 2719 | 0.375  | 
            ||
| 2720 |     >>> dist_bag('ATCG', 'TAGC') | 
            ||
| 2721 | 0.0  | 
            ||
| 2722 | """  | 
            ||
| 2723 | if tar == src:  | 
            ||
| 2724 | return 0.0  | 
            ||
| 2725 | if not src or not tar:  | 
            ||
| 2726 | return 1.0  | 
            ||
| 2727 | |||
| 2728 | maxlen = max(len(src), len(tar))  | 
            ||
| 2729 | |||
| 2730 | return bag(src, tar)/maxlen  | 
            ||
| 2731 | |||
| 2732 | |||
| 2733 | def sim_bag(src, tar):  | 
            ||
| 2734 | """Return the normalized bag similarity of two strings.  | 
            ||
| 2735 | |||
| 2736 | Normalized bag similarity  | 
            ||
| 2737 | |||
| 2738 | Normalized bag similarity is the complement of normalized bag distance:  | 
            ||
| 2739 |     :math:`sim_{bag} = 1 - dist_{bag}` | 
            ||
| 2740 | |||
| 2741 | :param str src, tar: two strings to be compared  | 
            ||
| 2742 | :returns: normalized bag similarity  | 
            ||
| 2743 | :rtype: float  | 
            ||
| 2744 | |||
| 2745 |     >>> sim_bag('cat', 'hat') | 
            ||
| 2746 | 0.6666666666666667  | 
            ||
| 2747 |     >>> sim_bag('Niall', 'Neil') | 
            ||
| 2748 | 0.6  | 
            ||
| 2749 |     >>> sim_bag('aluminum', 'Catalan') | 
            ||
| 2750 | 0.625  | 
            ||
| 2751 |     >>> sim_bag('ATCG', 'TAGC') | 
            ||
| 2752 | 1.0  | 
            ||
| 2753 | """  | 
            ||
| 2754 | return 1-dist_bag(src, tar)  | 
            ||
| 2755 | |||
| 2756 | |||
| 2757 | def editex(src, tar, cost=(0, 1, 2), local=False):  | 
            ||
| 2758 | """Return the Editex distance between two strings.  | 
            ||
| 2759 | |||
| 2760 | Editex distance  | 
            ||
| 2761 | |||
| 2762 | As described on pages 3 & 4 of  | 
            ||
| 2763 | Zobel, Justin and Philip Dart. 1996. Phonetic string matching: Lessons from  | 
            ||
| 2764 | information retrieval. In: Proceedings of the ACM-SIGIR Conference on  | 
            ||
| 2765 | Research and Development in Information Retrieval, Zurich, Switzerland.  | 
            ||
| 2766 | 166–173. https://doi.org/10.1145/243199.243258  | 
            ||
| 2767 | |||
| 2768 | The local variant is based on  | 
            ||
| 2769 | Ring, Nicholas and Alexandra L. Uitdenbogerd. 2009. Finding ‘Lucy in  | 
            ||
| 2770 | Disguise’: The Misheard Lyric Matching Problem. In: Proceedings of the 5th  | 
            ||
| 2771 | Asia Information Retrieval Symposium, Sapporo, Japan. 157-167.  | 
            ||
| 2772 | http://www.seg.rmit.edu.au/research/download.php?manuscript=404  | 
            ||
| 2773 | |||
| 2774 | :param str src, tar: two strings to be compared  | 
            ||
| 2775 | :param tuple cost: a 3-tuple representing the cost of the four possible  | 
            ||
| 2776 | edits:  | 
            ||
| 2777 | match, same-group, and mismatch respectively (by default: (0, 1, 2))  | 
            ||
| 2778 | :param bool local: if True, the local variant of Editex is used  | 
            ||
| 2779 | :returns: Editex distance  | 
            ||
| 2780 | :rtype: int  | 
            ||
| 2781 | |||
| 2782 |     >>> editex('cat', 'hat') | 
            ||
| 2783 | 2  | 
            ||
| 2784 |     >>> editex('Niall', 'Neil') | 
            ||
| 2785 | 2  | 
            ||
| 2786 |     >>> editex('aluminum', 'Catalan') | 
            ||
| 2787 | 12  | 
            ||
| 2788 |     >>> editex('ATCG', 'TAGC') | 
            ||
| 2789 | 6  | 
            ||
| 2790 | """  | 
            ||
| 2791 | match_cost, group_cost, mismatch_cost = cost  | 
            ||
| 2792 |     letter_groups = ({'A', 'E', 'I', 'O', 'U', 'Y'}, | 
            ||
| 2793 |                      {'B', 'P'}, | 
            ||
| 2794 |                      {'C', 'K', 'Q'}, | 
            ||
| 2795 |                      {'D', 'T'}, | 
            ||
| 2796 |                      {'L', 'R'}, | 
            ||
| 2797 |                      {'M', 'N'}, | 
            ||
| 2798 |                      {'G', 'J'}, | 
            ||
| 2799 |                      {'F', 'P', 'V'}, | 
            ||
| 2800 |                      {'S', 'X', 'Z'}, | 
            ||
| 2801 |                      {'C', 'S', 'Z'}) | 
            ||
| 2802 |     all_letters = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'I', 'J', 'K', 'L', 'M', | 
            ||
| 2803 | 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'X', 'Y', 'Z'}  | 
            ||
| 2804 | |||
| 2805 | def r_cost(ch1, ch2):  | 
            ||
| 2806 | """Return r(a,b) according to Zobel & Dart's definition."""  | 
            ||
| 2807 | if ch1 == ch2:  | 
            ||
| 2808 | return match_cost  | 
            ||
| 2809 | if ch1 in all_letters and ch2 in all_letters:  | 
            ||
| 2810 | for group in letter_groups:  | 
            ||
| 2811 | if ch1 in group and ch2 in group:  | 
            ||
| 2812 | return group_cost  | 
            ||
| 2813 | return mismatch_cost  | 
            ||
| 2814 | |||
| 2815 | def d_cost(ch1, ch2):  | 
            ||
| 2816 | """Return d(a,b) according to Zobel & Dart's definition."""  | 
            ||
| 2817 | if ch1 != ch2 and (ch1 == 'H' or ch1 == 'W'):  | 
            ||
| 2818 | return group_cost  | 
            ||
| 2819 | return r_cost(ch1, ch2)  | 
            ||
| 2820 | |||
| 2821 | # convert both src & tar to NFKD normalized unicode  | 
            ||
| 2822 |     src = unicodedata.normalize('NFKD', text_type(src.upper())) | 
            ||
| 2823 |     tar = unicodedata.normalize('NFKD', text_type(tar.upper())) | 
            ||
| 2824 | # convert ß to SS (for Python2)  | 
            ||
| 2825 |     src = src.replace('ß', 'SS') | 
            ||
| 2826 |     tar = tar.replace('ß', 'SS') | 
            ||
| 2827 | |||
| 2828 | if src == tar:  | 
            ||
| 2829 | return 0  | 
            ||
| 2830 | if not src:  | 
            ||
| 2831 | return len(tar) * mismatch_cost  | 
            ||
| 2832 | if not tar:  | 
            ||
| 2833 | return len(src) * mismatch_cost  | 
            ||
| 2834 | |||
| 2835 | # pylint: disable=no-member  | 
            ||
| 2836 | d_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.int)  | 
            ||
| 2837 | # pylint: enable=no-member  | 
            ||
| 2838 | lens = len(src)  | 
            ||
| 2839 | lent = len(tar)  | 
            ||
| 2840 | src = ' '+src  | 
            ||
| 2841 | tar = ' '+tar  | 
            ||
| 2842 | |||
| 2843 | if not local:  | 
            ||
| 2844 | for i in range(1, lens+1):  | 
            ||
| 2845 | d_mat[i, 0] = d_mat[i-1, 0] + d_cost(src[i-1], src[i])  | 
            ||
| 2846 | for j in range(1, lent+1):  | 
            ||
| 2847 | d_mat[0, j] = d_mat[0, j-1] + d_cost(tar[j-1], tar[j])  | 
            ||
| 2848 | |||
| 2849 | for i in range(1, lens+1):  | 
            ||
| 2850 | for j in range(1, lent+1):  | 
            ||
| 2851 | d_mat[i, j] = min(d_mat[i-1, j] + d_cost(src[i-1], src[i]),  | 
            ||
| 2852 | d_mat[i, j-1] + d_cost(tar[j-1], tar[j]),  | 
            ||
| 2853 | d_mat[i-1, j-1] + r_cost(src[i], tar[j]))  | 
            ||
| 2854 | |||
| 2855 | return d_mat[lens, lent]  | 
            ||
| 2856 | |||
| 2857 | |||
| 2858 | def dist_editex(src, tar, cost=(0, 1, 2), local=False):  | 
            ||
| 2859 | """Return the normalized Editex distance between two strings.  | 
            ||
| 2860 | |||
| 2861 | Editex distance normalized to the interval [0, 1]  | 
            ||
| 2862 | |||
| 2863 | The Editex distance is normalized by dividing the Editex distance  | 
            ||
| 2864 | (calculated by any of the three supported methods) by the greater of  | 
            ||
| 2865 | the number of characters in src times the cost of a delete and  | 
            ||
| 2866 | the number of characters in tar times the cost of an insert.  | 
            ||
| 2867 | For the case in which all operations have :math:`cost = 1`, this is  | 
            ||
| 2868 | equivalent to the greater of the length of the two strings src & tar.  | 
            ||
| 2869 | |||
| 2870 | :param str src, tar: two strings to be compared  | 
            ||
| 2871 | :param tuple cost: a 3-tuple representing the cost of the four possible  | 
            ||
| 2872 | edits:  | 
            ||
| 2873 | match, same-group, and mismatch respectively (by default: (0, 1, 2))  | 
            ||
| 2874 | :param bool local: if True, the local variant of Editex is used  | 
            ||
| 2875 | :returns: normalized Editex distance  | 
            ||
| 2876 | :rtype: float  | 
            ||
| 2877 | |||
| 2878 |     >>> dist_editex('cat', 'hat') | 
            ||
| 2879 | 0.33333333333333331  | 
            ||
| 2880 |     >>> dist_editex('Niall', 'Neil') | 
            ||
| 2881 | 0.20000000000000001  | 
            ||
| 2882 |     >>> dist_editex('aluminum', 'Catalan') | 
            ||
| 2883 | 0.75  | 
            ||
| 2884 |     >>> dist_editex('ATCG', 'TAGC') | 
            ||
| 2885 | 0.75  | 
            ||
| 2886 | """  | 
            ||
| 2887 | if src == tar:  | 
            ||
| 2888 | return 0  | 
            ||
| 2889 | mismatch_cost = cost[2]  | 
            ||
| 2890 | return (editex(src, tar, cost, local) /  | 
            ||
| 2891 | (max(len(src)*mismatch_cost, len(tar)*mismatch_cost)))  | 
            ||
| 2892 | |||
| 2893 | |||
| 2894 | def sim_editex(src, tar, cost=(0, 1, 2), local=False):  | 
            ||
| 2895 | """Return the normalized Editex similarity of two strings.  | 
            ||
| 2896 | |||
| 2897 | Editex similarity normalized to the interval [0, 1]  | 
            ||
| 2898 | |||
| 2899 | The Editex similarity is the complement of Editex distance  | 
            ||
| 2900 |     :math:`sim_{Editex} = 1 - dist_{Editex}` | 
            ||
| 2901 | |||
| 2902 | The arguments are identical to those of the editex() function.  | 
            ||
| 2903 | |||
| 2904 | :param str src, tar: two strings to be compared  | 
            ||
| 2905 | :param tuple cost: a 3-tuple representing the cost of the four possible  | 
            ||
| 2906 | edits:  | 
            ||
| 2907 | match, same-group, and mismatch respectively (by default: (0, 1, 2))  | 
            ||
| 2908 | :param bool local: if True, the local variant of Editex is used  | 
            ||
| 2909 | :returns: normalized Editex similarity  | 
            ||
| 2910 | :rtype: float  | 
            ||
| 2911 | |||
| 2912 |     >>> sim_editex('cat', 'hat') | 
            ||
| 2913 | 0.66666666666666674  | 
            ||
| 2914 |     >>> sim_editex('Niall', 'Neil') | 
            ||
| 2915 | 0.80000000000000004  | 
            ||
| 2916 |     >>> sim_editex('aluminum', 'Catalan') | 
            ||
| 2917 | 0.25  | 
            ||
| 2918 |     >>> sim_editex('ATCG', 'TAGC') | 
            ||
| 2919 | 0.25  | 
            ||
| 2920 | """  | 
            ||
| 2921 | return 1 - dist_editex(src, tar, cost, local)  | 
            ||
| 2922 | |||
| 2923 | |||
| 2924 | def eudex_hamming(src, tar, weights='exponential', maxlength=8,  | 
            ||
| 2925 | normalized=False):  | 
            ||
| 2926 | """Calculate the Hamming distance between the Eudex hashes of two terms.  | 
            ||
| 2927 | |||
| 2928 | If weights is set to None, a simple Hamming distance is calculated.  | 
            ||
| 2929 | If weights is set to 'exponential', weight decays by powers of 2, as  | 
            ||
| 2930 | proposed in the eudex specification: https://github.com/ticki/eudex.  | 
            ||
| 2931 | If weights is set to 'fibonacci', weight decays through the Fibonacci  | 
            ||
| 2932 | series, as in the eudex reference implementation.  | 
            ||
| 2933 | If weights is set to a callable function, this assumes it creates a  | 
            ||
| 2934 | generator and the generator is used to populate a series of weights.  | 
            ||
| 2935 | If weights is set to an iterable, the iterable's values should be integers  | 
            ||
| 2936 | and will be used as the weights.  | 
            ||
| 2937 | |||
| 2938 | :param str src, tar: two strings to be compared  | 
            ||
| 2939 | :param iterable or generator function weights:  | 
            ||
| 2940 | :param maxlength: the number of characters to encode as a eudex hash  | 
            ||
| 2941 | :return:  | 
            ||
| 2942 | """  | 
            ||
| 2943 | def _gen_fibonacci():  | 
            ||
| 2944 | """Yield the next Fibonacci number.  | 
            ||
| 2945 | |||
| 2946 | Based on https://www.python-course.eu/generators.php  | 
            ||
| 2947 | Starts at Fibonacci number 3 (the second 1)  | 
            ||
| 2948 | """  | 
            ||
| 2949 | num_a, num_b = 1, 2  | 
            ||
| 2950 | while True:  | 
            ||
| 2951 | yield num_a  | 
            ||
| 2952 | num_a, num_b = num_b, num_a + num_b  | 
            ||
| 2953 | |||
| 2954 | def _gen_exponential(base=2):  | 
            ||
| 2955 | """Yield the next value in an exponential series of the base.  | 
            ||
| 2956 | |||
| 2957 | Based on https://www.python-course.eu/generators.php  | 
            ||
| 2958 | Starts at base**0  | 
            ||
| 2959 | """  | 
            ||
| 2960 | exp = 0  | 
            ||
| 2961 | while True:  | 
            ||
| 2962 | yield base ** exp  | 
            ||
| 2963 | exp += 1  | 
            ||
| 2964 | |||
| 2965 | # Calculate the eudex hashes and XOR them  | 
            ||
| 2966 | xored = eudex(src, maxlength=maxlength) ^ eudex(tar, maxlength=maxlength)  | 
            ||
| 2967 | |||
| 2968 | # Simple hamming distance (all bits are equal)  | 
            ||
| 2969 | if not weights:  | 
            ||
| 2970 |         return bin(xored).count('1') | 
            ||
| 2971 | |||
| 2972 | # If weights is a function, it should create a generator,  | 
            ||
| 2973 | # which we now use to populate a list  | 
            ||
| 2974 | if callable(weights):  | 
            ||
| 2975 | weights = weights()  | 
            ||
| 2976 | elif weights == 'exponential':  | 
            ||
| 2977 | weights = _gen_exponential()  | 
            ||
| 2978 | elif weights == 'fibonacci':  | 
            ||
| 2979 | weights = _gen_fibonacci()  | 
            ||
| 2980 | if isinstance(weights, types.GeneratorType):  | 
            ||
| 2981 | weights = [next(weights) for _ in range(maxlength)][::-1]  | 
            ||
| 2982 | |||
| 2983 | # Sum the weighted hamming distance  | 
            ||
| 2984 | dist = 0  | 
            ||
| 2985 | maxdist = 0  | 
            ||
| 2986 | while (xored or normalized) and weights:  | 
            ||
| 2987 | maxdist += 8*weights[-1]  | 
            ||
| 2988 |         dist += bin(xored & 0xFF).count('1') * weights.pop() | 
            ||
| 2989 | xored >>= 8  | 
            ||
| 2990 | |||
| 2991 | if normalized:  | 
            ||
| 2992 | dist /= maxdist  | 
            ||
| 2993 | |||
| 2994 | return dist  | 
            ||
| 2995 | |||
| 2996 | |||
| 2997 | def dist_eudex(src, tar, weights='exponential', maxlength=8):  | 
            ||
| 2998 | """Return normalized Hamming distance between Eudex hashes of two terms.  | 
            ||
| 2999 | |||
| 3000 | If weights is set to None, a simple Hamming distance is calculated.  | 
            ||
| 3001 | If weights is set to 'exponential', weight decays by powers of 2, as  | 
            ||
| 3002 | proposed in the eudex specification: https://github.com/ticki/eudex.  | 
            ||
| 3003 | If weights is set to 'fibonacci', weight decays through the Fibonacci  | 
            ||
| 3004 | series, as in the eudex reference implementation.  | 
            ||
| 3005 | If weights is set to a callable function, this assumes it creates a  | 
            ||
| 3006 | generator and the generator is used to populate a series of weights.  | 
            ||
| 3007 | If weights is set to an iterable, the iterable's values should be integers  | 
            ||
| 3008 | and will be used as the weights.  | 
            ||
| 3009 | |||
| 3010 | :param str src, tar: two strings to be compared  | 
            ||
| 3011 | :param iterable or generator function weights:  | 
            ||
| 3012 | :param maxlength: the number of characters to encode as a eudex hash  | 
            ||
| 3013 | :return:  | 
            ||
| 3014 | """  | 
            ||
| 3015 | return eudex_hamming(src, tar, weights, maxlength, True)  | 
            ||
| 3016 | |||
| 3017 | |||
| 3018 | def sim_eudex(src, tar, weights='exponential', maxlength=8):  | 
            ||
| 3019 | """Return normalized Hamming similarity between Eudex hashes of two terms.  | 
            ||
| 3020 | |||
| 3021 | If weights is set to None, a simple Hamming distance is calculated.  | 
            ||
| 3022 | If weights is set to 'exponential', weight decays by powers of 2, as  | 
            ||
| 3023 | proposed in the eudex specification: https://github.com/ticki/eudex.  | 
            ||
| 3024 | If weights is set to 'fibonacci', weight decays through the Fibonacci  | 
            ||
| 3025 | series, as in the eudex reference implementation.  | 
            ||
| 3026 | If weights is set to a callable function, this assumes it creates a  | 
            ||
| 3027 | generator and the generator is used to populate a series of weights.  | 
            ||
| 3028 | If weights is set to an iterable, the iterable's values should be integers  | 
            ||
| 3029 | and will be used as the weights.  | 
            ||
| 3030 | |||
| 3031 | :param str src, tar: two strings to be compared  | 
            ||
| 3032 | :param iterable or generator function weights:  | 
            ||
| 3033 | :param maxlength: the number of characters to encode as a eudex hash  | 
            ||
| 3034 | :return:  | 
            ||
| 3035 | """  | 
            ||
| 3036 | return 1-dist_eudex(src, tar, weights, maxlength)  | 
            ||
| 3037 | |||
| 3038 | |||
| 3039 | def sift4_simplest(src, tar, max_offset=0):  | 
            ||
| 3040 | """Return the "simplest" Sift4 distance between two terms.  | 
            ||
| 3041 | |||
| 3042 | This is an approximation of edit distance, described in:  | 
            ||
| 3043 | Zackwehdex, Siderite. 2014. "Super Fast and Accurate string distance  | 
            ||
| 3044 | algorithm: Sift4."  | 
            ||
| 3045 | https://siderite.blogspot.com/2014/11/super-fast-and-accurate-string-distance.html  | 
            ||
| 3046 | |||
| 3047 | :param str src, tar: two strings to be compared  | 
            ||
| 3048 | :param max_offset: the number of characters to search for matching letters  | 
            ||
| 3049 | :return:  | 
            ||
| 3050 | """  | 
            ||
| 3051 | if not src:  | 
            ||
| 3052 | return len(tar)  | 
            ||
| 3053 | |||
| 3054 | if not tar:  | 
            ||
| 3055 | return len(src)  | 
            ||
| 3056 | |||
| 3057 | src_len = len(src)  | 
            ||
| 3058 | tar_len = len(tar)  | 
            ||
| 3059 | |||
| 3060 | src_cur = 0  | 
            ||
| 3061 | tar_cur = 0  | 
            ||
| 3062 | lcss = 0  | 
            ||
| 3063 | local_cs = 0  | 
            ||
| 3064 | |||
| 3065 | while (src_cur < src_len) and (tar_cur < tar_len):  | 
            ||
| 3066 | if src[src_cur] == tar[tar_cur]:  | 
            ||
| 3067 | local_cs += 1  | 
            ||
| 3068 | else:  | 
            ||
| 3069 | lcss += local_cs  | 
            ||
| 3070 | local_cs = 0  | 
            ||
| 3071 | if src_cur != tar_cur:  | 
            ||
| 3072 | src_cur = tar_cur = max(src_cur, tar_cur)  | 
            ||
| 3073 | for i in range(max_offset):  | 
            ||
| 3074 | if not ((src_cur+i < src_len) or (tar_cur+i < tar_len)):  | 
            ||
| 3075 | break  | 
            ||
| 3076 | if (src_cur+i < src_len) and (src[src_cur+i] == tar[tar_cur]):  | 
            ||
| 3077 | src_cur += i  | 
            ||
| 3078 | local_cs += 1  | 
            ||
| 3079 | break  | 
            ||
| 3080 | if (tar_cur+i < tar_len) and (src[src_cur] == tar[tar_cur+i]):  | 
            ||
| 3081 | tar_cur += i  | 
            ||
| 3082 | local_cs += 1  | 
            ||
| 3083 | break  | 
            ||
| 3084 | |||
| 3085 | src_cur += 1  | 
            ||
| 3086 | tar_cur += 1  | 
            ||
| 3087 | |||
| 3088 | lcss += local_cs  | 
            ||
| 3089 | return round(max(src_len, tar_len) - lcss)  | 
            ||
| 3090 | |||
| 3091 | |||
| 3092 | def sift4_common(src, tar, max_offset=0, max_distance=0):  | 
            ||
| 3093 | """Return the "common" Sift4 distance between two terms.  | 
            ||
| 3094 | |||
| 3095 | This is an approximation of edit distance, described in:  | 
            ||
| 3096 | Zackwehdex, Siderite. 2014. "Super Fast and Accurate string distance  | 
            ||
| 3097 | algorithm: Sift4."  | 
            ||
| 3098 | https://siderite.blogspot.com/2014/11/super-fast-and-accurate-string-distance.html  | 
            ||
| 3099 | |||
| 3100 | :param str src, tar: two strings to be compared  | 
            ||
| 3101 | :param max_offset: the number of characters to search for matching letters  | 
            ||
| 3102 | :param max_distance: the distance at which to stop and exit  | 
            ||
| 3103 | :return:  | 
            ||
| 3104 | """  | 
            ||
| 3105 | if not src:  | 
            ||
| 3106 | return len(tar)  | 
            ||
| 3107 | |||
| 3108 | if not tar:  | 
            ||
| 3109 | return len(src)  | 
            ||
| 3110 | |||
| 3111 | src_len = len(src)  | 
            ||
| 3112 | tar_len = len(tar)  | 
            ||
| 3113 | |||
| 3114 | src_cur = 0  | 
            ||
| 3115 | tar_cur = 0  | 
            ||
| 3116 | lcss = 0  | 
            ||
| 3117 | local_cs = 0  | 
            ||
| 3118 | trans = 0  | 
            ||
| 3119 | offset_arr = []  | 
            ||
| 3120 | |||
| 3121 | while (src_cur < src_len) and (tar_cur < tar_len):  | 
            ||
| 3122 | if src[src_cur] == tar[tar_cur]:  | 
            ||
| 3123 | local_cs += 1  | 
            ||
| 3124 | is_trans = False  | 
            ||
| 3125 | i = 0  | 
            ||
| 3126 | while i < len(offset_arr):  | 
            ||
| 3127 | ofs = offset_arr[i]  | 
            ||
| 3128 | if src_cur <= ofs['src_cur'] or tar_cur <= ofs['tar_cur']:  | 
            ||
| 3129 | is_trans = (abs(tar_cur-src_cur) >=  | 
            ||
| 3130 | abs(ofs['tar_cur']-ofs['src_cur']))  | 
            ||
| 3131 | if is_trans:  | 
            ||
| 3132 | trans += 1  | 
            ||
| 3133 | elif not ofs['trans']:  | 
            ||
| 3134 | ofs['trans'] = True  | 
            ||
| 3135 | trans += 1  | 
            ||
| 3136 | break  | 
            ||
| 3137 | elif src_cur > ofs['tar_cur'] and tar_cur > ofs['src_cur']:  | 
            ||
| 3138 | del offset_arr[i]  | 
            ||
| 3139 | else:  | 
            ||
| 3140 | i += 1  | 
            ||
| 3141 | |||
| 3142 |             offset_arr.append({'src_cur': src_cur, 'tar_cur': tar_cur, | 
            ||
| 3143 | 'trans': is_trans})  | 
            ||
| 3144 | else:  | 
            ||
| 3145 | lcss += local_cs  | 
            ||
| 3146 | local_cs = 0  | 
            ||
| 3147 | if src_cur != tar_cur:  | 
            ||
| 3148 | src_cur = tar_cur = min(src_cur, tar_cur)  | 
            ||
| 3149 | for i in range(max_offset):  | 
            ||
| 3150 | if not ((src_cur+i < src_len) or (tar_cur+i < tar_len)):  | 
            ||
| 3151 | break  | 
            ||
| 3152 | if (src_cur+i < src_len) and (src[src_cur+i] == tar[tar_cur]):  | 
            ||
| 3153 | src_cur += i-1  | 
            ||
| 3154 | tar_cur -= 1  | 
            ||
| 3155 | break  | 
            ||
| 3156 | if (tar_cur+i < tar_len) and (src[src_cur] == tar[tar_cur+i]):  | 
            ||
| 3157 | src_cur -= 1  | 
            ||
| 3158 | tar_cur += i-1  | 
            ||
| 3159 | break  | 
            ||
| 3160 | |||
| 3161 | src_cur += 1  | 
            ||
| 3162 | tar_cur += 1  | 
            ||
| 3163 | |||
| 3164 | if max_distance:  | 
            ||
| 3165 | temporary_distance = max(src_cur, tar_cur) - lcss + trans  | 
            ||
| 3166 | if temporary_distance >= max_distance:  | 
            ||
| 3167 | return round(temporary_distance)  | 
            ||
| 3168 | |||
| 3169 | if (src_cur >= src_len) or (tar_cur >= tar_len):  | 
            ||
| 3170 | lcss += local_cs  | 
            ||
| 3171 | local_cs = 0  | 
            ||
| 3172 | src_cur = tar_cur = min(src_cur, tar_cur)  | 
            ||
| 3173 | |||
| 3174 | lcss += local_cs  | 
            ||
| 3175 | return round(max(src_len, tar_len) - lcss + trans)  | 
            ||
| 3176 | |||
| 3177 | |||
| 3178 | def dist_sift4(src, tar, max_offset=0, max_distance=0):  | 
            ||
| 3179 | """Return the normalized "common" Sift4 distance between two terms.  | 
            ||
| 3180 | |||
| 3181 | This is an approximation of edit distance, described in:  | 
            ||
| 3182 | Zackwehdex, Siderite. 2014. "Super Fast and Accurate string distance  | 
            ||
| 3183 | algorithm: Sift4."  | 
            ||
| 3184 | https://siderite.blogspot.com/2014/11/super-fast-and-accurate-string-distance.html  | 
            ||
| 3185 | |||
| 3186 | :param str src, tar: two strings to be compared  | 
            ||
| 3187 | :param max_offset: the number of characters to search for matching letters  | 
            ||
| 3188 | :param max_distance: the distance at which to stop and exit  | 
            ||
| 3189 | :return:  | 
            ||
| 3190 | """  | 
            ||
| 3191 | return (sift4_common(src, tar, max_offset, max_distance) /  | 
            ||
| 3192 | (max(len(src), len(tar))))  | 
            ||
| 3193 | |||
| 3194 | |||
| 3195 | def sim_sift4(src, tar, max_offset=0, max_distance=0):  | 
            ||
| 3196 | """Return the normalized "common" Sift4 similarity of two terms.  | 
            ||
| 3197 | |||
| 3198 | This is an approximation of edit distance, described in:  | 
            ||
| 3199 | Zackwehdex, Siderite. 2014. "Super Fast and Accurate string distance  | 
            ||
| 3200 | algorithm: Sift4."  | 
            ||
| 3201 | https://siderite.blogspot.com/2014/11/super-fast-and-accurate-string-distance.html  | 
            ||
| 3202 | |||
| 3203 | :param str src, tar: two strings to be compared  | 
            ||
| 3204 | :param max_offset: the number of characters to search for matching letters  | 
            ||
| 3205 | :param max_distance: the distance at which to stop and exit  | 
            ||
| 3206 | :return:  | 
            ||
| 3207 | """  | 
            ||
| 3208 | return 1-dist_sift4(src, tar, max_offset, max_distance)  | 
            ||
| 3209 | |||
| 3210 | |||
| 3211 | def sim_baystat(src, tar, min_ss_len=None, left_ext=None, right_ext=None):  | 
            ||
| 3212 | """Return the Baystat similarity.  | 
            ||
| 3213 | |||
| 3214 | Good results for shorter words are reported when setting min_ss_len to 1  | 
            ||
| 3215 | and either left_ext OR right_ext to 1.  | 
            ||
| 3216 | |||
| 3217 | The Baystat similarity is defined in:  | 
            ||
| 3218 | Fürnrohr, Michael, Birgit Rimmelspacher, and Tilman von Roncador. 2002.  | 
            ||
| 3219 | "Zusammenführung von Datenbeständen ohne numerische Identifikatoren: ein  | 
            ||
| 3220 | Verfahren im Rahmen der Testuntersuchungen zu einem registergestützten  | 
            ||
| 3221 | Zensus." Bayern in Zahlen, 2002(7). 308--321.  | 
            ||
| 3222 | https://www.statistik.bayern.de/medien/statistik/zensus/zusammenf__hrung_von_datenbest__nden_ohne_numerische_identifikatoren.pdf  | 
            ||
| 3223 | |||
| 3224 | This is ostensibly a port of the R module PPRL's implementation:  | 
            ||
| 3225 | https://github.com/cran/PPRL/blob/master/src/MTB_Baystat.cpp  | 
            ||
| 3226 | As such, this could be made more pythonic.  | 
            ||
| 3227 | |||
| 3228 | :param str src, tar: two strings to be compared  | 
            ||
| 3229 | :param int min_ss_len: minimum substring length to be considered  | 
            ||
| 3230 | :param int left_ext: left-side extension length  | 
            ||
| 3231 | :param int right_ext: right-side extension length  | 
            ||
| 3232 | :rtype: float  | 
            ||
| 3233 | :return: the Baystat similarity  | 
            ||
| 3234 | """  | 
            ||
| 3235 | if src == tar:  | 
            ||
| 3236 | return 1  | 
            ||
| 3237 | if not src or not tar:  | 
            ||
| 3238 | return 0  | 
            ||
| 3239 | |||
| 3240 | max_len = max(len(src), len(tar))  | 
            ||
| 3241 | |||
| 3242 | if not (min_ss_len and left_ext and right_ext):  | 
            ||
| 3243 | # These can be set via arguments to the function. Otherwise they are  | 
            ||
| 3244 | # set automatically based on values from the article.  | 
            ||
| 3245 | if max_len >= 7:  | 
            ||
| 3246 | min_ss_len = 2  | 
            ||
| 3247 | left_ext = 2  | 
            ||
| 3248 | right_ext = 2  | 
            ||
| 3249 | else:  | 
            ||
| 3250 | # The paper suggests that for short names, (exclusively) one or the  | 
            ||
| 3251 | # other of left_ext and right_ext can be 1, with good results.  | 
            ||
| 3252 | # I use 0 & 0 as the default in this case.  | 
            ||
| 3253 | min_ss_len = 1  | 
            ||
| 3254 | left_ext = 0  | 
            ||
| 3255 | right_ext = 0  | 
            ||
| 3256 | |||
| 3257 | pos = 0  | 
            ||
| 3258 | match_len = 0  | 
            ||
| 3259 | |||
| 3260 | while (True):  | 
            ||
| 3261 | if pos + min_ss_len > len(src):  | 
            ||
| 3262 | return match_len/max_len  | 
            ||
| 3263 | |||
| 3264 | hit_len = 0  | 
            ||
| 3265 | ix = 1  | 
            ||
| 3266 | |||
| 3267 | substring = src[pos:pos + min_ss_len]  | 
            ||
| 3268 | search_begin = pos - left_ext  | 
            ||
| 3269 | |||
| 3270 | if search_begin < 0:  | 
            ||
| 3271 | search_begin = 0  | 
            ||
| 3272 | left_ext_len = pos  | 
            ||
| 3273 | else:  | 
            ||
| 3274 | left_ext_len = left_ext  | 
            ||
| 3275 | |||
| 3276 | if pos + min_ss_len + right_ext >= len(tar):  | 
            ||
| 3277 | right_ext_len = len(tar) - pos - min_ss_len  | 
            ||
| 3278 | else:  | 
            ||
| 3279 | right_ext_len = right_ext  | 
            ||
| 3280 | |||
| 3281 | if (search_begin + left_ext_len + min_ss_len + right_ext_len >  | 
            ||
| 3282 | search_begin):  | 
            ||
| 3283 | search_val = tar[search_begin:(search_begin + left_ext_len +  | 
            ||
| 3284 | min_ss_len + right_ext_len)]  | 
            ||
| 3285 | else:  | 
            ||
| 3286 | search_val = ''  | 
            ||
| 3287 | |||
| 3288 | flagged_tar = ''  | 
            ||
| 3289 | while substring in search_val and pos + ix <= len(src):  | 
            ||
| 3290 | hit_len = len(substring)  | 
            ||
| 3291 | flagged_tar = tar.replace(substring, '#'*hit_len)  | 
            ||
| 3292 | |||
| 3293 | if pos + min_ss_len + ix <= len(src):  | 
            ||
| 3294 | substring = src[pos:pos + min_ss_len + ix]  | 
            ||
| 3295 | |||
| 3296 | if pos+min_ss_len + right_ext_len + 1 <= len(tar):  | 
            ||
| 3297 | right_ext_len += 1  | 
            ||
| 3298 | |||
| 3299 | if (search_begin + left_ext_len + min_ss_len + right_ext_len <=  | 
            ||
| 3300 | len(tar)):  | 
            ||
| 3301 | search_val = tar[search_begin:(search_begin + left_ext_len +  | 
            ||
| 3302 | min_ss_len + right_ext_len)]  | 
            ||
| 3303 | |||
| 3304 | ix += 1  | 
            ||
| 3305 | |||
| 3306 | if hit_len > 0:  | 
            ||
| 3307 | tar = flagged_tar  | 
            ||
| 3308 | |||
| 3309 | match_len += hit_len  | 
            ||
| 3310 | pos += ix  | 
            ||
| 3311 | |||
| 3312 | |||
| 3313 | def dist_baystat(src, tar, min_ss_len=None, left_ext=None, right_ext=None):  | 
            ||
| 3314 | """Return the Baystat distance.  | 
            ||
| 3315 | |||
| 3316 | :param str src, tar: two strings to be compared  | 
            ||
| 3317 | :param int min_ss_len: minimum substring length to be considered  | 
            ||
| 3318 | :param int left_ext: left-side extension length  | 
            ||
| 3319 | :param int right_ext: right-side extension length  | 
            ||
| 3320 | :rtype: float  | 
            ||
| 3321 | :return: the Baystat distance  | 
            ||
| 3322 | """  | 
            ||
| 3323 | return 1-sim_baystat(src, tar, min_ss_len, left_ext, right_ext)  | 
            ||
| 3324 | |||
| 3325 | |||
| 3326 | def sim_tfidf(src, tar, qval=2, docs_src=None, docs_tar=None):  | 
            ||
| 3327 | """Return the TF-IDF similarity of two strings.  | 
            ||
| 3328 | |||
| 3329 | TF-IDF similarity  | 
            ||
| 3330 | |||
| 3331 | This is chiefly based on the "Formal Definition of TF/IDF Distance" at:  | 
            ||
| 3332 | http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/TfIdfDistance.html  | 
            ||
| 3333 | |||
| 3334 | :param str src, tar: two strings to be compared (or QGrams/Counter objects)  | 
            ||
| 3335 | :param int qval: the length of each q-gram; 0 or None for non-q-gram  | 
            ||
| 3336 | version  | 
            ||
| 3337 | :param Counter docs_src: a Counter object or string representing the  | 
            ||
| 3338 | document corpus for the src string  | 
            ||
| 3339 | :param Counter docs_tar: a Counter object or string representing the  | 
            ||
| 3340 | document corpus for the tar string (or set to None to use the docs_src  | 
            ||
| 3341 | for both)  | 
            ||
| 3342 | :returns: TF-IDF similarity  | 
            ||
| 3343 | :rtype: float  | 
            ||
| 3344 | """  | 
            ||
| 3345 | if src == tar:  | 
            ||
| 3346 | return 1.0 # TODO: confirm correctness of this when docs are different  | 
            ||
| 3347 | elif not src or not tar:  | 
            ||
| 3348 | return 0.0  | 
            ||
| 3349 | |||
| 3350 | q_src, q_tar = _get_qgrams(src, tar, qval)  | 
            ||
| 3351 | |||
| 3352 | if isinstance(docs_src, Counter):  | 
            ||
| 3353 | q_docs = docs_src  | 
            ||
| 3354 | elif qval and qval > 0:  | 
            ||
| 3355 | q_docs = QGrams(docs_src, qval)  | 
            ||
| 3356 | else:  | 
            ||
| 3357 | q_docs = Counter(docs_src.strip().split())  | 
            ||
| 3358 | |||
| 3359 | if not q_src or not q_tar:  | 
            ||
| 3360 | return 0.0  | 
            ||
| 3361 | |||
| 3362 | # TODO: finish implementation  | 
            ||
| 3363 | return 0.5 # hardcoded to half  | 
            ||
| 3364 | |||
| 3365 | ###############################################################################  | 
            ||
| 3366 | |||
| 3367 | |||
| 3368 | def sim(src, tar, method=sim_levenshtein):  | 
            ||
| 3369 | """Return a similarity of two strings.  | 
            ||
| 3370 | |||
| 3371 | This is a generalized function for calling other similarity functions.  | 
            ||
| 3372 | |||
| 3373 | :param str src, tar: two strings to be compared  | 
            ||
| 3374 | :param function method: specifies the similarity metric (Levenshtein by  | 
            ||
| 3375 | default)  | 
            ||
| 3376 | :returns: similarity according to the specified function  | 
            ||
| 3377 | :rtype: float  | 
            ||
| 3378 | |||
| 3379 |     >>> sim('cat', 'hat') | 
            ||
| 3380 | 0.66666666666666674  | 
            ||
| 3381 |     >>> sim('Niall', 'Neil') | 
            ||
| 3382 | 0.40000000000000002  | 
            ||
| 3383 |     >>> sim('aluminum', 'Catalan') | 
            ||
| 3384 | 0.125  | 
            ||
| 3385 |     >>> sim('ATCG', 'TAGC') | 
            ||
| 3386 | 0.25  | 
            ||
| 3387 | """  | 
            ||
| 3388 | if callable(method):  | 
            ||
| 3389 | return method(src, tar)  | 
            ||
| 3390 | else:  | 
            ||
| 3391 |         raise AttributeError('Unknown similarity function: ' + str(method)) | 
            ||
| 3392 | |||
| 3393 | |||
| 3394 | def dist(src, tar, method=sim_levenshtein):  | 
            ||
| 3395 | """Return a distance between two strings.  | 
            ||
| 3396 | |||
| 3397 | This is a generalized function for calling other distance functions.  | 
            ||
| 3398 | |||
| 3399 | :param str src, tar: two strings to be compared  | 
            ||
| 3400 | :param function method: specifies the similarity metric (Levenshtein by  | 
            ||
| 3401 | default) -- Note that this takes a similarity metric function, not  | 
            ||
| 3402 | a distance metric function.  | 
            ||
| 3403 | :returns: distance according to the specified function  | 
            ||
| 3404 | :rtype: float  | 
            ||
| 3405 | |||
| 3406 |     >>> dist('cat', 'hat') | 
            ||
| 3407 | 0.33333333333333326  | 
            ||
| 3408 |     >>> dist('Niall', 'Neil') | 
            ||
| 3409 | 0.59999999999999998  | 
            ||
| 3410 |     >>> dist('aluminum', 'Catalan') | 
            ||
| 3411 | 0.875  | 
            ||
| 3412 |     >>> dist('ATCG', 'TAGC') | 
            ||
| 3413 | 0.75  | 
            ||
| 3414 | """  | 
            ||
| 3415 | if callable(method):  | 
            ||
| 3416 | return 1 - method(src, tar)  | 
            ||
| 3417 | else:  | 
            ||
| 3418 |         raise AttributeError('Unknown distance function: ' + str(method)) | 
            ||
| 3419 |