1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance._monge_elkan. |
20
|
|
|
|
21
|
|
|
Monge-Elkan similarity & distance |
22
|
|
|
""" |
23
|
|
|
|
24
|
1 |
|
from __future__ import ( |
25
|
|
|
absolute_import, |
26
|
|
|
division, |
27
|
|
|
print_function, |
28
|
|
|
unicode_literals, |
29
|
|
|
) |
30
|
|
|
|
31
|
1 |
|
from ._distance import _Distance |
32
|
1 |
|
from ._levenshtein import sim_levenshtein |
33
|
1 |
|
from ..tokenizer import QGrams |
34
|
|
|
|
35
|
1 |
|
__all__ = ['MongeElkan', 'dist_monge_elkan', 'sim_monge_elkan'] |
36
|
|
|
|
37
|
|
|
|
38
|
1 |
|
class MongeElkan(_Distance): |
|
|
|
|
39
|
|
|
"""Monge-Elkan similarity. |
40
|
|
|
|
41
|
|
|
Monge-Elkan is defined in :cite:`Monge:1996`. |
42
|
|
|
|
43
|
|
|
Note: Monge-Elkan is NOT a symmetric similarity algorithm. Thus, the |
44
|
|
|
similarity of src to tar is not necessarily equal to the similarity of |
45
|
|
|
tar to src. If the symmetric argument is True, a symmetric value is |
46
|
|
|
calculated, at the cost of doubling the computation time (since |
47
|
|
|
:math:`sim_{Monge-Elkan}(src, tar)` and :math:`sim_{Monge-Elkan}(tar, src)` |
48
|
|
|
are both calculated and then averaged). |
49
|
|
|
""" |
50
|
|
|
|
51
|
1 |
|
def sim(self, src, tar, sim_func=sim_levenshtein, symmetric=False): |
|
|
|
|
52
|
|
|
"""Return the Monge-Elkan similarity of two strings. |
53
|
|
|
|
54
|
|
|
Args: |
55
|
|
|
src (str): Source string for comparison |
56
|
|
|
tar (str): Target string for comparison |
57
|
|
|
sim_func (function): the internal similarity metric to employ |
58
|
|
|
symmetric (bool): return a symmetric similarity measure |
59
|
|
|
|
60
|
|
|
Returns: |
61
|
|
|
float: Monge-Elkan similarity |
62
|
|
|
|
63
|
|
|
Examples: |
64
|
|
|
>>> cmp = MongeElkan() |
65
|
|
|
>>> cmp.sim('cat', 'hat') |
66
|
|
|
0.75 |
67
|
|
|
>>> round(cmp.sim('Niall', 'Neil'), 12) |
68
|
|
|
0.666666666667 |
69
|
|
|
>>> round(cmp.sim('aluminum', 'Catalan'), 12) |
70
|
|
|
0.388888888889 |
71
|
|
|
>>> cmp.sim('ATCG', 'TAGC') |
72
|
|
|
0.5 |
73
|
|
|
|
74
|
|
|
""" |
75
|
1 |
|
if src == tar: |
76
|
1 |
|
return 1.0 |
77
|
|
|
|
78
|
1 |
|
q_src = sorted(QGrams(src).elements()) |
79
|
1 |
|
q_tar = sorted(QGrams(tar).elements()) |
80
|
|
|
|
81
|
1 |
|
if not q_src or not q_tar: |
82
|
1 |
|
return 0.0 |
83
|
|
|
|
84
|
1 |
|
sum_of_maxes = 0 |
85
|
1 |
|
for q_s in q_src: |
86
|
1 |
|
max_sim = float('-inf') |
87
|
1 |
|
for q_t in q_tar: |
88
|
1 |
|
max_sim = max(max_sim, sim_func(q_s, q_t)) |
89
|
1 |
|
sum_of_maxes += max_sim |
90
|
1 |
|
sim_em = sum_of_maxes / len(q_src) |
91
|
|
|
|
92
|
1 |
|
if symmetric: |
93
|
1 |
|
sim_em = (sim_em + self.sim(tar, src, sim_func, False)) / 2 |
94
|
|
|
|
95
|
1 |
|
return sim_em |
96
|
|
|
|
97
|
|
|
|
98
|
1 |
|
def sim_monge_elkan(src, tar, sim_func=sim_levenshtein, symmetric=False): |
99
|
|
|
"""Return the Monge-Elkan similarity of two strings. |
100
|
|
|
|
101
|
|
|
This is a wrapper for :py:meth:`MongeElkan.sim`. |
102
|
|
|
|
103
|
|
|
Args: |
104
|
|
|
src (str): Source string for comparison |
105
|
|
|
tar (str): Target string for comparison |
106
|
|
|
sim_func (function): the internal similarity metric to employ |
107
|
|
|
symmetric (bool): return a symmetric similarity measure |
108
|
|
|
|
109
|
|
|
Returns: |
110
|
|
|
float: Monge-Elkan similarity |
111
|
|
|
|
112
|
|
|
Examples: |
113
|
|
|
>>> sim_monge_elkan('cat', 'hat') |
114
|
|
|
0.75 |
115
|
|
|
>>> round(sim_monge_elkan('Niall', 'Neil'), 12) |
116
|
|
|
0.666666666667 |
117
|
|
|
>>> round(sim_monge_elkan('aluminum', 'Catalan'), 12) |
118
|
|
|
0.388888888889 |
119
|
|
|
>>> sim_monge_elkan('ATCG', 'TAGC') |
120
|
|
|
0.5 |
121
|
|
|
|
122
|
|
|
""" |
123
|
1 |
|
return MongeElkan().sim(src, tar, sim_func, symmetric) |
124
|
|
|
|
125
|
|
|
|
126
|
1 |
|
def dist_monge_elkan(src, tar, sim_func=sim_levenshtein, symmetric=False): |
127
|
|
|
"""Return the Monge-Elkan distance between two strings. |
128
|
|
|
|
129
|
|
|
This is a wrapper for :py:meth:`MongeElkan.dist`. |
130
|
|
|
|
131
|
|
|
Args: |
132
|
|
|
src (str): Source string for comparison |
133
|
|
|
tar (str): Target string for comparison |
134
|
|
|
sim_func (function): the internal similarity metric to employ |
135
|
|
|
symmetric (bool): return a symmetric similarity measure |
136
|
|
|
|
137
|
|
|
Returns: |
138
|
|
|
float: Monge-Elkan distance |
139
|
|
|
|
140
|
|
|
Examples: |
141
|
|
|
>>> dist_monge_elkan('cat', 'hat') |
142
|
|
|
0.25 |
143
|
|
|
>>> round(dist_monge_elkan('Niall', 'Neil'), 12) |
144
|
|
|
0.333333333333 |
145
|
|
|
>>> round(dist_monge_elkan('aluminum', 'Catalan'), 12) |
146
|
|
|
0.611111111111 |
147
|
|
|
>>> dist_monge_elkan('ATCG', 'TAGC') |
148
|
|
|
0.5 |
149
|
|
|
|
150
|
|
|
""" |
151
|
1 |
|
return MongeElkan().dist(src, tar, sim_func, symmetric) |
152
|
|
|
|
153
|
|
|
|
154
|
|
|
if __name__ == '__main__': |
155
|
|
|
import doctest |
156
|
|
|
|
157
|
|
|
doctest.testmod() |
158
|
|
|
|