1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2019 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance._chao_jaccard. |
20
|
|
|
|
21
|
|
|
Chao's Jaccard similarity |
22
|
|
|
""" |
23
|
|
|
|
24
|
1 |
|
from __future__ import ( |
25
|
|
|
absolute_import, |
26
|
|
|
division, |
27
|
|
|
print_function, |
28
|
|
|
unicode_literals, |
29
|
|
|
) |
30
|
|
|
|
31
|
1 |
|
from collections import Counter |
32
|
|
|
|
33
|
1 |
|
try: |
34
|
1 |
|
from random import choices |
35
|
|
|
except ImportError: # pragma: no cover |
36
|
|
|
from random import choice |
37
|
|
|
|
38
|
|
|
def choices(population, k=1): |
39
|
|
|
"""Quick implementation of choices for Python < 3.6.""" |
40
|
|
|
return [choice(population) for _ in range(k)] |
|
|
|
|
41
|
|
|
|
42
|
|
|
|
43
|
1 |
|
from ._token_distance import _TokenDistance |
44
|
|
|
|
45
|
1 |
|
__all__ = ['ChaoJaccard'] |
46
|
|
|
|
47
|
|
|
|
48
|
1 |
|
class ChaoJaccard(_TokenDistance): |
49
|
|
|
r"""Chao's Jaccard similarity. |
50
|
|
|
|
51
|
|
|
Chao's Jaccard similarity :cite:`Chao:2004` |
52
|
|
|
|
53
|
|
|
.. versionadded:: 0.4.1 |
54
|
|
|
""" |
55
|
|
|
|
56
|
1 |
|
def __init__(self, **kwargs): |
57
|
|
|
"""Initialize ChaoJaccard instance. |
58
|
|
|
|
59
|
|
|
Parameters |
60
|
|
|
---------- |
61
|
|
|
**kwargs |
62
|
|
|
Arbitrary keyword arguments |
63
|
|
|
|
64
|
|
|
|
65
|
|
|
.. versionadded:: 0.4.1 |
66
|
|
|
|
67
|
|
|
""" |
68
|
1 |
|
super(ChaoJaccard, self).__init__(**kwargs) |
69
|
|
|
|
70
|
1 |
|
def sim(self, src, tar): |
71
|
|
|
"""Return normalized Chao's Jaccard similarity of two strings. |
72
|
|
|
|
73
|
|
|
Parameters |
74
|
|
|
---------- |
75
|
|
|
src : str |
76
|
|
|
Source string for comparison |
77
|
|
|
tar : str |
78
|
|
|
Target string for comparison |
79
|
|
|
|
80
|
|
|
Returns |
81
|
|
|
------- |
82
|
|
|
float |
83
|
|
|
Normalized Chao's Jaccard similarity |
84
|
|
|
|
85
|
|
|
Examples |
86
|
|
|
-------- |
87
|
|
|
>>> import random |
88
|
|
|
>>> random.seed(0) |
89
|
|
|
>>> cmp = ChaoJaccard() |
90
|
|
|
>>> cmp.sim('cat', 'hat') |
91
|
|
|
0.22448979591836735 |
92
|
|
|
>>> cmp.sim('Niall', 'Neil') |
93
|
|
|
0.1619047619047619 |
94
|
|
|
>>> cmp.sim('aluminum', 'Catalan') |
95
|
|
|
0.0 |
96
|
|
|
>>> cmp.sim('ATCG', 'TAGC') |
97
|
|
|
0.0 |
98
|
|
|
|
99
|
|
|
|
100
|
|
|
.. versionadded:: 0.4.1 |
101
|
|
|
|
102
|
|
|
""" |
103
|
1 |
|
return max(0.0, min(1.0, self.sim_score(src, tar))) |
104
|
|
|
|
105
|
1 |
|
def sim_score(self, src, tar): |
106
|
|
|
"""Return Chao's Jaccard similarity of two strings. |
107
|
|
|
|
108
|
|
|
Parameters |
109
|
|
|
---------- |
110
|
|
|
src : str |
111
|
|
|
Source string for comparison |
112
|
|
|
tar : str |
113
|
|
|
Target string for comparison |
114
|
|
|
|
115
|
|
|
Returns |
116
|
|
|
------- |
117
|
|
|
float |
118
|
|
|
Chao's Jaccard similarity |
119
|
|
|
|
120
|
|
|
Examples |
121
|
|
|
-------- |
122
|
|
|
>>> import random |
123
|
|
|
>>> random.seed(0) |
124
|
|
|
>>> cmp = ChaoJaccard() |
125
|
|
|
>>> cmp.sim_score('cat', 'hat') |
126
|
|
|
0.22448979591836735 |
127
|
|
|
>>> cmp.sim_score('Niall', 'Neil') |
128
|
|
|
0.1619047619047619 |
129
|
|
|
>>> cmp.sim_score('aluminum', 'Catalan') |
130
|
|
|
0.0 |
131
|
|
|
>>> cmp.sim_score('ATCG', 'TAGC') |
132
|
|
|
0.0 |
133
|
|
|
|
134
|
|
|
|
135
|
|
|
.. versionadded:: 0.4.1 |
136
|
|
|
|
137
|
|
|
""" |
138
|
1 |
|
self._tokenize(src, tar) |
139
|
1 |
|
self._intersection() |
140
|
|
|
|
141
|
1 |
|
if self._intersection_card() == 0: |
142
|
1 |
|
return 0.0 |
143
|
|
|
|
144
|
1 |
|
u_hat, v_hat = self._get_estimates(src, tar) |
145
|
|
|
|
146
|
1 |
|
num = u_hat * v_hat |
147
|
1 |
|
if num: |
148
|
1 |
|
return num / (u_hat + v_hat - u_hat * v_hat) |
149
|
1 |
|
return 0.0 |
150
|
|
|
|
151
|
1 |
|
def _get_estimates(self, src, tar): |
152
|
|
|
"""Get the estimates U-hat & V-hat used for Chao's measures. |
153
|
|
|
|
154
|
|
|
Parameters |
155
|
|
|
---------- |
156
|
|
|
src : str |
157
|
|
|
Source string for comparison |
158
|
|
|
tar : str |
159
|
|
|
Target string for comparison |
160
|
|
|
|
161
|
|
|
Returns |
162
|
|
|
------- |
163
|
|
|
tuple(float, float) |
164
|
|
|
The estimates U-hat & V-hat |
165
|
|
|
|
166
|
|
|
.. versionadded:: 0.4.1 |
167
|
|
|
|
168
|
|
|
""" |
169
|
1 |
|
src_card = self._src_card() # n |
170
|
1 |
|
tar_card = self._tar_card() # m |
171
|
|
|
|
172
|
1 |
|
src_token_list = self.params['tokenizer'].tokenize(src).get_list() |
173
|
1 |
|
tar_token_list = self.params['tokenizer'].tokenize(tar).get_list() |
174
|
|
|
|
175
|
1 |
|
src_sampled = Counter(choices(src_token_list, k=src_card)) |
176
|
1 |
|
tar_sampled = Counter(choices(tar_token_list, k=tar_card)) |
177
|
1 |
|
sample_intersection = src_sampled & tar_sampled |
178
|
|
|
|
179
|
1 |
|
f_1_plus = sum( |
180
|
|
|
1 if src_sampled[tok] == 1 and tar_sampled[tok] >= 1 else 0 |
181
|
|
|
for tok in sample_intersection |
182
|
|
|
) |
183
|
1 |
|
f_2_plus = sum( |
184
|
|
|
1 if src_sampled[tok] == 2 and tar_sampled[tok] >= 1 else 0 |
185
|
|
|
for tok in sample_intersection |
186
|
|
|
) |
187
|
1 |
|
if not f_2_plus: |
188
|
1 |
|
f_2_plus = 1 |
189
|
|
|
|
190
|
1 |
|
f_plus_1 = sum( |
191
|
|
|
1 if src_sampled[tok] >= 1 and tar_sampled[tok] == 1 else 0 |
192
|
|
|
for tok in sample_intersection |
193
|
|
|
) |
194
|
1 |
|
f_plus_2 = sum( |
195
|
|
|
1 if src_sampled[tok] >= 1 and tar_sampled[tok] == 2 else 0 |
196
|
|
|
for tok in sample_intersection |
197
|
|
|
) |
198
|
1 |
|
if not f_plus_2: |
199
|
1 |
|
f_plus_2 = 1 |
200
|
|
|
|
201
|
1 |
|
u_hat = 0 |
202
|
1 |
|
if src_card: |
203
|
1 |
|
u_hat += sum( |
204
|
|
|
src_sampled[tok] / src_card |
205
|
|
|
for tok in sample_intersection.keys() |
206
|
|
|
) |
207
|
1 |
|
if tar_card: |
208
|
1 |
|
u_hat += ( |
209
|
|
|
(tar_card - 1) |
210
|
|
|
/ tar_card |
211
|
|
|
* f_plus_1 |
212
|
|
|
/ (2 * f_plus_2) |
213
|
|
|
* sum( |
214
|
|
|
src_sampled[tok] / src_card * (tar_sampled[tok] == 1) |
215
|
|
|
for tok in sample_intersection.keys() |
216
|
|
|
) |
217
|
|
|
) |
218
|
|
|
|
219
|
1 |
|
v_hat = 0 |
220
|
1 |
|
if tar_card: |
221
|
1 |
|
v_hat += sum( |
222
|
|
|
tar_sampled[tok] / tar_card |
223
|
|
|
for tok in sample_intersection.keys() |
224
|
|
|
) |
225
|
1 |
|
if src_card: |
226
|
1 |
|
v_hat += ( |
227
|
|
|
(src_card - 1) |
228
|
|
|
/ src_card |
229
|
|
|
* f_1_plus |
230
|
|
|
/ (2 * f_2_plus) |
231
|
|
|
* sum( |
232
|
|
|
tar_sampled[tok] / tar_card * (src_sampled[tok] == 1) |
233
|
|
|
for tok in sample_intersection.keys() |
234
|
|
|
) |
235
|
|
|
) |
236
|
|
|
|
237
|
1 |
|
return u_hat, v_hat |
238
|
|
|
|
239
|
|
|
|
240
|
|
|
if __name__ == '__main__': |
241
|
|
|
import doctest |
242
|
|
|
|
243
|
|
|
doctest.testmod() |
244
|
|
|
|