1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance._strcmp95. |
20
|
|
|
|
21
|
|
|
The strcmp95 algorithm variant of Jaro-Winkler distance |
22
|
|
|
""" |
23
|
|
|
|
24
|
1 |
|
from __future__ import ( |
25
|
|
|
absolute_import, |
26
|
|
|
division, |
27
|
|
|
print_function, |
28
|
|
|
unicode_literals, |
29
|
|
|
) |
30
|
|
|
|
31
|
1 |
|
from collections import defaultdict |
32
|
|
|
|
33
|
1 |
|
from six.moves import range |
34
|
|
|
|
35
|
1 |
|
from ._distance import _Distance |
36
|
|
|
|
37
|
1 |
|
__all__ = ['Strcmp95', 'dist_strcmp95', 'sim_strcmp95'] |
38
|
|
|
|
39
|
|
|
|
40
|
1 |
|
class Strcmp95(_Distance): |
|
|
|
|
41
|
|
|
"""Strcmp95. |
42
|
|
|
|
43
|
|
|
This is a Python translation of the C code for strcmp95: |
44
|
|
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
45
|
|
|
:cite:`Winkler:1994`. |
46
|
|
|
The above file is a US Government publication and, accordingly, |
47
|
|
|
in the public domain. |
48
|
|
|
|
49
|
|
|
This is based on the Jaro-Winkler distance, but also attempts to correct |
50
|
|
|
for some common typos and frequently confused characters. It is also |
51
|
|
|
limited to uppercase ASCII characters, so it is appropriate to American |
52
|
|
|
names, but not much else. |
53
|
|
|
""" |
54
|
|
|
|
55
|
1 |
|
_sp_mx = ( |
56
|
|
|
('A', 'E'), |
57
|
|
|
('A', 'I'), |
58
|
|
|
('A', 'O'), |
59
|
|
|
('A', 'U'), |
60
|
|
|
('B', 'V'), |
61
|
|
|
('E', 'I'), |
62
|
|
|
('E', 'O'), |
63
|
|
|
('E', 'U'), |
64
|
|
|
('I', 'O'), |
65
|
|
|
('I', 'U'), |
66
|
|
|
('O', 'U'), |
67
|
|
|
('I', 'Y'), |
68
|
|
|
('E', 'Y'), |
69
|
|
|
('C', 'G'), |
70
|
|
|
('E', 'F'), |
71
|
|
|
('W', 'U'), |
72
|
|
|
('W', 'V'), |
73
|
|
|
('X', 'K'), |
74
|
|
|
('S', 'Z'), |
75
|
|
|
('X', 'S'), |
76
|
|
|
('Q', 'C'), |
77
|
|
|
('U', 'V'), |
78
|
|
|
('M', 'N'), |
79
|
|
|
('L', 'I'), |
80
|
|
|
('Q', 'O'), |
81
|
|
|
('P', 'R'), |
82
|
|
|
('I', 'J'), |
83
|
|
|
('2', 'Z'), |
84
|
|
|
('5', 'S'), |
85
|
|
|
('8', 'B'), |
86
|
|
|
('1', 'I'), |
87
|
|
|
('1', 'L'), |
88
|
|
|
('0', 'O'), |
89
|
|
|
('0', 'Q'), |
90
|
|
|
('C', 'K'), |
91
|
|
|
('G', 'J'), |
92
|
|
|
) |
93
|
|
|
|
94
|
1 |
|
def sim(self, src, tar, long_strings=False): |
|
|
|
|
95
|
|
|
"""Return the strcmp95 similarity of two strings. |
96
|
|
|
|
97
|
|
|
Args: |
98
|
|
|
src (str): Source string for comparison |
99
|
|
|
tar (str): Target string for comparison |
100
|
|
|
long_strings (bool): Set to True to increase the probability of a |
101
|
|
|
match when the number of matched characters is large. This |
102
|
|
|
option allows for a little more tolerance when the strings are |
103
|
|
|
large. It is not an appropriate test when comparing fixed |
104
|
|
|
length fields such as phone and social security numbers. |
105
|
|
|
|
106
|
|
|
Returns: |
107
|
|
|
float: Strcmp95 similarity |
108
|
|
|
|
109
|
|
|
Examples: |
110
|
|
|
>>> cmp = Strcmp95() |
111
|
|
|
>>> cmp.sim('cat', 'hat') |
112
|
|
|
0.7777777777777777 |
113
|
|
|
>>> cmp.sim('Niall', 'Neil') |
114
|
|
|
0.8454999999999999 |
115
|
|
|
>>> cmp.sim('aluminum', 'Catalan') |
116
|
|
|
0.6547619047619048 |
117
|
|
|
>>> cmp.sim('ATCG', 'TAGC') |
118
|
|
|
0.8333333333333334 |
119
|
|
|
|
120
|
|
|
""" |
121
|
|
|
|
122
|
1 |
|
def _in_range(char): |
123
|
|
|
"""Return True if char is in the range (0, 91). |
124
|
|
|
|
125
|
|
|
Args: |
126
|
|
|
char (str): The character to check |
127
|
|
|
|
128
|
|
|
Returns: |
129
|
|
|
bool: True if char is in the range (0, 91) |
130
|
|
|
|
131
|
|
|
""" |
132
|
1 |
|
return 91 > ord(char) > 0 |
133
|
|
|
|
134
|
1 |
|
ying = src.strip().upper() |
135
|
1 |
|
yang = tar.strip().upper() |
136
|
|
|
|
137
|
1 |
|
if ying == yang: |
138
|
1 |
|
return 1.0 |
139
|
|
|
# If either string is blank - return - added in Version 2 |
140
|
1 |
|
if not ying or not yang: |
141
|
1 |
|
return 0.0 |
142
|
|
|
|
143
|
1 |
|
adjwt = defaultdict(int) |
144
|
|
|
|
145
|
|
|
# Initialize the adjwt array on the first call to the function only. |
146
|
|
|
# The adjwt array is used to give partial credit for characters that |
147
|
|
|
# may be errors due to known phonetic or character recognition errors. |
148
|
|
|
# A typical example is to match the letter "O" with the number "0" |
149
|
1 |
|
for i in self._sp_mx: |
150
|
1 |
|
adjwt[(i[0], i[1])] = 3 |
151
|
1 |
|
adjwt[(i[1], i[0])] = 3 |
152
|
|
|
|
153
|
1 |
|
if len(ying) > len(yang): |
154
|
1 |
|
search_range = len(ying) |
155
|
1 |
|
minv = len(yang) |
156
|
|
|
else: |
157
|
1 |
|
search_range = len(yang) |
158
|
1 |
|
minv = len(ying) |
159
|
|
|
|
160
|
|
|
# Blank out the flags |
161
|
1 |
|
ying_flag = [0] * search_range |
162
|
1 |
|
yang_flag = [0] * search_range |
163
|
1 |
|
search_range = max(0, search_range // 2 - 1) |
164
|
|
|
|
165
|
|
|
# Looking only within the search range, |
166
|
|
|
# count and flag the matched pairs. |
167
|
1 |
|
num_com = 0 |
168
|
1 |
|
yl1 = len(yang) - 1 |
169
|
1 |
|
for i in range(len(ying)): |
|
|
|
|
170
|
1 |
|
low_lim = (i - search_range) if (i >= search_range) else 0 |
171
|
1 |
|
hi_lim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
172
|
1 |
|
for j in range(low_lim, hi_lim + 1): |
173
|
1 |
|
if (yang_flag[j] == 0) and (yang[j] == ying[i]): |
174
|
1 |
|
yang_flag[j] = 1 |
175
|
1 |
|
ying_flag[i] = 1 |
176
|
1 |
|
num_com += 1 |
177
|
1 |
|
break |
178
|
|
|
|
179
|
|
|
# If no characters in common - return |
180
|
1 |
|
if num_com == 0: |
181
|
1 |
|
return 0.0 |
182
|
|
|
|
183
|
|
|
# Count the number of transpositions |
184
|
1 |
|
k = n_trans = 0 |
185
|
1 |
|
for i in range(len(ying)): |
|
|
|
|
186
|
1 |
|
if ying_flag[i] != 0: |
187
|
1 |
|
j = 0 |
188
|
1 |
|
for j in range(k, len(yang)): # pragma: no branch |
189
|
1 |
|
if yang_flag[j] != 0: |
190
|
1 |
|
k = j + 1 |
191
|
1 |
|
break |
192
|
1 |
|
if ying[i] != yang[j]: |
193
|
1 |
|
n_trans += 1 |
194
|
1 |
|
n_trans //= 2 |
195
|
|
|
|
196
|
|
|
# Adjust for similarities in unmatched characters |
197
|
1 |
|
n_simi = 0 |
198
|
1 |
|
if minv > num_com: |
|
|
|
|
199
|
1 |
|
for i in range(len(ying)): |
|
|
|
|
200
|
1 |
|
if ying_flag[i] == 0 and _in_range(ying[i]): |
201
|
1 |
|
for j in range(len(yang)): |
|
|
|
|
202
|
1 |
|
if yang_flag[j] == 0 and _in_range(yang[j]): |
203
|
1 |
|
if (ying[i], yang[j]) in adjwt: |
204
|
1 |
|
n_simi += adjwt[(ying[i], yang[j])] |
205
|
1 |
|
yang_flag[j] = 2 |
206
|
1 |
|
break |
207
|
1 |
|
num_sim = n_simi / 10.0 + num_com |
208
|
|
|
|
209
|
|
|
# Main weight computation |
210
|
1 |
|
weight = ( |
211
|
|
|
num_sim / len(ying) |
212
|
|
|
+ num_sim / len(yang) |
213
|
|
|
+ (num_com - n_trans) / num_com |
214
|
|
|
) |
215
|
1 |
|
weight /= 3.0 |
216
|
|
|
|
217
|
|
|
# Continue to boost the weight if the strings are similar |
218
|
1 |
|
if weight > 0.7: |
219
|
|
|
|
220
|
|
|
# Adjust for having up to the first 4 characters in common |
221
|
1 |
|
j = 4 if (minv >= 4) else minv |
222
|
1 |
|
i = 0 |
223
|
1 |
|
while (i < j) and (ying[i] == yang[i]) and (not ying[i].isdigit()): |
224
|
1 |
|
i += 1 |
225
|
1 |
|
if i: |
226
|
1 |
|
weight += i * 0.1 * (1.0 - weight) |
227
|
|
|
|
228
|
|
|
# Optionally adjust for long strings. |
229
|
|
|
|
230
|
|
|
# After agreeing beginning chars, at least two more must agree and |
231
|
|
|
# the agreeing characters must be > .5 of remaining characters. |
232
|
1 |
|
if ( |
233
|
|
|
long_strings |
|
|
|
|
234
|
|
|
and (minv > 4) |
|
|
|
|
235
|
|
|
and (num_com > i + 1) |
|
|
|
|
236
|
|
|
and (2 * num_com >= minv + i) |
|
|
|
|
237
|
|
|
): |
238
|
1 |
|
if not ying[0].isdigit(): |
239
|
1 |
|
weight += (1.0 - weight) * ( |
240
|
|
|
(num_com - i - 1) / (len(ying) + len(yang) - i * 2 + 2) |
241
|
|
|
) |
242
|
|
|
|
243
|
1 |
|
return weight |
244
|
|
|
|
245
|
|
|
|
246
|
1 |
|
def sim_strcmp95(src, tar, long_strings=False): |
247
|
|
|
"""Return the strcmp95 similarity of two strings. |
248
|
|
|
|
249
|
|
|
This is a wrapper for :py:meth:`Strcmp95.sim`. |
250
|
|
|
|
251
|
|
|
Args: |
252
|
|
|
src (str): Source string for comparison |
253
|
|
|
tar (str): Target string for comparison |
254
|
|
|
long_strings (bool): Set to True to increase the probability of a |
255
|
|
|
match when the number of matched characters is large. This option |
256
|
|
|
allows for a little more tolerance when the strings are large. It |
257
|
|
|
is not an appropriate test when comparing fixed length fields such |
258
|
|
|
as phone and social security numbers. |
259
|
|
|
|
260
|
|
|
Returns: |
261
|
|
|
float: strcmp95 similarity |
262
|
|
|
|
263
|
|
|
Examples: |
264
|
|
|
>>> sim_strcmp95('cat', 'hat') |
265
|
|
|
0.7777777777777777 |
266
|
|
|
>>> sim_strcmp95('Niall', 'Neil') |
267
|
|
|
0.8454999999999999 |
268
|
|
|
>>> sim_strcmp95('aluminum', 'Catalan') |
269
|
|
|
0.6547619047619048 |
270
|
|
|
>>> sim_strcmp95('ATCG', 'TAGC') |
271
|
|
|
0.8333333333333334 |
272
|
|
|
|
273
|
|
|
""" |
274
|
1 |
|
return Strcmp95().sim(src, tar, long_strings) |
275
|
|
|
|
276
|
|
|
|
277
|
1 |
|
def dist_strcmp95(src, tar, long_strings=False): |
278
|
|
|
"""Return the strcmp95 distance between two strings. |
279
|
|
|
|
280
|
|
|
This is a wrapper for :py:meth:`Strcmp95.dist`. |
281
|
|
|
|
282
|
|
|
Args: |
283
|
|
|
src (str): Source string for comparison |
284
|
|
|
tar (str): Target string for comparison |
285
|
|
|
long_strings (bool): Set to True to increase the probability of a |
286
|
|
|
match when the number of matched characters is large. This option |
287
|
|
|
allows for a little more tolerance when the strings are large. It |
288
|
|
|
is not an appropriate test when comparing fixed length fields such |
289
|
|
|
as phone and social security numbers. |
290
|
|
|
|
291
|
|
|
Returns: |
292
|
|
|
float: strcmp95 distance |
293
|
|
|
|
294
|
|
|
Examples: |
295
|
|
|
>>> round(dist_strcmp95('cat', 'hat'), 12) |
296
|
|
|
0.222222222222 |
297
|
|
|
>>> round(dist_strcmp95('Niall', 'Neil'), 12) |
298
|
|
|
0.1545 |
299
|
|
|
>>> round(dist_strcmp95('aluminum', 'Catalan'), 12) |
300
|
|
|
0.345238095238 |
301
|
|
|
>>> round(dist_strcmp95('ATCG', 'TAGC'), 12) |
302
|
|
|
0.166666666667 |
303
|
|
|
|
304
|
|
|
""" |
305
|
1 |
|
return Strcmp95().dist(src, tar, long_strings) |
306
|
|
|
|
307
|
|
|
|
308
|
|
|
if __name__ == '__main__': |
309
|
|
|
import doctest |
310
|
|
|
|
311
|
|
|
doctest.testmod() |
312
|
|
|
|