1
|
|
|
# Copyright 2018-2020 by Christopher C. Little. |
2
|
|
|
# This file is part of Abydos. |
3
|
|
|
# |
4
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
5
|
|
|
# it under the terms of the GNU General Public License as published by |
6
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
7
|
|
|
# (at your option) any later version. |
8
|
|
|
# |
9
|
|
|
# Abydos is distributed in the hope that it will be useful, |
10
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
11
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12
|
|
|
# GNU General Public License for more details. |
13
|
|
|
# |
14
|
|
|
# You should have received a copy of the GNU General Public License |
15
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
16
|
|
|
|
17
|
|
|
"""abydos.distance._softy_cosine. |
18
|
|
|
|
19
|
1 |
|
Soft Cosine similarity & distance |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
from typing import Any, Optional, cast |
23
|
|
|
|
24
|
1 |
|
from ._distance import _Distance |
25
|
|
|
from ._levenshtein import Levenshtein |
26
|
|
|
from ._token_distance import _TokenDistance |
27
|
|
|
from ..tokenizer import _Tokenizer |
28
|
|
|
|
29
|
|
|
__all__ = ['SoftCosine'] |
30
|
|
|
|
31
|
1 |
|
|
32
|
1 |
|
class SoftCosine(_TokenDistance): |
33
|
|
|
r"""Soft Cosine similarity. |
34
|
1 |
|
|
35
|
|
|
As described in :cite:`Sidorov:2014`, soft cosine similarity of two |
36
|
|
|
multi-sets X and Y, drawn from an alphabet S, is |
37
|
1 |
|
|
38
|
|
|
.. math:: |
39
|
|
|
|
40
|
|
|
sim_{soft cosine}(X, Y) = |
41
|
|
|
\frac{\sum_{i \in S}\sum_{j \in S} s_{ij} X_i Y_j} |
42
|
|
|
{\sqrt{\sum_{i \in S}\sum_{j \in S} s_{ij} X_i X_j} |
43
|
|
|
\sqrt{\sum_{i \in S}\sum_{j \in S} s_{ij} Y_i Y_j}} |
44
|
|
|
|
45
|
|
|
where :math:`s_{ij}` is the similarity of two tokens, by default a function |
46
|
|
|
of Levenshtein distance: :math:`\frac{1}{1+Levenshtein\_distance(i, j)}`. |
47
|
|
|
|
48
|
|
|
Notes |
49
|
|
|
----- |
50
|
|
|
This class implements soft cosine similarity, as defined by |
51
|
|
|
:cite:`Sidorov:2014`. An alternative formulation of soft cosine similarity |
52
|
|
|
using soft (multi-)sets is provided by the :class:`Cosine` class using |
53
|
|
|
intersection_type=``soft``, based on the soft intersection |
54
|
|
|
defined in :cite:`Russ:2014`. |
55
|
|
|
|
56
|
|
|
.. versionadded:: 0.4.0 |
57
|
|
|
|
58
|
|
|
""" |
59
|
|
|
|
60
|
|
|
def __init__( |
61
|
|
|
self, |
62
|
|
|
tokenizer: Optional[_Tokenizer] = None, |
63
|
|
|
metric: Optional[_Distance] = None, |
64
|
|
|
sim_method: str = 'a', |
65
|
1 |
|
**kwargs: Any |
66
|
|
|
) -> None: |
67
|
|
|
r"""Initialize SoftCosine instance. |
68
|
|
|
|
69
|
|
|
Parameters |
70
|
|
|
---------- |
71
|
|
|
tokenizer : _Tokenizer |
72
|
|
|
A tokenizer instance from the :py:mod:`abydos.tokenizer` |
73
|
|
|
package, defaulting to the QGrams tokenizer with q=4 |
74
|
|
|
threshold : float |
75
|
|
|
The minimum similarity for a pair of tokens to contribute to |
76
|
|
|
similarity |
77
|
|
|
metric : _Distance |
78
|
|
|
A distance instance from the abydos.distance package, defaulting |
79
|
|
|
to Levenshtein distance |
80
|
|
|
sim_method : str |
81
|
|
|
Selects the similarity method from the four given in |
82
|
|
|
:cite:`Sidorov:2014`: |
83
|
|
|
|
84
|
|
|
- ``a`` : :math:`\frac{1}{1+d}` |
85
|
|
|
- ``b`` : :math:`1-\frac{d}{m}` |
86
|
|
|
- ``c`` : :math:`\sqrt{1-\frac{d}{m}}` |
87
|
|
|
- ``d`` : :math:`\Big(1-\frac{d}{m}\Big)^2` |
88
|
|
|
|
89
|
|
|
Where :math:`d` is the distance (Levenshtein by default) and |
90
|
|
|
:math:`m` is the maximum length of the two tokens. Option `a` is |
91
|
|
|
default, as suggested by the paper. |
92
|
|
|
**kwargs |
93
|
|
|
Arbitrary keyword arguments |
94
|
|
|
|
95
|
|
|
Raises |
96
|
|
|
------ |
97
|
|
|
ValueError |
98
|
|
|
sim_method must be one of 'a', 'b', 'c', or 'd' |
99
|
|
|
|
100
|
|
|
Other Parameters |
101
|
|
|
---------------- |
102
|
|
|
qval : int |
103
|
|
|
The length of each q-gram. Using this parameter and tokenizer=None |
104
|
|
|
will cause the instance to use the QGram tokenizer with this |
105
|
|
|
q value. |
106
|
|
|
|
107
|
|
|
|
108
|
|
|
.. versionadded:: 0.4.0 |
109
|
|
|
|
110
|
1 |
|
""" |
111
|
1 |
|
super(SoftCosine, self).__init__(tokenizer, **kwargs) |
112
|
1 |
|
self.params['metric'] = metric if metric is not None else Levenshtein() |
113
|
1 |
|
if sim_method not in {'a', 'b', 'c', 'd'}: |
114
|
1 |
|
raise ValueError("sim_method must be one of 'a', 'b', 'c', or 'd'") |
115
|
|
|
self.params['sim_method'] = sim_method |
116
|
1 |
|
|
117
|
|
|
def _sim_a(self, src: str, tar: str) -> float: |
118
|
|
|
return 1 / (1 + cast(float, self.params['metric'].dist_abs(src, tar))) |
119
|
|
|
|
120
|
|
|
def _sim_b(self, src: str, tar: str) -> float: |
121
|
|
|
return 1 - ( |
122
|
|
|
cast(float, self.params['metric'].dist_abs(src, tar)) |
123
|
|
|
/ max(len(src), len(tar)) |
124
|
|
|
) |
125
|
|
|
|
126
|
|
|
def _sim_c(self, src: str, tar: str) -> float: |
127
|
|
|
return ( |
128
|
|
|
1 |
129
|
|
|
- ( |
130
|
|
|
cast(float, self.params['metric'].dist_abs(src, tar)) |
131
|
|
|
/ max(len(src), len(tar)) |
132
|
|
|
) |
133
|
|
|
) ** 0.5 |
134
|
|
|
|
135
|
|
|
def _sim_d(self, src: str, tar: str) -> float: |
136
|
|
|
return ( |
137
|
|
|
1 |
138
|
|
|
- ( |
139
|
|
|
cast(float, self.params['metric'].dist_abs(src, tar)) |
140
|
|
|
/ max(len(src), len(tar)) |
141
|
|
|
) |
142
|
|
|
) ** 2 |
143
|
|
|
|
144
|
|
|
def sim(self, src: str, tar: str) -> float: |
145
|
|
|
r"""Return the Soft Cosine similarity of two strings. |
146
|
|
|
|
147
|
1 |
|
Parameters |
148
|
1 |
|
---------- |
149
|
|
|
src : str |
150
|
1 |
|
Source string (or QGrams/Counter objects) for comparison |
151
|
|
|
tar : str |
152
|
1 |
|
Target string (or QGrams/Counter objects) for comparison |
153
|
1 |
|
|
154
|
|
|
Returns |
155
|
1 |
|
------- |
156
|
|
|
float |
157
|
|
|
Fuzzy Cosine similarity |
158
|
|
|
|
159
|
|
|
Examples |
160
|
|
|
-------- |
161
|
|
|
>>> cmp = SoftCosine() |
162
|
|
|
>>> cmp.sim('cat', 'hat') |
163
|
|
|
0.8750000000000001 |
164
|
|
|
>>> cmp.sim('Niall', 'Neil') |
165
|
|
|
0.8844691709074513 |
166
|
|
|
>>> cmp.sim('aluminum', 'Catalan') |
167
|
|
|
0.831348688760277 |
168
|
|
|
>>> cmp.sim('ATCG', 'TAGC') |
169
|
|
|
0.8571428571428572 |
170
|
|
|
|
171
|
|
|
|
172
|
|
|
.. versionadded:: 0.4.0 |
173
|
|
|
|
174
|
|
|
""" |
175
|
|
|
if src == tar: |
176
|
|
|
return 1.0 |
177
|
|
|
|
178
|
|
|
self._tokenize(src, tar) |
179
|
|
|
|
180
|
|
|
if not self._src_card() or not self._tar_card(): |
181
|
1 |
|
return 0.0 |
182
|
1 |
|
|
183
|
1 |
|
similarity = { |
184
|
|
|
'a': self._sim_a, |
185
|
1 |
|
'b': self._sim_b, |
186
|
1 |
|
'c': self._sim_c, |
187
|
1 |
|
'd': self._sim_d, |
188
|
|
|
} |
189
|
|
|
|
190
|
|
|
nom = 0.0 |
191
|
|
|
denom_left = 0.0 |
192
|
|
|
denom_right = 0.0 |
193
|
1 |
|
|
194
|
1 |
|
for src in self._src_tokens.keys(): |
195
|
1 |
|
for tar in self._tar_tokens.keys(): |
196
|
|
|
nom += ( |
197
|
|
|
self._src_tokens[src] |
198
|
|
|
* self._tar_tokens[tar] |
199
|
|
|
* similarity[self.params['sim_method']](src, tar) |
200
|
|
|
) |
201
|
1 |
|
|
202
|
1 |
|
for src in self._src_tokens.keys(): |
203
|
1 |
|
for tar in self._src_tokens.keys(): |
204
|
|
|
denom_left += ( |
205
|
|
|
self._src_tokens[src] |
206
|
|
|
* self._src_tokens[tar] |
207
|
|
|
* similarity[self.params['sim_method']](src, tar) |
208
|
|
|
) |
209
|
1 |
|
|
210
|
|
|
for src in self._tar_tokens.keys(): |
211
|
|
|
for tar in self._tar_tokens.keys(): |
212
|
|
|
denom_right += ( |
213
|
|
|
self._tar_tokens[src] |
214
|
|
|
* self._tar_tokens[tar] |
215
|
|
|
* similarity[self.params['sim_method']](src, tar) |
216
|
|
|
) |
217
|
|
|
|
218
|
|
|
return nom / (denom_left ** 0.5 * denom_right ** 0.5) |
219
|
|
|
|
220
|
|
|
|
221
|
|
|
if __name__ == '__main__': |
222
|
|
|
import doctest |
223
|
|
|
|
224
|
|
|
doctest.testmod() |
225
|
|
|
|