1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2019 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance._ssk. |
20
|
|
|
|
21
|
|
|
String subsequence kernel (SSK) similarity |
22
|
|
|
""" |
23
|
|
|
|
24
|
1 |
|
from __future__ import ( |
25
|
|
|
absolute_import, |
26
|
|
|
division, |
27
|
|
|
print_function, |
28
|
|
|
unicode_literals, |
29
|
|
|
) |
30
|
|
|
|
31
|
1 |
|
from ._token_distance import _TokenDistance |
32
|
1 |
|
from ..tokenizer import QSkipgrams |
33
|
|
|
|
34
|
1 |
|
__all__ = ['SSK'] |
35
|
|
|
|
36
|
|
|
|
37
|
1 |
|
class SSK(_TokenDistance): |
38
|
|
|
r"""String subsequence kernel (SSK) similarity. |
39
|
|
|
|
40
|
|
|
This is based on :cite:`Lodhi:2002`. |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
.. versionadded:: 0.4.1 |
44
|
|
|
""" |
45
|
|
|
|
46
|
1 |
|
def __init__(self, tokenizer=None, ssk_lambda=0.9, **kwargs): |
47
|
|
|
"""Initialize SSK instance. |
48
|
|
|
|
49
|
|
|
Parameters |
50
|
|
|
---------- |
51
|
|
|
tokenizer : _Tokenizer |
52
|
|
|
A tokenizer instance from the :py:mod:`abydos.tokenizer` package |
53
|
|
|
ssk_lambda : float or Iterable |
54
|
|
|
A value in the range (0.0, 1.0) used for discouting gaps between |
55
|
|
|
characters according to the method described in :cite:`Lodhi:2002`. |
56
|
|
|
To supply multiple values of lambda, provide an Iterable of numeric |
57
|
|
|
values, such as (0.5, 0.05) or np.arange(0.05, 0.5, 0.05) |
58
|
|
|
**kwargs |
59
|
|
|
Arbitrary keyword arguments |
60
|
|
|
|
61
|
|
|
Other Parameters |
62
|
|
|
---------------- |
63
|
|
|
qval : int |
64
|
|
|
The length of each q-skipgram. Using this parameter and |
65
|
|
|
tokenizer=None will cause the instance to use the QGramskipgrams |
66
|
|
|
tokenizer with this q value. |
67
|
|
|
|
68
|
|
|
|
69
|
|
|
.. versionadded:: 0.4.1 |
70
|
|
|
|
71
|
|
|
""" |
72
|
1 |
|
super(SSK, self).__init__( |
73
|
|
|
tokenizer=tokenizer, ssk_lambda=ssk_lambda, **kwargs |
74
|
|
|
) |
75
|
|
|
|
76
|
1 |
|
qval = 2 if 'qval' not in self.params else self.params['qval'] |
77
|
1 |
|
self.params['tokenizer'] = ( |
78
|
|
|
tokenizer |
79
|
|
|
if tokenizer is not None |
80
|
|
|
else QSkipgrams( |
81
|
|
|
qval=qval, start_stop='', scaler='SSK', ssk_lambda=ssk_lambda |
82
|
|
|
) |
83
|
|
|
) |
84
|
|
|
|
85
|
1 |
|
def sim_score(self, src, tar): |
86
|
|
|
"""Return the SSK similarity of two strings. |
87
|
|
|
|
88
|
|
|
Parameters |
89
|
|
|
---------- |
90
|
|
|
src : str |
91
|
|
|
Source string for comparison |
92
|
|
|
tar : str |
93
|
|
|
Target string for comparison |
94
|
|
|
|
95
|
|
|
Returns |
96
|
|
|
------- |
97
|
|
|
float |
98
|
|
|
String subsequence kernel similarity |
99
|
|
|
|
100
|
|
|
Examples |
101
|
|
|
-------- |
102
|
|
|
>>> cmp = SSK() |
103
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
104
|
|
|
0.6441281138790036 |
105
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
106
|
|
|
0.5290992177869402 |
107
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
108
|
|
|
0.862398428061774 |
109
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
110
|
|
|
0.38591004719395017 |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
.. versionadded:: 0.4.1 |
114
|
|
|
|
115
|
|
|
""" |
116
|
1 |
|
self._tokenize(src, tar) |
117
|
|
|
|
118
|
1 |
|
src_wts = self._src_tokens |
119
|
1 |
|
tar_wts = self._tar_tokens |
120
|
|
|
|
121
|
1 |
|
score = sum( |
122
|
|
|
src_wts[token] * tar_wts[token] for token in src_wts & tar_wts |
123
|
|
|
) |
124
|
|
|
|
125
|
1 |
|
return score |
126
|
|
|
|
127
|
1 |
|
def sim(self, src, tar): |
128
|
|
|
"""Return the normalized SSK similarity of two strings. |
129
|
|
|
|
130
|
|
|
Parameters |
131
|
|
|
---------- |
132
|
|
|
src : str |
133
|
|
|
Source string (or QGrams/Counter objects) for comparison |
134
|
|
|
tar : str |
135
|
|
|
Target string (or QGrams/Counter objects) for comparison |
136
|
|
|
|
137
|
|
|
Returns |
138
|
|
|
------- |
139
|
|
|
float |
140
|
|
|
Normalized string subsequence kernel similarity |
141
|
|
|
|
142
|
|
|
Examples |
143
|
|
|
-------- |
144
|
|
|
>>> cmp = SSK() |
145
|
|
|
>>> cmp.sim('cat', 'hat') |
146
|
|
|
0.3558718861209964 |
147
|
|
|
>>> cmp.sim('Niall', 'Neil') |
148
|
|
|
0.4709007822130597 |
149
|
|
|
>>> cmp.sim('aluminum', 'Catalan') |
150
|
|
|
0.13760157193822603 |
151
|
|
|
>>> cmp.sim('ATCG', 'TAGC') |
152
|
|
|
0.6140899528060498 |
153
|
|
|
|
154
|
|
|
|
155
|
|
|
.. versionadded:: 0.4.1 |
156
|
|
|
|
157
|
|
|
""" |
158
|
1 |
|
if src == tar: |
159
|
1 |
|
return 1.0 |
160
|
|
|
|
161
|
1 |
|
self._tokenize(src, tar) |
162
|
|
|
|
163
|
1 |
|
src_wts = self._src_tokens |
164
|
1 |
|
tar_wts = self._tar_tokens |
165
|
|
|
|
166
|
1 |
|
score = sum( |
167
|
|
|
src_wts[token] * tar_wts[token] for token in src_wts & tar_wts |
168
|
|
|
) |
169
|
|
|
|
170
|
1 |
|
norm = ( |
171
|
|
|
sum(src_wts[token] * src_wts[token] for token in src_wts) |
172
|
|
|
* sum(tar_wts[token] * tar_wts[token] for token in tar_wts) |
173
|
|
|
) ** 0.5 |
174
|
|
|
|
175
|
1 |
|
if not score: |
176
|
1 |
|
return 0.0 |
177
|
1 |
|
return score / norm |
178
|
|
|
|
179
|
|
|
|
180
|
|
|
if __name__ == '__main__': |
181
|
|
|
import doctest |
182
|
|
|
|
183
|
|
|
doctest.testmod() |
184
|
|
|
|