1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance._smith_waterman. |
20
|
|
|
|
21
|
|
|
Smith-Waterman score |
22
|
|
|
""" |
23
|
|
|
|
24
|
1 |
|
from __future__ import ( |
25
|
|
|
absolute_import, |
26
|
|
|
division, |
27
|
|
|
print_function, |
28
|
|
|
unicode_literals, |
29
|
|
|
) |
30
|
|
|
|
31
|
1 |
|
from numpy import float32 as np_float32 |
32
|
1 |
|
from numpy import zeros as np_zeros |
33
|
|
|
|
34
|
1 |
|
from six.moves import range |
35
|
|
|
|
36
|
1 |
|
from ._ident import sim_ident |
37
|
1 |
|
from ._needleman_wunsch import NeedlemanWunsch |
38
|
|
|
|
39
|
1 |
|
__all__ = ['SmithWaterman', 'smith_waterman'] |
40
|
|
|
|
41
|
|
|
|
42
|
1 |
|
class SmithWaterman(NeedlemanWunsch): |
|
|
|
|
43
|
|
|
"""Smith-Waterman score. |
44
|
|
|
|
45
|
|
|
The Smith-Waterman score :cite:`Smith:1981` is a standard edit distance |
46
|
|
|
measure, differing from Needleman-Wunsch in that it focuses on local |
47
|
|
|
alignment and disallows negative scores. |
48
|
|
|
""" |
49
|
|
|
|
50
|
1 |
View Code Duplication |
def dist_abs(self, src, tar, gap_cost=1, sim_func=sim_ident): |
|
|
|
|
51
|
|
|
"""Return the Smith-Waterman score of two strings. |
52
|
|
|
|
53
|
|
|
Parameters |
54
|
|
|
---------- |
55
|
|
|
src : str |
56
|
|
|
Source string for comparison |
57
|
|
|
tar : str |
58
|
|
|
Target string for comparison |
59
|
|
|
gap_cost : float |
60
|
|
|
The cost of an alignment gap (1 by default) |
61
|
|
|
sim_func : function |
62
|
|
|
A function that returns the similarity of two characters (identity |
63
|
|
|
similarity by default) |
64
|
|
|
|
65
|
|
|
Returns |
66
|
|
|
------- |
67
|
|
|
float |
68
|
|
|
Smith-Waterman score |
69
|
|
|
|
70
|
|
|
Examples |
71
|
|
|
-------- |
72
|
|
|
>>> cmp = SmithWaterman() |
73
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
74
|
|
|
2.0 |
75
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
76
|
|
|
1.0 |
77
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
78
|
|
|
0.0 |
79
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
80
|
|
|
1.0 |
81
|
|
|
|
82
|
|
|
""" |
83
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
84
|
|
|
|
85
|
1 |
|
for i in range(len(src) + 1): |
86
|
1 |
|
d_mat[i, 0] = 0 |
87
|
1 |
|
for j in range(len(tar) + 1): |
88
|
1 |
|
d_mat[0, j] = 0 |
89
|
1 |
|
for i in range(1, len(src) + 1): |
90
|
1 |
|
for j in range(1, len(tar) + 1): |
91
|
1 |
|
match = d_mat[i - 1, j - 1] + sim_func(src[i - 1], tar[j - 1]) |
92
|
1 |
|
delete = d_mat[i - 1, j] - gap_cost |
93
|
1 |
|
insert = d_mat[i, j - 1] - gap_cost |
94
|
1 |
|
d_mat[i, j] = max(0, match, delete, insert) |
95
|
1 |
|
return d_mat[d_mat.shape[0] - 1, d_mat.shape[1] - 1] |
96
|
|
|
|
97
|
|
|
|
98
|
1 |
|
def smith_waterman(src, tar, gap_cost=1, sim_func=sim_ident): |
99
|
|
|
"""Return the Smith-Waterman score of two strings. |
100
|
|
|
|
101
|
|
|
This is a wrapper for :py:meth:`SmithWaterman.dist_abs`. |
102
|
|
|
|
103
|
|
|
Parameters |
104
|
|
|
---------- |
105
|
|
|
src : str |
106
|
|
|
Source string for comparison |
107
|
|
|
tar : str |
108
|
|
|
Target string for comparison |
109
|
|
|
gap_cost : float |
110
|
|
|
The cost of an alignment gap (1 by default) |
111
|
|
|
sim_func : function |
112
|
|
|
A function that returns the similarity of two characters (identity |
113
|
|
|
similarity by default) |
114
|
|
|
|
115
|
|
|
Returns |
116
|
|
|
------- |
117
|
|
|
float |
118
|
|
|
Smith-Waterman score |
119
|
|
|
|
120
|
|
|
Examples |
121
|
|
|
-------- |
122
|
|
|
>>> smith_waterman('cat', 'hat') |
123
|
|
|
2.0 |
124
|
|
|
>>> smith_waterman('Niall', 'Neil') |
125
|
|
|
1.0 |
126
|
|
|
>>> smith_waterman('aluminum', 'Catalan') |
127
|
|
|
0.0 |
128
|
|
|
>>> smith_waterman('ATCG', 'TAGC') |
129
|
|
|
1.0 |
130
|
|
|
|
131
|
|
|
""" |
132
|
1 |
|
return SmithWaterman().dist_abs(src, tar, gap_cost, sim_func) |
133
|
|
|
|
134
|
|
|
|
135
|
|
|
if __name__ == '__main__': |
136
|
|
|
import doctest |
137
|
|
|
|
138
|
|
|
doctest.testmod() |
139
|
|
|
|