1
|
|
|
# Copyright 2019-2020 by Christopher C. Little. |
2
|
|
|
# This file is part of Abydos. |
3
|
|
|
# |
4
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
5
|
|
|
# it under the terms of the GNU General Public License as published by |
6
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
7
|
|
|
# (at your option) any later version. |
8
|
|
|
# |
9
|
|
|
# Abydos is distributed in the hope that it will be useful, |
10
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
11
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12
|
|
|
# GNU General Public License for more details. |
13
|
|
|
# |
14
|
|
|
# You should have received a copy of the GNU General Public License |
15
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
16
|
|
|
|
17
|
|
|
"""abydos.distance._saps_alignment. |
18
|
|
|
|
19
|
1 |
|
Syllable Alignment Pattern Searching tokenizer |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
from typing import Any, Callable, List, Optional, Tuple, cast |
23
|
|
|
|
24
|
1 |
|
from numpy import int_ as np_int |
25
|
|
|
from numpy import zeros as np_zeros |
26
|
|
|
|
27
|
|
|
from ._distance import _Distance |
28
|
|
|
from ..tokenizer import SAPSTokenizer, _Tokenizer |
29
|
|
|
|
30
|
|
|
__all__ = ['SAPS'] |
31
|
1 |
|
|
32
|
1 |
|
|
33
|
|
|
class SAPS(_Distance): |
34
|
1 |
|
"""Syllable Alignment Pattern Searching tokenizer. |
35
|
|
|
|
36
|
1 |
|
This is the alignment and similarity calculation described on p. 917-918 of |
37
|
1 |
|
:cite:`Ruibin:2005`. |
38
|
|
|
|
39
|
1 |
|
.. versionadded:: 0.4.0 |
40
|
|
|
""" |
41
|
|
|
|
42
|
1 |
|
def __init__( |
43
|
|
|
self, |
44
|
|
|
cost: Tuple[int, int, int, int, int, int, int] = ( |
45
|
|
|
1, |
46
|
|
|
-1, |
47
|
|
|
-4, |
48
|
|
|
6, |
49
|
|
|
-2, |
50
|
|
|
-1, |
51
|
1 |
|
-3, |
52
|
|
|
), |
53
|
|
|
normalizer: Callable[[List[float]], float] = max, |
54
|
|
|
tokenizer: Optional[_Tokenizer] = None, |
55
|
|
|
**kwargs: Any |
56
|
|
|
): |
57
|
|
|
"""Initialize SAPS instance. |
58
|
|
|
|
59
|
|
|
Parameters |
60
|
|
|
---------- |
61
|
|
|
cost : tuple |
62
|
|
|
A 7-tuple representing the cost of the four possible matches: |
63
|
|
|
|
64
|
|
|
- syllable-internal match |
65
|
|
|
- syllable-internal mis-match |
66
|
|
|
- syllable-initial match or mismatch with syllable-internal |
67
|
|
|
- syllable-initial match |
68
|
|
|
- syllable-initial mis-match |
69
|
|
|
- syllable-internal gap |
70
|
|
|
- syllable-initial gap |
71
|
|
|
|
72
|
|
|
(by default: (1, -1, -4, 6, -2, -1, -3)) |
73
|
|
|
normalizer : function |
74
|
|
|
A function that takes an list and computes a normalization term |
75
|
|
|
by which the edit distance is divided (max by default). Another |
76
|
|
|
good option is the sum function. |
77
|
|
|
**kwargs |
78
|
|
|
Arbitrary keyword arguments |
79
|
|
|
|
80
|
|
|
|
81
|
|
|
.. versionadded:: 0.4.0 |
82
|
|
|
|
83
|
|
|
""" |
84
|
|
|
super(SAPS, self).__init__(**kwargs) |
85
|
1 |
|
self._s1, self._s2, self._s3, self._s4, self._s5 = cost[:5] |
86
|
1 |
|
self._g1, self._g2 = cost[5:] |
87
|
1 |
|
|
88
|
|
|
self._normalizer = normalizer |
89
|
1 |
|
if tokenizer is not None: |
90
|
1 |
|
self._tokenizer = tokenizer |
91
|
1 |
|
else: |
92
|
|
|
self._tokenizer = SAPSTokenizer() |
93
|
1 |
|
|
94
|
|
|
def _s(self, src: str, tar: str) -> int: |
95
|
1 |
|
if src.isupper(): |
96
|
1 |
|
if tar.isupper(): |
97
|
1 |
|
return self._s4 if src == tar else self._s5 |
98
|
1 |
|
else: |
99
|
|
|
return self._s3 |
100
|
1 |
|
else: |
101
|
|
|
if tar.islower(): |
102
|
1 |
|
return self._s1 if src == tar else self._s2 |
103
|
1 |
|
else: |
104
|
|
|
return self._s3 |
105
|
1 |
|
|
106
|
|
|
def _g(self, ch: str) -> int: |
107
|
1 |
|
if ch.isupper(): |
108
|
1 |
|
return self._g2 |
109
|
1 |
|
else: |
110
|
|
|
return self._g1 |
111
|
1 |
|
|
112
|
|
|
def sim_score(self, src: str, tar: str) -> float: |
113
|
1 |
|
"""Return the SAPS similarity between two strings. |
114
|
|
|
|
115
|
|
|
Parameters |
116
|
|
|
---------- |
117
|
|
|
src : str |
118
|
|
|
Source string for comparison |
119
|
|
|
tar : str |
120
|
|
|
Target string for comparison |
121
|
|
|
|
122
|
|
|
Returns |
123
|
|
|
------- |
124
|
|
|
int |
125
|
|
|
The SAPS similarity between src & tar |
126
|
|
|
|
127
|
|
|
Examples |
128
|
|
|
-------- |
129
|
|
|
>>> cmp = SAPS() |
130
|
|
|
>>> cmp.sim_score('cat', 'hat') |
131
|
|
|
0 |
132
|
|
|
>>> cmp.sim_score('Niall', 'Neil') |
133
|
|
|
3 |
134
|
|
|
>>> cmp.sim_score('aluminum', 'Catalan') |
135
|
|
|
-11 |
136
|
|
|
>>> cmp.sim_score('ATCG', 'TAGC') |
137
|
|
|
-1 |
138
|
|
|
>>> cmp.sim_score('Stevenson', 'Stinson') |
139
|
|
|
16 |
140
|
|
|
|
141
|
|
|
|
142
|
|
|
.. versionadded:: 0.4.0 |
143
|
|
|
|
144
|
|
|
""" |
145
|
|
|
self._tokenizer.tokenize(src) |
146
|
1 |
|
src = ''.join( |
147
|
1 |
|
[_[0].upper() + _[1:].lower() for _ in self._tokenizer.get_list()] |
148
|
|
|
) |
149
|
1 |
|
self._tokenizer.tokenize(tar) |
150
|
1 |
|
tar = ''.join( |
151
|
|
|
[_[0].upper() + _[1:].lower() for _ in self._tokenizer.get_list()] |
152
|
1 |
|
) |
153
|
1 |
|
|
154
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_int) |
155
|
1 |
|
for i in range(len(src)): |
156
|
1 |
|
d_mat[i + 1, 0] = d_mat[i, 0] + self._g(src[i]) |
157
|
|
|
for j in range(len(tar)): |
158
|
1 |
|
d_mat[0, j + 1] = d_mat[0, j] + self._g(tar[j]) |
159
|
1 |
|
|
160
|
1 |
|
for i in range(len(src)): |
161
|
|
|
for j in range(len(tar)): |
162
|
|
|
d_mat[i + 1, j + 1] = max( |
163
|
|
|
d_mat[i, j + 1] + self._g(src[i]), # ins |
164
|
|
|
d_mat[i + 1, j] + self._g(tar[j]), # del |
165
|
|
|
d_mat[i, j] + self._s(src[i], tar[j]), # sub/== |
166
|
1 |
|
) |
167
|
|
|
|
168
|
1 |
|
return cast(float, d_mat[len(src), len(tar)]) |
169
|
|
|
|
170
|
|
|
def sim(self, src: str, tar: str) -> float: |
171
|
|
|
"""Return the normalized SAPS similarity between two strings. |
172
|
|
|
|
173
|
|
|
Parameters |
174
|
|
|
---------- |
175
|
|
|
src : str |
176
|
|
|
Source string for comparison |
177
|
|
|
tar : str |
178
|
|
|
Target string for comparison |
179
|
|
|
|
180
|
|
|
Returns |
181
|
|
|
------- |
182
|
|
|
float |
183
|
|
|
The normalized SAPS similarity between src & tar |
184
|
|
|
|
185
|
|
|
Examples |
186
|
|
|
-------- |
187
|
|
|
>>> cmp = SAPS() |
188
|
|
|
>>> round(cmp.sim('cat', 'hat'), 12) |
189
|
|
|
0.0 |
190
|
|
|
>>> round(cmp.sim('Niall', 'Neil'), 12) |
191
|
|
|
0.2 |
192
|
|
|
>>> cmp.sim('aluminum', 'Catalan') |
193
|
|
|
0.0 |
194
|
|
|
>>> cmp.sim('ATCG', 'TAGC') |
195
|
|
|
0.0 |
196
|
|
|
|
197
|
|
|
|
198
|
|
|
.. versionadded:: 0.4.0 |
199
|
1 |
|
|
200
|
1 |
|
""" |
201
|
1 |
|
score = self.sim_score(src, tar) |
202
|
|
|
if score <= 0: |
203
|
1 |
|
return 0.0 |
204
|
1 |
|
|
205
|
1 |
|
self._tokenizer.tokenize(src) |
206
|
1 |
|
src_max = sum(5 + len(_) for _ in self._tokenizer.get_list()) |
207
|
|
|
self._tokenizer.tokenize(tar) |
208
|
1 |
|
tar_max = sum(5 + len(_) for _ in self._tokenizer.get_list()) |
209
|
|
|
|
210
|
|
|
return score / max(src_max, tar_max) |
211
|
|
|
|
212
|
|
|
|
213
|
|
|
if __name__ == '__main__': |
214
|
|
|
import doctest |
215
|
|
|
|
216
|
|
|
doctest.testmod() |
217
|
|
|
|