1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2019 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance._levenshtein. |
20
|
|
|
|
21
|
|
|
The distance._Levenshtein module implements string edit distance functions |
22
|
|
|
based on Levenshtein distance, including: |
23
|
|
|
|
24
|
|
|
- Levenshtein distance |
25
|
|
|
- Optimal String Alignment distance |
26
|
|
|
""" |
27
|
|
|
|
28
|
1 |
|
from __future__ import ( |
29
|
|
|
absolute_import, |
30
|
|
|
division, |
31
|
|
|
print_function, |
32
|
|
|
unicode_literals, |
33
|
|
|
) |
34
|
|
|
|
35
|
1 |
|
from sys import float_info |
36
|
|
|
|
37
|
1 |
|
from deprecation import deprecated |
38
|
|
|
|
39
|
1 |
|
import numpy as np |
40
|
|
|
|
41
|
1 |
|
from six.moves import range |
42
|
|
|
|
43
|
1 |
|
from ._distance import _Distance |
44
|
1 |
|
from .. import __version__ |
45
|
|
|
|
46
|
1 |
|
__all__ = ['Levenshtein', 'dist_levenshtein', 'levenshtein', 'sim_levenshtein'] |
47
|
|
|
|
48
|
|
|
|
49
|
1 |
|
class Levenshtein(_Distance): |
50
|
|
|
"""Levenshtein distance. |
51
|
|
|
|
52
|
|
|
This is the standard edit distance measure. Cf. |
53
|
|
|
:cite:`Levenshtein:1965,Levenshtein:1966`. |
54
|
|
|
|
55
|
|
|
Optimal string alignment (aka restricted |
56
|
|
|
Damerau-Levenshtein distance) :cite:`Boytsov:2011` is also supported. |
57
|
|
|
|
58
|
|
|
The ordinary Levenshtein & Optimal String Alignment distance both |
59
|
|
|
employ the Wagner-Fischer dynamic programming algorithm |
60
|
|
|
:cite:`Wagner:1974`. |
61
|
|
|
|
62
|
|
|
Levenshtein edit distance ordinarily has unit insertion, deletion, and |
63
|
|
|
substitution costs. |
64
|
|
|
|
65
|
|
|
.. versionadded:: 0.3.6 |
66
|
|
|
.. versionchanged:: 0.4.0 |
67
|
|
|
Added taper option |
68
|
|
|
""" |
69
|
|
|
|
70
|
1 |
|
def __init__( |
71
|
|
|
self, |
72
|
|
|
mode='lev', |
73
|
|
|
cost=(1, 1, 1, 1), |
74
|
|
|
normalizer=max, |
75
|
|
|
taper=False, |
76
|
|
|
**kwargs |
77
|
|
|
): |
78
|
|
|
"""Initialize Levenshtein instance. |
79
|
|
|
|
80
|
|
|
Parameters |
81
|
|
|
---------- |
82
|
|
|
mode : str |
83
|
|
|
Specifies a mode for computing the Levenshtein distance: |
84
|
|
|
|
85
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, |
86
|
|
|
in which edits may include inserts, deletes, and |
87
|
|
|
substitutions |
88
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in |
89
|
|
|
which edits may include inserts, deletes, substitutions, and |
90
|
|
|
transpositions but substrings may only be edited once |
91
|
|
|
|
92
|
|
|
cost : tuple |
93
|
|
|
A 4-tuple representing the cost of the four possible edits: |
94
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
95
|
|
|
(by default: (1, 1, 1, 1)) |
96
|
|
|
normalizer : function |
97
|
|
|
A function that takes an list and computes a normalization term |
98
|
|
|
by which the edit distance is divided (max by default). Another |
99
|
|
|
good option is the sum function. |
100
|
|
|
taper : bool |
101
|
|
|
Enables cost tapering. Following :cite:`Zobel:1996`, it causes |
102
|
|
|
edits at the start of the string to "just [exceed] twice the |
103
|
|
|
minimum penalty for replacement or deletion at the end of the |
104
|
|
|
string". |
105
|
|
|
**kwargs |
106
|
|
|
Arbitrary keyword arguments |
107
|
|
|
|
108
|
|
|
|
109
|
|
|
.. versionadded:: 0.4.0 |
110
|
|
|
|
111
|
|
|
""" |
112
|
1 |
|
super(Levenshtein, self).__init__(**kwargs) |
113
|
1 |
|
self._mode = mode |
114
|
1 |
|
self._cost = cost |
115
|
1 |
|
self._normalizer = normalizer |
116
|
1 |
|
self._taper_enabled = taper |
117
|
|
|
|
118
|
1 |
|
def _taper(self, pos, length): |
119
|
1 |
|
return ( |
120
|
|
|
round(1 + ((length - pos) / length) * (1 + float_info.epsilon), 15) |
121
|
|
|
if self._taper_enabled |
122
|
|
|
else 1 |
123
|
|
|
) |
124
|
|
|
|
125
|
1 |
|
def _alignment_matrix(self, src, tar, backtrace=True): |
126
|
|
|
"""Return the Levenshtein alignment matrix. |
127
|
|
|
|
128
|
|
|
Parameters |
129
|
|
|
---------- |
130
|
|
|
src : str |
131
|
|
|
Source string for comparison |
132
|
|
|
tar : str |
133
|
|
|
Target string for comparison |
134
|
|
|
backtrace : bool |
135
|
|
|
Return the backtrace matrix as well |
136
|
|
|
|
137
|
|
|
Returns |
138
|
|
|
------- |
139
|
|
|
numpy.ndarray or tuple(numpy.ndarray, numpy.ndarray) |
140
|
|
|
The alignment matrix and (optionally) the backtrace matrix |
141
|
|
|
|
142
|
|
|
|
143
|
|
|
.. versionadded:: 0.4.1 |
144
|
|
|
|
145
|
|
|
""" |
146
|
1 |
|
ins_cost, del_cost, sub_cost, trans_cost = self._cost |
147
|
|
|
|
148
|
1 |
|
src_len = len(src) |
149
|
1 |
|
tar_len = len(tar) |
150
|
1 |
|
max_len = max(src_len, tar_len) |
151
|
|
|
|
152
|
1 |
|
d_mat = np.zeros((src_len + 1, tar_len + 1), dtype=np.float) |
153
|
1 |
|
if backtrace: |
154
|
1 |
|
trace_mat = np.zeros((src_len + 1, tar_len + 1), dtype=np.int8) |
155
|
1 |
|
for i in range(src_len + 1): |
156
|
1 |
|
d_mat[i, 0] = i * self._taper(i, max_len) * del_cost |
157
|
1 |
|
if backtrace: |
158
|
1 |
|
trace_mat[i, 0] = 1 |
159
|
1 |
|
for j in range(tar_len + 1): |
160
|
1 |
|
d_mat[0, j] = j * self._taper(j, max_len) * ins_cost |
161
|
1 |
|
if backtrace: |
162
|
1 |
|
trace_mat[0, j] = 0 |
163
|
|
|
|
164
|
1 |
|
for i in range(src_len): |
165
|
1 |
|
for j in range(tar_len): |
166
|
1 |
|
opts = ( |
167
|
|
|
d_mat[i + 1, j] |
168
|
|
|
+ ins_cost * self._taper(1 + max(i, j), max_len), # ins |
169
|
|
|
d_mat[i, j + 1] |
170
|
|
|
+ del_cost * self._taper(1 + max(i, j), max_len), # del |
171
|
|
|
d_mat[i, j] |
172
|
|
|
+ ( |
173
|
|
|
sub_cost * self._taper(1 + max(i, j), max_len) |
174
|
|
|
if src[i] != tar[j] |
175
|
|
|
else 0 |
176
|
|
|
), # sub/== |
177
|
|
|
) |
178
|
1 |
|
d_mat[i + 1, j + 1] = min(opts) |
179
|
1 |
|
if backtrace: |
180
|
1 |
|
trace_mat[i + 1, j + 1] = int(np.argmin(opts)) |
181
|
|
|
|
182
|
1 |
|
if self._mode == 'osa': |
183
|
1 |
|
if ( |
184
|
|
|
i + 1 > 1 |
185
|
|
|
and j + 1 > 1 |
186
|
|
|
and src[i] == tar[j - 1] |
187
|
|
|
and src[i - 1] == tar[j] |
188
|
|
|
): |
189
|
|
|
# transposition |
190
|
1 |
|
d_mat[i + 1, j + 1] = min( |
191
|
|
|
d_mat[i + 1, j + 1], |
192
|
|
|
d_mat[i - 1, j - 1] |
193
|
|
|
+ trans_cost * self._taper(1 + max(i, j), max_len), |
194
|
|
|
) |
195
|
1 |
|
if backtrace: |
196
|
1 |
|
trace_mat[i + 1, j + 1] = 2 |
197
|
|
|
|
198
|
1 |
|
if backtrace: |
199
|
1 |
|
return d_mat, trace_mat |
|
|
|
|
200
|
1 |
|
return d_mat |
201
|
|
|
|
202
|
1 |
|
def alignment(self, src, tar): |
203
|
|
|
"""Return the Levenshtein alignment of two strings. |
204
|
|
|
|
205
|
|
|
Parameters |
206
|
|
|
---------- |
207
|
|
|
src : str |
208
|
|
|
Source string for comparison |
209
|
|
|
tar : str |
210
|
|
|
Target string for comparison |
211
|
|
|
|
212
|
|
|
Returns |
213
|
|
|
------- |
214
|
|
|
tuple |
215
|
|
|
A tuple containing the Levenshtein distance and the two strings, |
216
|
|
|
aligned. |
217
|
|
|
|
218
|
|
|
Examples |
219
|
|
|
-------- |
220
|
|
|
>>> cmp = Levenshtein() |
221
|
|
|
>>> cmp.alignment('cat', 'hat') |
222
|
|
|
(1.0, 'cat', 'hat') |
223
|
|
|
>>> cmp.alignment('Niall', 'Neil') |
224
|
|
|
(3.0, 'N-iall', 'Nei-l-') |
225
|
|
|
>>> cmp.alignment('aluminum', 'Catalan') |
226
|
|
|
(7.0, '-aluminum', 'Catalan--') |
227
|
|
|
>>> cmp.alignment('ATCG', 'TAGC') |
228
|
|
|
(3.0, 'ATCG-', '-TAGC') |
229
|
|
|
|
230
|
|
|
>>> cmp = Levenshtein(mode='osa') |
231
|
|
|
>>> cmp.alignment('ATCG', 'TAGC') |
232
|
|
|
(2.0, 'ATCG', 'TAGC') |
233
|
|
|
>>> cmp.alignment('ACTG', 'TAGC') |
234
|
|
|
(4.0, 'ACT-G-', '--TAGC') |
235
|
|
|
|
236
|
|
|
|
237
|
|
|
.. versionadded:: 0.4.1 |
238
|
|
|
|
239
|
|
|
""" |
240
|
1 |
|
d_mat, trace_mat = self._alignment_matrix(src, tar, backtrace=True) |
241
|
|
|
|
242
|
1 |
|
src_aligned = [] |
243
|
1 |
|
tar_aligned = [] |
244
|
|
|
|
245
|
1 |
|
src_pos = len(src) |
246
|
1 |
|
tar_pos = len(tar) |
247
|
|
|
|
248
|
1 |
|
distance = d_mat[src_pos, tar_pos] |
249
|
|
|
|
250
|
1 |
|
while src_pos and tar_pos: |
251
|
|
|
|
252
|
1 |
|
src_trace, tar_trace = ( |
253
|
|
|
(src_pos, tar_pos - 1), |
254
|
|
|
(src_pos - 1, tar_pos), |
255
|
|
|
(src_pos - 1, tar_pos - 1), |
256
|
|
|
)[trace_mat[src_pos, tar_pos]] |
257
|
|
|
|
258
|
1 |
|
if src_pos != src_trace and tar_pos != tar_trace: |
259
|
1 |
|
src_aligned.append(src[src_trace]) |
260
|
1 |
|
tar_aligned.append(tar[tar_trace]) |
261
|
1 |
|
elif src_pos != src_trace: |
262
|
1 |
|
src_aligned.append(src[src_trace]) |
263
|
1 |
|
tar_aligned.append('-') |
264
|
|
|
else: |
265
|
1 |
|
src_aligned.append('-') |
266
|
1 |
|
tar_aligned.append(tar[tar_trace]) |
267
|
1 |
|
src_pos, tar_pos = src_trace, tar_trace |
268
|
1 |
|
while tar_pos: |
269
|
1 |
|
tar_pos -= 1 |
270
|
1 |
|
src_aligned.append('-') |
271
|
1 |
|
tar_aligned.append(tar[tar_pos]) |
272
|
1 |
|
while src_pos: |
273
|
1 |
|
src_pos -= 1 |
274
|
1 |
|
src_aligned.append(src[src_pos]) |
275
|
1 |
|
tar_aligned.append('-') |
276
|
|
|
|
277
|
1 |
|
return distance, ''.join(src_aligned[::-1]), ''.join(tar_aligned[::-1]) |
278
|
|
|
|
279
|
1 |
|
def dist_abs(self, src, tar): |
280
|
|
|
"""Return the Levenshtein distance between two strings. |
281
|
|
|
|
282
|
|
|
Parameters |
283
|
|
|
---------- |
284
|
|
|
src : str |
285
|
|
|
Source string for comparison |
286
|
|
|
tar : str |
287
|
|
|
Target string for comparison |
288
|
|
|
|
289
|
|
|
Returns |
290
|
|
|
------- |
291
|
|
|
int (may return a float if cost has float values) |
292
|
|
|
The Levenshtein distance between src & tar |
293
|
|
|
|
294
|
|
|
Examples |
295
|
|
|
-------- |
296
|
|
|
>>> cmp = Levenshtein() |
297
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
298
|
|
|
1 |
299
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
300
|
|
|
3 |
301
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
302
|
|
|
7 |
303
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
304
|
|
|
3 |
305
|
|
|
|
306
|
|
|
>>> cmp = Levenshtein(mode='osa') |
307
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
308
|
|
|
2 |
309
|
|
|
>>> cmp.dist_abs('ACTG', 'TAGC') |
310
|
|
|
4 |
311
|
|
|
|
312
|
|
|
|
313
|
|
|
.. versionadded:: 0.1.0 |
314
|
|
|
.. versionchanged:: 0.3.6 |
315
|
|
|
Encapsulated in class |
316
|
|
|
|
317
|
|
|
""" |
318
|
1 |
|
ins_cost, del_cost, sub_cost, trans_cost = self._cost |
319
|
|
|
|
320
|
1 |
|
src_len = len(src) |
321
|
1 |
|
tar_len = len(tar) |
322
|
1 |
|
max_len = max(src_len, tar_len) |
323
|
|
|
|
324
|
1 |
|
if src == tar: |
325
|
1 |
|
return 0 |
326
|
1 |
|
if not src: |
327
|
1 |
|
return sum( |
328
|
|
|
ins_cost * self._taper(pos, max_len) for pos in range(tar_len) |
329
|
|
|
) |
330
|
1 |
|
if not tar: |
331
|
1 |
|
return sum( |
332
|
|
|
del_cost * self._taper(pos, max_len) for pos in range(src_len) |
333
|
|
|
) |
334
|
|
|
|
335
|
1 |
|
d_mat = self._alignment_matrix(src, tar, backtrace=False) |
336
|
|
|
|
337
|
1 |
|
if int(d_mat[src_len, tar_len]) == d_mat[src_len, tar_len]: |
338
|
1 |
|
return int(d_mat[src_len, tar_len]) |
339
|
|
|
else: |
340
|
1 |
|
return d_mat[src_len, tar_len] |
341
|
|
|
|
342
|
1 |
|
def dist(self, src, tar): |
343
|
|
|
"""Return the normalized Levenshtein distance between two strings. |
344
|
|
|
|
345
|
|
|
The Levenshtein distance is normalized by dividing the Levenshtein |
346
|
|
|
distance (calculated by either of the two supported methods) by the |
347
|
|
|
greater of the number of characters in src times the cost of a delete |
348
|
|
|
and the number of characters in tar times the cost of an insert. |
349
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
350
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
351
|
|
|
|
352
|
|
|
Parameters |
353
|
|
|
---------- |
354
|
|
|
src : str |
355
|
|
|
Source string for comparison |
356
|
|
|
tar : str |
357
|
|
|
Target string for comparison |
358
|
|
|
|
359
|
|
|
Returns |
360
|
|
|
------- |
361
|
|
|
float |
362
|
|
|
The normalized Levenshtein distance between src & tar |
363
|
|
|
|
364
|
|
|
Examples |
365
|
|
|
-------- |
366
|
|
|
>>> cmp = Levenshtein() |
367
|
|
|
>>> round(cmp.dist('cat', 'hat'), 12) |
368
|
|
|
0.333333333333 |
369
|
|
|
>>> round(cmp.dist('Niall', 'Neil'), 12) |
370
|
|
|
0.6 |
371
|
|
|
>>> cmp.dist('aluminum', 'Catalan') |
372
|
|
|
0.875 |
373
|
|
|
>>> cmp.dist('ATCG', 'TAGC') |
374
|
|
|
0.75 |
375
|
|
|
|
376
|
|
|
|
377
|
|
|
.. versionadded:: 0.1.0 |
378
|
|
|
.. versionchanged:: 0.3.6 |
379
|
|
|
Encapsulated in class |
380
|
|
|
|
381
|
|
|
""" |
382
|
1 |
|
if src == tar: |
383
|
1 |
|
return 0.0 |
384
|
1 |
|
ins_cost, del_cost = self._cost[:2] |
385
|
|
|
|
386
|
1 |
|
src_len = len(src) |
387
|
1 |
|
tar_len = len(tar) |
388
|
|
|
|
389
|
1 |
|
if self._taper_enabled: |
390
|
1 |
|
normalize_term = self._normalizer( |
391
|
|
|
[ |
392
|
|
|
sum( |
393
|
|
|
self._taper(pos, src_len) * del_cost |
394
|
|
|
for pos in range(src_len) |
395
|
|
|
), |
396
|
|
|
sum( |
397
|
|
|
self._taper(pos, tar_len) * ins_cost |
398
|
|
|
for pos in range(tar_len) |
399
|
|
|
), |
400
|
|
|
] |
401
|
|
|
) |
402
|
|
|
else: |
403
|
1 |
|
normalize_term = self._normalizer( |
404
|
|
|
[src_len * del_cost, tar_len * ins_cost] |
405
|
|
|
) |
406
|
|
|
|
407
|
1 |
|
return self.dist_abs(src, tar) / normalize_term |
408
|
|
|
|
409
|
|
|
|
410
|
1 |
|
@deprecated( |
411
|
|
|
deprecated_in='0.4.0', |
412
|
|
|
removed_in='0.6.0', |
413
|
|
|
current_version=__version__, |
414
|
|
|
details='Use the Levenshtein.dist_abs method instead.', |
415
|
|
|
) |
416
|
1 |
|
def levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
417
|
|
|
"""Return the Levenshtein distance between two strings. |
418
|
|
|
|
419
|
|
|
This is a wrapper of :py:meth:`Levenshtein.dist_abs`. |
420
|
|
|
|
421
|
|
|
Parameters |
422
|
|
|
---------- |
423
|
|
|
src : str |
424
|
|
|
Source string for comparison |
425
|
|
|
tar : str |
426
|
|
|
Target string for comparison |
427
|
|
|
mode : str |
428
|
|
|
Specifies a mode for computing the Levenshtein distance: |
429
|
|
|
|
430
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, in |
431
|
|
|
which edits may include inserts, deletes, and substitutions |
432
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in which |
433
|
|
|
edits may include inserts, deletes, substitutions, and |
434
|
|
|
transpositions but substrings may only be edited once |
435
|
|
|
|
436
|
|
|
cost : tuple |
437
|
|
|
A 4-tuple representing the cost of the four possible edits: inserts, |
438
|
|
|
deletes, substitutions, and transpositions, respectively (by default: |
439
|
|
|
(1, 1, 1, 1)) |
440
|
|
|
|
441
|
|
|
Returns |
442
|
|
|
------- |
443
|
|
|
int (may return a float if cost has float values) |
444
|
|
|
The Levenshtein distance between src & tar |
445
|
|
|
|
446
|
|
|
Examples |
447
|
|
|
-------- |
448
|
|
|
>>> levenshtein('cat', 'hat') |
449
|
|
|
1 |
450
|
|
|
>>> levenshtein('Niall', 'Neil') |
451
|
|
|
3 |
452
|
|
|
>>> levenshtein('aluminum', 'Catalan') |
453
|
|
|
7 |
454
|
|
|
>>> levenshtein('ATCG', 'TAGC') |
455
|
|
|
3 |
456
|
|
|
|
457
|
|
|
>>> levenshtein('ATCG', 'TAGC', mode='osa') |
458
|
|
|
2 |
459
|
|
|
>>> levenshtein('ACTG', 'TAGC', mode='osa') |
460
|
|
|
4 |
461
|
|
|
|
462
|
|
|
.. versionadded:: 0.1.0 |
463
|
|
|
|
464
|
|
|
""" |
465
|
1 |
|
return Levenshtein(mode=mode, cost=cost).dist_abs(src, tar) |
466
|
|
|
|
467
|
|
|
|
468
|
1 |
|
@deprecated( |
469
|
|
|
deprecated_in='0.4.0', |
470
|
|
|
removed_in='0.6.0', |
471
|
|
|
current_version=__version__, |
472
|
|
|
details='Use the Levenshtein.dist method instead.', |
473
|
|
|
) |
474
|
1 |
|
def dist_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
475
|
|
|
"""Return the normalized Levenshtein distance between two strings. |
476
|
|
|
|
477
|
|
|
This is a wrapper of :py:meth:`Levenshtein.dist`. |
478
|
|
|
|
479
|
|
|
Parameters |
480
|
|
|
---------- |
481
|
|
|
src : str |
482
|
|
|
Source string for comparison |
483
|
|
|
tar : str |
484
|
|
|
Target string for comparison |
485
|
|
|
mode : str |
486
|
|
|
Specifies a mode for computing the Levenshtein distance: |
487
|
|
|
|
488
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, in |
489
|
|
|
which edits may include inserts, deletes, and substitutions |
490
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in which |
491
|
|
|
edits may include inserts, deletes, substitutions, and |
492
|
|
|
transpositions but substrings may only be edited once |
493
|
|
|
|
494
|
|
|
cost : tuple |
495
|
|
|
A 4-tuple representing the cost of the four possible edits: inserts, |
496
|
|
|
deletes, substitutions, and transpositions, respectively (by default: |
497
|
|
|
(1, 1, 1, 1)) |
498
|
|
|
|
499
|
|
|
Returns |
500
|
|
|
------- |
501
|
|
|
float |
502
|
|
|
The Levenshtein distance between src & tar |
503
|
|
|
|
504
|
|
|
Examples |
505
|
|
|
-------- |
506
|
|
|
>>> round(dist_levenshtein('cat', 'hat'), 12) |
507
|
|
|
0.333333333333 |
508
|
|
|
>>> round(dist_levenshtein('Niall', 'Neil'), 12) |
509
|
|
|
0.6 |
510
|
|
|
>>> dist_levenshtein('aluminum', 'Catalan') |
511
|
|
|
0.875 |
512
|
|
|
>>> dist_levenshtein('ATCG', 'TAGC') |
513
|
|
|
0.75 |
514
|
|
|
|
515
|
|
|
.. versionadded:: 0.1.0 |
516
|
|
|
|
517
|
|
|
""" |
518
|
1 |
|
return Levenshtein(mode=mode, cost=cost).dist(src, tar) |
519
|
|
|
|
520
|
|
|
|
521
|
1 |
|
@deprecated( |
522
|
|
|
deprecated_in='0.4.0', |
523
|
|
|
removed_in='0.6.0', |
524
|
|
|
current_version=__version__, |
525
|
|
|
details='Use the Levenshtein.sim method instead.', |
526
|
|
|
) |
527
|
1 |
|
def sim_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
528
|
|
|
"""Return the Levenshtein similarity of two strings. |
529
|
|
|
|
530
|
|
|
This is a wrapper of :py:meth:`Levenshtein.sim`. |
531
|
|
|
|
532
|
|
|
Parameters |
533
|
|
|
---------- |
534
|
|
|
src : str |
535
|
|
|
Source string for comparison |
536
|
|
|
tar : str |
537
|
|
|
Target string for comparison |
538
|
|
|
mode : str |
539
|
|
|
Specifies a mode for computing the Levenshtein distance: |
540
|
|
|
|
541
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, in |
542
|
|
|
which edits may include inserts, deletes, and substitutions |
543
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in which |
544
|
|
|
edits may include inserts, deletes, substitutions, and |
545
|
|
|
transpositions but substrings may only be edited once |
546
|
|
|
|
547
|
|
|
cost : tuple |
548
|
|
|
A 4-tuple representing the cost of the four possible edits: inserts, |
549
|
|
|
deletes, substitutions, and transpositions, respectively (by default: |
550
|
|
|
(1, 1, 1, 1)) |
551
|
|
|
|
552
|
|
|
Returns |
553
|
|
|
------- |
554
|
|
|
float |
555
|
|
|
The Levenshtein similarity between src & tar |
556
|
|
|
|
557
|
|
|
Examples |
558
|
|
|
-------- |
559
|
|
|
>>> round(sim_levenshtein('cat', 'hat'), 12) |
560
|
|
|
0.666666666667 |
561
|
|
|
>>> round(sim_levenshtein('Niall', 'Neil'), 12) |
562
|
|
|
0.4 |
563
|
|
|
>>> sim_levenshtein('aluminum', 'Catalan') |
564
|
|
|
0.125 |
565
|
|
|
>>> sim_levenshtein('ATCG', 'TAGC') |
566
|
|
|
0.25 |
567
|
|
|
|
568
|
|
|
.. versionadded:: 0.1.0 |
569
|
|
|
|
570
|
|
|
""" |
571
|
1 |
|
return Levenshtein(mode=mode, cost=cost).sim(src, tar) |
572
|
|
|
|
573
|
|
|
|
574
|
|
|
if __name__ == '__main__': |
575
|
|
|
import doctest |
576
|
|
|
|
577
|
|
|
doctest.testmod() |
578
|
|
|
|