1
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
|
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
|
|
"""abydos.distance. |
20
|
|
|
|
21
|
|
|
The distance module implements string edit distance functions including: |
22
|
|
|
|
23
|
|
|
- Levenshtein distance (incl. a [0, 1] normalized variant) |
24
|
|
|
- Optimal String Alignment distance (incl. a [0, 1] normalized variant) |
25
|
|
|
- Levenshtein-Damerau distance (incl. a [0, 1] normalized variant) |
26
|
|
|
- Hamming distance (incl. a [0, 1] normalized variant) |
27
|
|
|
- Tversky index |
28
|
|
|
- Sørensen–Dice coefficient & distance |
29
|
|
|
- Jaccard similarity coefficient & distance |
30
|
|
|
- overlap similarity & distance |
31
|
|
|
- Tanimoto coefficient & distance |
32
|
|
|
- Minkowski distance & similarity (incl. a [0, 1] normalized option) |
33
|
|
|
- Manhattan distance & similarity (incl. a [0, 1] normalized option) |
34
|
|
|
- Euclidean distance & similarity (incl. a [0, 1] normalized option) |
35
|
|
|
- Chebyshev distance & similarity (incl. a [0, 1] normalized option) |
36
|
|
|
- cosine similarity & distance |
37
|
|
|
- Jaro distance |
38
|
|
|
- Jaro-Winkler distance (incl. the strcmp95 algorithm variant) |
39
|
|
|
- Longest common substring |
40
|
|
|
- Ratcliff-Obershelp similarity & distance |
41
|
|
|
- Match Rating Algorithm similarity |
42
|
|
|
- Normalized Compression Distance (NCD) & similarity |
43
|
|
|
- Monge-Elkan similarity & distance |
44
|
|
|
- Matrix similarity |
45
|
|
|
- Needleman-Wunsch score |
46
|
|
|
- Smither-Waterman score |
47
|
|
|
- Gotoh score |
48
|
|
|
- Length similarity |
49
|
|
|
- Prefix, Suffix, and Identity similarity & distance |
50
|
|
|
- Modified Language-Independent Product Name Search (MLIPNS) similarity & |
51
|
|
|
distance |
52
|
|
|
- Bag distance (incl. a [0, 1] normalized variant) |
53
|
|
|
- Editex distance (incl. a [0, 1] normalized variant) |
54
|
|
|
- Eudex distances |
55
|
|
|
- TF-IDF similarity |
56
|
|
|
|
57
|
|
|
Functions beginning with the prefixes 'sim' and 'dist' are guaranteed to be |
58
|
|
|
in the range [0, 1], and sim_X = 1 - dist_X since the two are complements. |
59
|
|
|
If a sim_X function is supplied identical src & tar arguments, it is guaranteed |
60
|
|
|
to return 1; the corresponding dist_X function is guaranteed to return 0. |
61
|
|
|
""" |
62
|
|
|
|
63
|
|
|
from __future__ import division, unicode_literals |
64
|
|
|
|
65
|
|
|
import codecs |
66
|
|
|
import math |
67
|
|
|
import sys |
68
|
|
|
import types |
69
|
|
|
import unicodedata |
70
|
|
|
from collections import Counter, defaultdict |
71
|
|
|
|
72
|
|
|
import numpy as np |
73
|
|
|
|
74
|
|
|
from six import text_type |
75
|
|
|
from six.moves import range |
76
|
|
|
|
77
|
|
|
from .compression import ac_encode, ac_train, rle_encode |
78
|
|
|
from .phonetic import eudex, mra |
79
|
|
|
from .qgram import QGrams |
80
|
|
|
|
81
|
|
|
try: |
82
|
|
|
import lzma |
83
|
|
|
except ImportError: # pragma: no cover |
84
|
|
|
# If the system lacks the lzma library, that's fine, but lzma comrpession |
85
|
|
|
# similarity won't be supported. |
86
|
|
|
pass |
87
|
|
|
|
88
|
|
|
|
89
|
|
|
def levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
90
|
|
|
"""Return the Levenshtein distance between two strings. |
91
|
|
|
|
92
|
|
|
Levenshtein distance |
93
|
|
|
|
94
|
|
|
This is the standard edit distance measure. Cf. |
95
|
|
|
https://en.wikipedia.org/wiki/Levenshtein_distance |
96
|
|
|
|
97
|
|
|
Two additional variants: optimal string alignment (aka restricted |
98
|
|
|
Damerau-Levenshtein distance) and the Damerau-Levenshtein distance |
99
|
|
|
are also supported. Cf. |
100
|
|
|
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance |
101
|
|
|
|
102
|
|
|
The ordinary Levenshtein & Optimal String Alignment distance both |
103
|
|
|
employ the Wagner-Fischer dynamic programming algorithm. Cf. |
104
|
|
|
https://en.wikipedia.org/wiki/Wagner%E2%80%93Fischer_algorithm |
105
|
|
|
|
106
|
|
|
Levenshtein edit distance ordinarily has unit insertion, deletion, and |
107
|
|
|
substitution costs. |
108
|
|
|
|
109
|
|
|
:param str src, tar: two strings to be compared |
110
|
|
|
:param str mode: specifies a mode for computing the Levenshtein distance: |
111
|
|
|
|
112
|
|
|
- 'lev' (default) computes the ordinary Levenshtein distance, |
113
|
|
|
in which edits may include inserts, deletes, and substitutions |
114
|
|
|
- 'osa' computes the Optimal String Alignment distance, in which |
115
|
|
|
edits may include inserts, deletes, substitutions, and |
116
|
|
|
transpositions but substrings may only be edited once |
117
|
|
|
- 'dam' computes the Damerau-Levenshtein distance, in which |
118
|
|
|
edits may include inserts, deletes, substitutions, and |
119
|
|
|
transpositions and substrings may undergo repeated edits |
120
|
|
|
|
121
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
122
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
123
|
|
|
respectively (by default: (1, 1, 1, 1)) |
124
|
|
|
:returns: the Levenshtein distance between src & tar |
125
|
|
|
:rtype: int (may return a float if cost has float values) |
126
|
|
|
|
127
|
|
|
>>> levenshtein('cat', 'hat') |
128
|
|
|
1 |
129
|
|
|
>>> levenshtein('Niall', 'Neil') |
130
|
|
|
3 |
131
|
|
|
>>> levenshtein('aluminum', 'Catalan') |
132
|
|
|
7 |
133
|
|
|
>>> levenshtein('ATCG', 'TAGC') |
134
|
|
|
3 |
135
|
|
|
|
136
|
|
|
>>> levenshtein('ATCG', 'TAGC', mode='osa') |
137
|
|
|
2 |
138
|
|
|
>>> levenshtein('ACTG', 'TAGC', mode='osa') |
139
|
|
|
4 |
140
|
|
|
|
141
|
|
|
>>> levenshtein('ATCG', 'TAGC', mode='dam') |
142
|
|
|
2 |
143
|
|
|
>>> levenshtein('ACTG', 'TAGC', mode='dam') |
144
|
|
|
3 |
145
|
|
|
""" |
146
|
|
|
ins_cost, del_cost, sub_cost, trans_cost = cost |
147
|
|
|
|
148
|
|
|
if src == tar: |
149
|
|
|
return 0 |
150
|
|
|
if not src: |
151
|
|
|
return len(tar) * ins_cost |
152
|
|
|
if not tar: |
153
|
|
|
return len(src) * del_cost |
154
|
|
|
|
155
|
|
|
if 'dam' in mode: |
156
|
|
|
return damerau_levenshtein(src, tar, cost) |
157
|
|
|
|
158
|
|
|
# pylint: disable=no-member |
159
|
|
|
d_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.int) |
160
|
|
|
# pylint: enable=no-member |
161
|
|
|
for i in range(len(src)+1): |
162
|
|
|
d_mat[i, 0] = i * del_cost |
163
|
|
|
for j in range(len(tar)+1): |
164
|
|
|
d_mat[0, j] = j * ins_cost |
165
|
|
|
|
166
|
|
|
for i in range(len(src)): |
|
|
|
|
167
|
|
|
for j in range(len(tar)): |
|
|
|
|
168
|
|
|
d_mat[i+1, j+1] = min( |
169
|
|
|
d_mat[i+1, j] + ins_cost, # ins |
170
|
|
|
d_mat[i, j+1] + del_cost, # del |
171
|
|
|
d_mat[i, j] + (sub_cost if src[i] != tar[j] else 0) # sub/== |
172
|
|
|
) |
173
|
|
|
|
174
|
|
|
if mode == 'osa': |
175
|
|
|
if ((i+1 > 1 and j+1 > 1 and src[i] == tar[j-1] and |
176
|
|
|
src[i-1] == tar[j])): |
177
|
|
|
# transposition |
178
|
|
|
d_mat[i+1, j+1] = min(d_mat[i+1, j+1], |
179
|
|
|
d_mat[i-1, j-1] + trans_cost) |
180
|
|
|
|
181
|
|
|
return d_mat[len(src), len(tar)] |
182
|
|
|
|
183
|
|
|
|
184
|
|
|
def dist_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
185
|
|
|
"""Return the normalized Levenshtein distance between two strings. |
186
|
|
|
|
187
|
|
|
Levenshtein distance normalized to the interval [0, 1] |
188
|
|
|
|
189
|
|
|
The Levenshtein distance is normalized by dividing the Levenshtein distance |
190
|
|
|
(calculated by any of the three supported methods) by the greater of |
191
|
|
|
the number of characters in src times the cost of a delete and |
192
|
|
|
the number of characters in tar times the cost of an insert. |
193
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
194
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
195
|
|
|
|
196
|
|
|
:param str src, tar: two strings to be compared |
197
|
|
|
:param str mode: specifies a mode for computing the Levenshtein distance: |
198
|
|
|
|
199
|
|
|
- 'lev' (default) computes the ordinary Levenshtein distance, |
200
|
|
|
in which edits may include inserts, deletes, and substitutions |
201
|
|
|
- 'osa' computes the Optimal String Alignment distance, in which |
202
|
|
|
edits may include inserts, deletes, substitutions, and |
203
|
|
|
transpositions but substrings may only be edited once |
204
|
|
|
- 'dam' computes the Damerau-Levenshtein distance, in which |
205
|
|
|
edits may include inserts, deletes, substitutions, and |
206
|
|
|
transpositions and substrings may undergo repeated edits |
207
|
|
|
|
208
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
209
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
210
|
|
|
respectively (by default: (1, 1, 1, 1)) |
211
|
|
|
:returns: normalized Levenshtein distance |
212
|
|
|
:rtype: float |
213
|
|
|
|
214
|
|
|
>>> dist_levenshtein('cat', 'hat') |
215
|
|
|
0.33333333333333331 |
216
|
|
|
>>> dist_levenshtein('Niall', 'Neil') |
217
|
|
|
0.59999999999999998 |
218
|
|
|
>>> dist_levenshtein('aluminum', 'Catalan') |
219
|
|
|
0.875 |
220
|
|
|
>>> dist_levenshtein('ATCG', 'TAGC') |
221
|
|
|
0.75 |
222
|
|
|
""" |
223
|
|
|
if src == tar: |
224
|
|
|
return 0 |
225
|
|
|
ins_cost, del_cost = cost[:2] |
226
|
|
|
return (levenshtein(src, tar, mode, cost) / |
227
|
|
|
(max(len(src)*del_cost, len(tar)*ins_cost))) |
228
|
|
|
|
229
|
|
|
|
230
|
|
|
def sim_levenshtein(src, tar, mode='lev', cost=(1, 1, 1, 1)): |
231
|
|
|
"""Return the Levenshtein similarity of two strings. |
232
|
|
|
|
233
|
|
|
Levenshtein similarity normalized to the interval [0, 1] |
234
|
|
|
|
235
|
|
|
Levenshtein similarity the complement of Levenshtein distance: |
236
|
|
|
:math:`sim_{Levenshtein} = 1 - dist_{Levenshtein}` |
237
|
|
|
|
238
|
|
|
The arguments are identical to those of the levenshtein() function. |
239
|
|
|
|
240
|
|
|
:param str src, tar: two strings to be compared |
241
|
|
|
:param str mode: specifies a mode for computing the Levenshtein distance: |
242
|
|
|
|
243
|
|
|
- 'lev' (default) computes the ordinary Levenshtein distance, |
244
|
|
|
in which edits may include inserts, deletes, and substitutions |
245
|
|
|
- 'osa' computes the Optimal String Alignment distance, in which |
246
|
|
|
edits may include inserts, deletes, substitutions, and |
247
|
|
|
transpositions but substrings may only be edited once |
248
|
|
|
- 'dam' computes the Damerau-Levenshtein distance, in which |
249
|
|
|
edits may include inserts, deletes, substitutions, and |
250
|
|
|
transpositions and substrings may undergo repeated edits |
251
|
|
|
|
252
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
253
|
|
|
edits: |
254
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
255
|
|
|
(by default: (1, 1, 1, 1)) |
256
|
|
|
:returns: normalized Levenshtein similarity |
257
|
|
|
:rtype: float |
258
|
|
|
|
259
|
|
|
>>> sim_levenshtein('cat', 'hat') |
260
|
|
|
0.66666666666666674 |
261
|
|
|
>>> sim_levenshtein('Niall', 'Neil') |
262
|
|
|
0.40000000000000002 |
263
|
|
|
>>> sim_levenshtein('aluminum', 'Catalan') |
264
|
|
|
0.125 |
265
|
|
|
>>> sim_levenshtein('ATCG', 'TAGC') |
266
|
|
|
0.25 |
267
|
|
|
""" |
268
|
|
|
return 1 - dist_levenshtein(src, tar, mode, cost) |
269
|
|
|
|
270
|
|
|
|
271
|
|
|
def damerau_levenshtein(src, tar, cost=(1, 1, 1, 1)): |
|
|
|
|
272
|
|
|
"""Return the Damerau-Levenshtein distance between two strings. |
273
|
|
|
|
274
|
|
|
Damerau-Levenshtein distance |
275
|
|
|
|
276
|
|
|
This computes the Damerau-Levenshtein distance. Cf. |
277
|
|
|
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance |
278
|
|
|
|
279
|
|
|
Damerau-Levenshtein code based on Java code by Kevin L. Stern, |
280
|
|
|
under the MIT license: |
281
|
|
|
https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/string/DamerauLevenshteinAlgorithm.java |
282
|
|
|
|
283
|
|
|
:param str src, tar: two strings to be compared |
284
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
285
|
|
|
edits: |
286
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
287
|
|
|
(by default: (1, 1, 1, 1)) |
288
|
|
|
:returns: the Damerau-Levenshtein distance between src & tar |
289
|
|
|
:rtype: int (may return a float if cost has float values) |
290
|
|
|
|
291
|
|
|
>>> damerau_levenshtein('cat', 'hat') |
292
|
|
|
1 |
293
|
|
|
>>> damerau_levenshtein('Niall', 'Neil') |
294
|
|
|
3 |
295
|
|
|
>>> damerau_levenshtein('aluminum', 'Catalan') |
296
|
|
|
7 |
297
|
|
|
>>> damerau_levenshtein('ATCG', 'TAGC') |
298
|
|
|
2 |
299
|
|
|
""" |
300
|
|
|
ins_cost, del_cost, sub_cost, trans_cost = cost |
301
|
|
|
|
302
|
|
|
if src == tar: |
303
|
|
|
return 0 |
304
|
|
|
if not src: |
305
|
|
|
return len(tar) * ins_cost |
306
|
|
|
if not tar: |
307
|
|
|
return len(src) * del_cost |
308
|
|
|
|
309
|
|
|
if 2*trans_cost < ins_cost + del_cost: |
310
|
|
|
raise ValueError('Unsupported cost assignment; the cost of two ' + |
311
|
|
|
'transpositions must not be less than the cost of ' + |
312
|
|
|
'an insert plus a delete.') |
313
|
|
|
|
314
|
|
|
# pylint: disable=no-member |
315
|
|
|
d_mat = (np.zeros((len(src))*(len(tar)), dtype=np.int). |
316
|
|
|
reshape((len(src), len(tar)))) |
317
|
|
|
# pylint: enable=no-member |
318
|
|
|
|
319
|
|
|
if src[0] != tar[0]: |
320
|
|
|
d_mat[0, 0] = min(sub_cost, ins_cost + del_cost) |
321
|
|
|
|
322
|
|
|
src_index_by_character = {} |
323
|
|
|
src_index_by_character[src[0]] = 0 |
324
|
|
|
for i in range(1, len(src)): |
325
|
|
|
del_distance = d_mat[i-1, 0] + del_cost |
326
|
|
|
ins_distance = (i+1) * del_cost + ins_cost |
327
|
|
|
match_distance = (i * del_cost + |
328
|
|
|
(0 if src[i] == tar[0] else sub_cost)) |
329
|
|
|
d_mat[i, 0] = min(del_distance, ins_distance, match_distance) |
330
|
|
|
|
331
|
|
|
for j in range(1, len(tar)): |
332
|
|
|
del_distance = (j+1) * ins_cost + del_cost |
333
|
|
|
ins_distance = d_mat[0, j-1] + ins_cost |
334
|
|
|
match_distance = (j * ins_cost + |
335
|
|
|
(0 if src[0] == tar[j] else sub_cost)) |
336
|
|
|
d_mat[0, j] = min(del_distance, ins_distance, match_distance) |
337
|
|
|
|
338
|
|
|
for i in range(1, len(src)): |
339
|
|
|
max_src_letter_match_index = (0 if src[i] == tar[0] else -1) |
340
|
|
|
for j in range(1, len(tar)): |
341
|
|
|
candidate_swap_index = (-1 if tar[j] not in |
342
|
|
|
src_index_by_character else |
343
|
|
|
src_index_by_character[tar[j]]) |
344
|
|
|
j_swap = max_src_letter_match_index |
345
|
|
|
del_distance = d_mat[i-1, j] + del_cost |
346
|
|
|
ins_distance = d_mat[i, j-1] + ins_cost |
347
|
|
|
match_distance = d_mat[i-1, j-1] |
348
|
|
|
if src[i] != tar[j]: |
349
|
|
|
match_distance += sub_cost |
350
|
|
|
else: |
351
|
|
|
max_src_letter_match_index = j |
352
|
|
|
|
353
|
|
|
if candidate_swap_index != -1 and j_swap != -1: |
354
|
|
|
i_swap = candidate_swap_index |
355
|
|
|
|
356
|
|
|
if i_swap == 0 and j_swap == 0: |
357
|
|
|
pre_swap_cost = 0 |
358
|
|
|
else: |
359
|
|
|
pre_swap_cost = d_mat[max(0, i_swap-1), max(0, j_swap-1)] |
360
|
|
|
swap_distance = (pre_swap_cost + (i - i_swap - 1) * |
361
|
|
|
del_cost + (j - j_swap - 1) * ins_cost + |
362
|
|
|
trans_cost) |
363
|
|
|
else: |
364
|
|
|
swap_distance = sys.maxsize |
365
|
|
|
|
366
|
|
|
d_mat[i, j] = min(del_distance, ins_distance, |
367
|
|
|
match_distance, swap_distance) |
368
|
|
|
src_index_by_character[src[i]] = i |
369
|
|
|
|
370
|
|
|
return d_mat[len(src)-1, len(tar)-1] |
371
|
|
|
|
372
|
|
|
|
373
|
|
|
def dist_damerau(src, tar, cost=(1, 1, 1, 1)): |
374
|
|
|
"""Return the Damerau-Levenshtein similarity of two strings. |
375
|
|
|
|
376
|
|
|
Damerau-Levenshtein distance normalized to the interval [0, 1] |
377
|
|
|
|
378
|
|
|
The Damerau-Levenshtein distance is normalized by dividing the |
379
|
|
|
Damerau-Levenshtein distance by the greater of |
380
|
|
|
the number of characters in src times the cost of a delete and |
381
|
|
|
the number of characters in tar times the cost of an insert. |
382
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
383
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
384
|
|
|
|
385
|
|
|
The arguments are identical to those of the levenshtein() function. |
386
|
|
|
|
387
|
|
|
:param str src, tar: two strings to be compared |
388
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
389
|
|
|
edits: |
390
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
391
|
|
|
(by default: (1, 1, 1, 1)) |
392
|
|
|
:returns: normalized Damerau-Levenshtein distance |
393
|
|
|
:rtype: float |
394
|
|
|
|
395
|
|
|
>>> dist_damerau('cat', 'hat') |
396
|
|
|
0.33333333333333331 |
397
|
|
|
>>> dist_damerau('Niall', 'Neil') |
398
|
|
|
0.59999999999999998 |
399
|
|
|
>>> dist_damerau('aluminum', 'Catalan') |
400
|
|
|
0.875 |
401
|
|
|
>>> dist_damerau('ATCG', 'TAGC') |
402
|
|
|
0.5 |
403
|
|
|
""" |
404
|
|
|
if src == tar: |
405
|
|
|
return 0 |
406
|
|
|
ins_cost, del_cost = cost[:2] |
407
|
|
|
return (damerau_levenshtein(src, tar, cost) / |
408
|
|
|
(max(len(src)*del_cost, len(tar)*ins_cost))) |
409
|
|
|
|
410
|
|
|
|
411
|
|
|
def sim_damerau(src, tar, cost=(1, 1, 1, 1)): |
412
|
|
|
"""Return the Damerau-Levenshtein similarity of two strings. |
413
|
|
|
|
414
|
|
|
Damerau-Levenshtein similarity normalized to the interval [0, 1] |
415
|
|
|
|
416
|
|
|
Damerau-Levenshtein similarity the complement of Damerau-Levenshtein |
417
|
|
|
distance: |
418
|
|
|
:math:`sim_{Damerau} = 1 - dist_{Damerau}` |
419
|
|
|
|
420
|
|
|
The arguments are identical to those of the levenshtein() function. |
421
|
|
|
|
422
|
|
|
:param str src, tar: two strings to be compared |
423
|
|
|
:param tuple cost: a 4-tuple representing the cost of the four possible |
424
|
|
|
edits: |
425
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
426
|
|
|
(by default: (1, 1, 1, 1)) |
427
|
|
|
:returns: normalized Damerau-Levenshtein similarity |
428
|
|
|
:rtype: float |
429
|
|
|
|
430
|
|
|
>>> sim_damerau('cat', 'hat') |
431
|
|
|
0.66666666666666674 |
432
|
|
|
>>> sim_damerau('Niall', 'Neil') |
433
|
|
|
0.40000000000000002 |
434
|
|
|
>>> sim_damerau('aluminum', 'Catalan') |
435
|
|
|
0.125 |
436
|
|
|
>>> sim_damerau('ATCG', 'TAGC') |
437
|
|
|
0.5 |
438
|
|
|
""" |
439
|
|
|
return 1 - dist_damerau(src, tar, cost) |
440
|
|
|
|
441
|
|
|
|
442
|
|
|
def hamming(src, tar, difflens=True): |
443
|
|
|
"""Return the Hamming distance between two strings. |
444
|
|
|
|
445
|
|
|
Hamming distance |
446
|
|
|
|
447
|
|
|
Hamming distance equals the number of character positions at which two |
448
|
|
|
strings differ. For strings of unequal lengths, it is not normally defined. |
449
|
|
|
By default, this implementation calculates the Hamming distance of the |
450
|
|
|
first n characters where n is the lesser of the two strings' lengths and |
451
|
|
|
adds to this the difference in string lengths. |
452
|
|
|
|
453
|
|
|
:param str src, tar: two strings to be compared |
454
|
|
|
:param bool allow_different_lengths: |
455
|
|
|
If True (default), this returns the Hamming distance for those |
456
|
|
|
characters that have a matching character in both strings plus the |
457
|
|
|
difference in the strings' lengths. This is equivalent to extending |
458
|
|
|
the shorter string with obligatorily non-matching characters. |
459
|
|
|
If False, an exception is raised in the case of strings of unequal |
460
|
|
|
lengths. |
461
|
|
|
:returns: the Hamming distance between src & tar |
462
|
|
|
:rtype: int |
463
|
|
|
|
464
|
|
|
>>> hamming('cat', 'hat') |
465
|
|
|
1 |
466
|
|
|
>>> hamming('Niall', 'Neil') |
467
|
|
|
3 |
468
|
|
|
>>> hamming('aluminum', 'Catalan') |
469
|
|
|
8 |
470
|
|
|
>>> hamming('ATCG', 'TAGC') |
471
|
|
|
4 |
472
|
|
|
""" |
473
|
|
|
if not difflens and len(src) != len(tar): |
474
|
|
|
raise ValueError('Undefined for sequences of unequal length; set ' + |
475
|
|
|
'difflens to True for Hamming distance between ' + |
476
|
|
|
'strings of unequal lengths.') |
477
|
|
|
|
478
|
|
|
hdist = 0 |
479
|
|
|
if difflens: |
480
|
|
|
hdist += abs(len(src)-len(tar)) |
481
|
|
|
hdist += sum(c1 != c2 for c1, c2 in zip(src, tar)) |
482
|
|
|
|
483
|
|
|
return hdist |
484
|
|
|
|
485
|
|
|
|
486
|
|
|
def dist_hamming(src, tar, difflens=True): |
487
|
|
|
"""Return the normalized Hamming distance between two strings. |
488
|
|
|
|
489
|
|
|
Hamming distance normalized to the interval [0, 1] |
490
|
|
|
|
491
|
|
|
The Hamming distance is normalized by dividing it |
492
|
|
|
by the greater of the number of characters in src & tar (unless difflens is |
493
|
|
|
set to False, in which case an exception is raised). |
494
|
|
|
|
495
|
|
|
The arguments are identical to those of the hamming() function. |
496
|
|
|
|
497
|
|
|
:param str src, tar: two strings to be compared |
498
|
|
|
:param bool allow_different_lengths: |
499
|
|
|
If True (default), this returns the Hamming distance for those |
500
|
|
|
characters that have a matching character in both strings plus the |
501
|
|
|
difference in the strings' lengths. This is equivalent to extending |
502
|
|
|
the shorter string with obligatorily non-matching characters. |
503
|
|
|
If False, an exception is raised in the case of strings of unequal |
504
|
|
|
lengths. |
505
|
|
|
:returns: normalized Hamming distance |
506
|
|
|
:rtype: float |
507
|
|
|
|
508
|
|
|
>>> dist_hamming('cat', 'hat') |
509
|
|
|
0.3333333333333333 |
510
|
|
|
>>> dist_hamming('Niall', 'Neil') |
511
|
|
|
0.6 |
512
|
|
|
>>> dist_hamming('aluminum', 'Catalan') |
513
|
|
|
1.0 |
514
|
|
|
>>> dist_hamming('ATCG', 'TAGC') |
515
|
|
|
1.0 |
516
|
|
|
""" |
517
|
|
|
if src == tar: |
518
|
|
|
return 0 |
519
|
|
|
return hamming(src, tar, difflens) / max(len(src), len(tar)) |
520
|
|
|
|
521
|
|
|
|
522
|
|
|
def sim_hamming(src, tar, difflens=True): |
523
|
|
|
"""Return the normalized Hamming similarity of two strings. |
524
|
|
|
|
525
|
|
|
Hamming similarity normalized to the interval [0, 1] |
526
|
|
|
|
527
|
|
|
Hamming similarity is the complement of normalized Hamming distance: |
528
|
|
|
:math:`sim_{Hamming} = 1 - dist{Hamming}` |
529
|
|
|
|
530
|
|
|
Provided that difflens==True, the Hamming similarity is identical to the |
531
|
|
|
Language-Independent Product Name Search (LIPNS) similarity score. For |
532
|
|
|
further information, see the sim_mlipns documentation. |
533
|
|
|
|
534
|
|
|
The arguments are identical to those of the hamming() function. |
535
|
|
|
|
536
|
|
|
:param str src, tar: two strings to be compared |
537
|
|
|
:param bool allow_different_lengths: |
538
|
|
|
If True (default), this returns the Hamming distance for those |
539
|
|
|
characters that have a matching character in both strings plus the |
540
|
|
|
difference in the strings' lengths. This is equivalent to extending |
541
|
|
|
the shorter string with obligatorily non-matching characters. |
542
|
|
|
If False, an exception is raised in the case of strings of unequal |
543
|
|
|
lengths. |
544
|
|
|
:returns: normalized Hamming similarity |
545
|
|
|
:rtype: float |
546
|
|
|
|
547
|
|
|
>>> sim_hamming('cat', 'hat') |
548
|
|
|
0.6666666666666667 |
549
|
|
|
>>> sim_hamming('Niall', 'Neil') |
550
|
|
|
0.4 |
551
|
|
|
>>> sim_hamming('aluminum', 'Catalan') |
552
|
|
|
0.0 |
553
|
|
|
>>> sim_hamming('ATCG', 'TAGC') |
554
|
|
|
0.0 |
555
|
|
|
""" |
556
|
|
|
return 1 - dist_hamming(src, tar, difflens) |
557
|
|
|
|
558
|
|
|
|
559
|
|
|
def _get_qgrams(src, tar, qval): |
560
|
|
|
"""Return the Q-Grams in src & tar. |
561
|
|
|
|
562
|
|
|
:param str src, tar: two strings to be compared |
563
|
|
|
(or QGrams/Counter objects) |
564
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
565
|
|
|
version |
566
|
|
|
:return: Q-Grams |
567
|
|
|
""" |
568
|
|
|
if isinstance(src, Counter) and isinstance(tar, Counter): |
|
|
|
|
569
|
|
|
return src, tar |
570
|
|
|
elif qval and qval > 0: |
571
|
|
|
return QGrams(src, qval), QGrams(tar, qval) |
572
|
|
|
else: |
573
|
|
|
return Counter(src.strip().split()), Counter(tar.strip().split()) |
574
|
|
|
|
575
|
|
|
|
576
|
|
|
def sim_tversky(src, tar, qval=2, alpha=1, beta=1, bias=None): |
|
|
|
|
577
|
|
|
r"""Return the Tversky index of two strings. |
578
|
|
|
|
579
|
|
|
Tversky index |
580
|
|
|
|
581
|
|
|
The Tversky index is defined as: |
582
|
|
|
For two sets X and Y: |
583
|
|
|
:math:`sim_{Tversky}(X, Y) = \\frac{|X \\cap Y|} |
584
|
|
|
{|X \\cap Y| + \\alpha|X - Y| + \\beta|Y - X|}` |
585
|
|
|
|
586
|
|
|
Cf. https://en.wikipedia.org/wiki/Tversky_index |
587
|
|
|
|
588
|
|
|
:math:`\\alpha = \\beta = 1` is equivalent to the Jaccard & Tanimoto |
589
|
|
|
similarity coefficients. |
590
|
|
|
|
591
|
|
|
:math:`\\alpha = \\beta = 0.5` is equivalent to the Sørensen-Dice |
592
|
|
|
similarity coefficient. |
593
|
|
|
|
594
|
|
|
Unequal α and β will tend to emphasize one or the other set's |
595
|
|
|
contributions: |
596
|
|
|
|
597
|
|
|
- :math:`\\alpha > \\beta` emphasizes the contributions of X over Y |
598
|
|
|
- :math:`\\alpha < \\beta` emphasizes the contributions of Y over X) |
599
|
|
|
|
600
|
|
|
Parameter values' relation to 1 emphasizes different types of |
601
|
|
|
contributions: |
602
|
|
|
|
603
|
|
|
- :math:`\\alpha and \\beta > 1` emphsize unique contributions over the |
604
|
|
|
intersection |
605
|
|
|
- :math:`\\alpha and \\beta < 1` emphsize the intersection over unique |
606
|
|
|
contributions |
607
|
|
|
|
608
|
|
|
The symmetric variant is defined in Jiminez, Sergio, Claudio Becerra, and |
609
|
|
|
Alexander Gelbukh. 2013. SOFTCARDINALITY-CORE: Improving Text Overlap with |
610
|
|
|
Distributional Measures for Semantic Textual Similarity. This is activated |
611
|
|
|
by specifying a bias parameter. |
612
|
|
|
Cf. http://aclweb.org/anthology/S/S13/S13-1028.pdf |
613
|
|
|
|
614
|
|
|
:param str src, tar: two strings to be compared |
615
|
|
|
(or QGrams/Counter objects) |
616
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
617
|
|
|
version |
618
|
|
|
:param float alpha, beta: two Tversky index parameters as indicated in the |
619
|
|
|
description below |
620
|
|
|
:returns: Tversky similarity |
621
|
|
|
:rtype: float |
622
|
|
|
|
623
|
|
|
>>> sim_tversky('cat', 'hat') |
624
|
|
|
0.3333333333333333 |
625
|
|
|
>>> sim_tversky('Niall', 'Neil') |
626
|
|
|
0.2222222222222222 |
627
|
|
|
>>> sim_tversky('aluminum', 'Catalan') |
628
|
|
|
0.0625 |
629
|
|
|
>>> sim_tversky('ATCG', 'TAGC') |
630
|
|
|
0.0 |
631
|
|
|
""" |
632
|
|
|
if alpha < 0 or beta < 0: |
633
|
|
|
raise ValueError('Unsupported weight assignment; alpha and beta ' + |
634
|
|
|
'must be greater than or equal to 0.') |
635
|
|
|
|
636
|
|
|
if src == tar: |
|
|
|
|
637
|
|
|
return 1.0 |
638
|
|
|
elif not src or not tar: |
639
|
|
|
return 0.0 |
640
|
|
|
|
641
|
|
|
q_src, q_tar = _get_qgrams(src, tar, qval) |
642
|
|
|
q_src_mag = sum(q_src.values()) |
643
|
|
|
q_tar_mag = sum(q_tar.values()) |
644
|
|
|
q_intersection_mag = sum((q_src & q_tar).values()) |
645
|
|
|
|
646
|
|
|
if not q_src or not q_tar: |
647
|
|
|
return 0.0 |
648
|
|
|
|
649
|
|
|
if bias is None: |
650
|
|
|
return q_intersection_mag / (q_intersection_mag + alpha * |
651
|
|
|
(q_src_mag - q_intersection_mag) + |
652
|
|
|
beta * (q_tar_mag - q_intersection_mag)) |
653
|
|
|
|
654
|
|
|
a_val = min(q_src_mag - q_intersection_mag, |
655
|
|
|
q_tar_mag - q_intersection_mag) |
656
|
|
|
b_val = max(q_src_mag - q_intersection_mag, |
657
|
|
|
q_tar_mag - q_intersection_mag) |
658
|
|
|
c_val = q_intersection_mag + bias |
659
|
|
|
return c_val / (beta * (alpha * a_val + (1 - alpha) * b_val) + c_val) |
660
|
|
|
|
661
|
|
|
|
662
|
|
|
def dist_tversky(src, tar, qval=2, alpha=1, beta=1, bias=None): |
|
|
|
|
663
|
|
|
"""Return the Tverssky distance between two strings. |
664
|
|
|
|
665
|
|
|
Tversky distance |
666
|
|
|
|
667
|
|
|
Tversky distance is the complement of the Tvesrsky index (similarity): |
668
|
|
|
:math:`dist_{Tversky} = 1-sim_{Tversky}` |
669
|
|
|
|
670
|
|
|
The symmetric variant is defined in Jiminez, Sergio, Claudio Becerra, and |
671
|
|
|
Alexander Gelbukh. 2013. SOFTCARDINALITY-CORE: Improving Text Overlap with |
672
|
|
|
Distributional Measures for Semantic Textual Similarity. This is activated |
673
|
|
|
by specifying a bias parameter. |
674
|
|
|
Cf. http://aclweb.org/anthology/S/S13/S13-1028.pdf |
675
|
|
|
|
676
|
|
|
:param str src, tar: two strings to be compared |
677
|
|
|
(or QGrams/Counter objects) |
678
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
679
|
|
|
version |
680
|
|
|
:param float alpha, beta: two Tversky index parameters as indicated in the |
681
|
|
|
description below |
682
|
|
|
:returns: Tversky distance |
683
|
|
|
:rtype: float |
684
|
|
|
|
685
|
|
|
>>> dist_tversky('cat', 'hat') |
686
|
|
|
0.6666666666666667 |
687
|
|
|
>>> dist_tversky('Niall', 'Neil') |
688
|
|
|
0.7777777777777778 |
689
|
|
|
>>> dist_tversky('aluminum', 'Catalan') |
690
|
|
|
0.9375 |
691
|
|
|
>>> dist_tversky('ATCG', 'TAGC') |
692
|
|
|
1.0 |
693
|
|
|
""" |
694
|
|
|
return 1 - sim_tversky(src, tar, qval, alpha, beta, bias) |
695
|
|
|
|
696
|
|
|
|
697
|
|
|
def sim_dice(src, tar, qval=2): |
698
|
|
|
r"""Return the Sørensen–Dice coefficient of two strings. |
699
|
|
|
|
700
|
|
|
Sørensen–Dice coefficient |
701
|
|
|
|
702
|
|
|
For two sets X and Y, the Sørensen–Dice coefficient is |
703
|
|
|
:math:`sim_{dice}(X, Y) = \\frac{2 \\cdot |X \\cap Y|}{|X| + |Y|}` |
704
|
|
|
|
705
|
|
|
This is identical to the Tanimoto similarity coefficient |
706
|
|
|
and the Tversky index for :math:`\\alpha = \\beta = 0.5` |
707
|
|
|
|
708
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
709
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
710
|
|
|
version |
711
|
|
|
:returns: Sørensen–Dice similarity |
712
|
|
|
:rtype: float |
713
|
|
|
|
714
|
|
|
>>> sim_dice('cat', 'hat') |
715
|
|
|
0.5 |
716
|
|
|
>>> sim_dice('Niall', 'Neil') |
717
|
|
|
0.36363636363636365 |
718
|
|
|
>>> sim_dice('aluminum', 'Catalan') |
719
|
|
|
0.11764705882352941 |
720
|
|
|
>>> sim_dice('ATCG', 'TAGC') |
721
|
|
|
0.0 |
722
|
|
|
""" |
723
|
|
|
return sim_tversky(src, tar, qval, 0.5, 0.5) |
724
|
|
|
|
725
|
|
|
|
726
|
|
|
def dist_dice(src, tar, qval=2): |
727
|
|
|
"""Return the Sørensen–Dice distance between two strings. |
728
|
|
|
|
729
|
|
|
Sørensen–Dice distance |
730
|
|
|
|
731
|
|
|
Sørensen–Dice distance is the complemenjt of the Sørensen–Dice coefficient: |
732
|
|
|
:math:`dist_{dice} = 1 - sim_{dice}` |
733
|
|
|
|
734
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
735
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
736
|
|
|
version |
737
|
|
|
:returns: Sørensen–Dice distance |
738
|
|
|
:rtype: float |
739
|
|
|
|
740
|
|
|
>>> dist_dice('cat', 'hat') |
741
|
|
|
0.5 |
742
|
|
|
>>> dist_dice('Niall', 'Neil') |
743
|
|
|
0.6363636363636364 |
744
|
|
|
>>> dist_dice('aluminum', 'Catalan') |
745
|
|
|
0.8823529411764706 |
746
|
|
|
>>> dist_dice('ATCG', 'TAGC') |
747
|
|
|
1.0 |
748
|
|
|
""" |
749
|
|
|
return 1 - sim_dice(src, tar, qval) |
750
|
|
|
|
751
|
|
|
|
752
|
|
|
def sim_jaccard(src, tar, qval=2): |
753
|
|
|
r"""Return the Jaccard similarity of two strings. |
754
|
|
|
|
755
|
|
|
Jaccard similarity coefficient |
756
|
|
|
|
757
|
|
|
For two sets X and Y, the Jaccard similarity coefficient is |
758
|
|
|
:math:`sim_{jaccard}(X, Y) = \\frac{|X \\cap Y|}{|X \\cup Y|}` |
759
|
|
|
|
760
|
|
|
This is identical to the Tanimoto similarity coefficient |
761
|
|
|
and the Tversky index for :math:`\\alpha = \\beta = 1` |
762
|
|
|
|
763
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
764
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
765
|
|
|
version |
766
|
|
|
:returns: Jaccard similarity |
767
|
|
|
:rtype: float |
768
|
|
|
|
769
|
|
|
>>> sim_jaccard('cat', 'hat') |
770
|
|
|
0.3333333333333333 |
771
|
|
|
>>> sim_jaccard('Niall', 'Neil') |
772
|
|
|
0.2222222222222222 |
773
|
|
|
>>> sim_jaccard('aluminum', 'Catalan') |
774
|
|
|
0.0625 |
775
|
|
|
>>> sim_jaccard('ATCG', 'TAGC') |
776
|
|
|
0.0 |
777
|
|
|
""" |
778
|
|
|
return sim_tversky(src, tar, qval, 1, 1) |
779
|
|
|
|
780
|
|
|
|
781
|
|
|
def dist_jaccard(src, tar, qval=2): |
782
|
|
|
"""Return the Jaccard distance between two strings. |
783
|
|
|
|
784
|
|
|
Jaccard distance |
785
|
|
|
|
786
|
|
|
Jaccard distance is the complement of the Jaccard similarity coefficient: |
787
|
|
|
:math:`dist_{Jaccard} = 1 - sim_{Jaccard}` |
788
|
|
|
|
789
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
790
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
791
|
|
|
version |
792
|
|
|
:returns: Jaccard distance |
793
|
|
|
:rtype: float |
794
|
|
|
|
795
|
|
|
>>> dist_jaccard('cat', 'hat') |
796
|
|
|
0.6666666666666667 |
797
|
|
|
>>> dist_jaccard('Niall', 'Neil') |
798
|
|
|
0.7777777777777778 |
799
|
|
|
>>> dist_jaccard('aluminum', 'Catalan') |
800
|
|
|
0.9375 |
801
|
|
|
>>> dist_jaccard('ATCG', 'TAGC') |
802
|
|
|
1.0 |
803
|
|
|
""" |
804
|
|
|
return 1 - sim_jaccard(src, tar, qval) |
805
|
|
|
|
806
|
|
|
|
807
|
|
|
def sim_overlap(src, tar, qval=2): |
808
|
|
|
r"""Return the overlap coefficient of two strings. |
809
|
|
|
|
810
|
|
|
Overlap coefficient |
811
|
|
|
|
812
|
|
|
For two sets X and Y, the overlap coefficient is |
813
|
|
|
:math:`sim_{overlap}(X, Y) = \\frac{|X \\cap Y|}{min(|X|, |Y|)}` |
814
|
|
|
|
815
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
816
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
817
|
|
|
version |
818
|
|
|
:returns: overlap similarity |
819
|
|
|
:rtype: float |
820
|
|
|
|
821
|
|
|
>>> sim_overlap('cat', 'hat') |
822
|
|
|
0.5 |
823
|
|
|
>>> sim_overlap('Niall', 'Neil') |
824
|
|
|
0.4 |
825
|
|
|
>>> sim_overlap('aluminum', 'Catalan') |
826
|
|
|
0.125 |
827
|
|
|
>>> sim_overlap('ATCG', 'TAGC') |
828
|
|
|
0.0 |
829
|
|
|
""" |
830
|
|
|
if src == tar: |
|
|
|
|
831
|
|
|
return 1.0 |
832
|
|
|
elif not src or not tar: |
833
|
|
|
return 0.0 |
834
|
|
|
|
835
|
|
|
q_src, q_tar = _get_qgrams(src, tar, qval) |
836
|
|
|
q_src_mag = sum(q_src.values()) |
837
|
|
|
q_tar_mag = sum(q_tar.values()) |
838
|
|
|
q_intersection_mag = sum((q_src & q_tar).values()) |
839
|
|
|
|
840
|
|
|
return q_intersection_mag / min(q_src_mag, q_tar_mag) |
841
|
|
|
|
842
|
|
|
|
843
|
|
|
def dist_overlap(src, tar, qval=2): |
844
|
|
|
"""Return the overlap distance between two strings. |
845
|
|
|
|
846
|
|
|
Overlap distance |
847
|
|
|
|
848
|
|
|
Overlap distance is the complement of the overlap coefficient: |
849
|
|
|
:math:`sim_{overlap} = 1 - dist_{overlap}` |
850
|
|
|
|
851
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
852
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
853
|
|
|
version |
854
|
|
|
:returns: overlap distance |
855
|
|
|
:rtype: float |
856
|
|
|
|
857
|
|
|
>>> dist_overlap('cat', 'hat') |
858
|
|
|
0.5 |
859
|
|
|
>>> dist_overlap('Niall', 'Neil') |
860
|
|
|
0.6 |
861
|
|
|
>>> dist_overlap('aluminum', 'Catalan') |
862
|
|
|
0.875 |
863
|
|
|
>>> dist_overlap('ATCG', 'TAGC') |
864
|
|
|
1.0 |
865
|
|
|
""" |
866
|
|
|
return 1 - sim_overlap(src, tar, qval) |
867
|
|
|
|
868
|
|
|
|
869
|
|
|
def sim_tanimoto(src, tar, qval=2): |
870
|
|
|
r"""Return the Tanimoto similarity of two strings. |
871
|
|
|
|
872
|
|
|
Tanimoto similarity |
873
|
|
|
|
874
|
|
|
For two sets X and Y, the Tanimoto similarity coefficient is |
875
|
|
|
:math:`sim_{Tanimoto}(X, Y) = \\frac{|X \\cap Y|}{|X \\cup Y|}` |
876
|
|
|
This is identical to the Jaccard similarity coefficient |
877
|
|
|
and the Tversky index for :math:`\\alpha = \\beta = 1` |
878
|
|
|
|
879
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
880
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
881
|
|
|
version |
882
|
|
|
:returns: Tanimoto similarity |
883
|
|
|
:rtype: float |
884
|
|
|
|
885
|
|
|
>>> sim_tanimoto('cat', 'hat') |
886
|
|
|
0.3333333333333333 |
887
|
|
|
>>> sim_tanimoto('Niall', 'Neil') |
888
|
|
|
0.2222222222222222 |
889
|
|
|
>>> sim_tanimoto('aluminum', 'Catalan') |
890
|
|
|
0.0625 |
891
|
|
|
>>> sim_tanimoto('ATCG', 'TAGC') |
892
|
|
|
0.0 |
893
|
|
|
""" |
894
|
|
|
return sim_jaccard(src, tar, qval) |
895
|
|
|
|
896
|
|
|
|
897
|
|
|
def tanimoto(src, tar, qval=2): |
898
|
|
|
"""Return the Tanimoto distance between two strings. |
899
|
|
|
|
900
|
|
|
Tanimoto distance |
901
|
|
|
|
902
|
|
|
Tanimoto distance is :math:`-log_{2}sim_{Tanimoto}` |
903
|
|
|
|
904
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
905
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
906
|
|
|
version |
907
|
|
|
:returns: Tanimoto distance |
908
|
|
|
:rtype: float |
909
|
|
|
|
910
|
|
|
>>> tanimoto('cat', 'hat') |
911
|
|
|
-1.5849625007211563 |
912
|
|
|
>>> tanimoto('Niall', 'Neil') |
913
|
|
|
-2.1699250014423126 |
914
|
|
|
>>> tanimoto('aluminum', 'Catalan') |
915
|
|
|
-4.0 |
916
|
|
|
>>> tanimoto('ATCG', 'TAGC') |
917
|
|
|
-inf |
918
|
|
|
""" |
919
|
|
|
coeff = sim_jaccard(src, tar, qval) |
920
|
|
|
if coeff != 0: |
921
|
|
|
return math.log(coeff, 2) |
922
|
|
|
|
923
|
|
|
return float('-inf') |
924
|
|
|
|
925
|
|
|
|
926
|
|
|
def minkowski(src, tar, qval=2, pval=1, normalize=False): |
927
|
|
|
"""Return the Minkowski distance (:math:`L^p-norm`) of two strings. |
928
|
|
|
|
929
|
|
|
:param src: |
930
|
|
|
:param tar: |
931
|
|
|
:param qval: |
932
|
|
|
:param pval: |
933
|
|
|
:return: |
934
|
|
|
""" |
935
|
|
|
q_src, q_tar = _get_qgrams(src, tar, qval) |
936
|
|
|
diffs = ((q_src - q_tar) + (q_tar - q_src)).values() |
937
|
|
|
|
938
|
|
|
normalizer = 1 |
939
|
|
|
if normalize: |
940
|
|
|
totals = (q_src + q_tar).values() |
941
|
|
|
if pval == 0: |
942
|
|
|
normalizer = len(totals) |
943
|
|
|
else: |
944
|
|
|
normalizer = sum(_**pval for _ in totals)**(1 / pval) |
945
|
|
|
|
946
|
|
|
if pval == float('inf'): |
|
|
|
|
947
|
|
|
# Chebyshev distance |
948
|
|
|
return max(diffs)/normalizer |
949
|
|
|
elif pval == 0: |
950
|
|
|
# This is the l_0 "norm" as developed by David Donoho |
951
|
|
|
return len(diffs) |
952
|
|
|
else: |
953
|
|
|
return sum(_**pval for _ in diffs)**(1 / pval)/normalizer |
954
|
|
|
|
955
|
|
|
|
956
|
|
|
def dist_minkowski(src, tar, qval=2, pval=1): |
957
|
|
|
"""Return Minkowski distance of two strings, normalized to [0, 1]. |
958
|
|
|
|
959
|
|
|
:param src: |
960
|
|
|
:param tar: |
961
|
|
|
:param qval2: |
962
|
|
|
:param pval: |
963
|
|
|
:return: |
964
|
|
|
""" |
965
|
|
|
return minkowski(src, tar, qval, pval, True) |
966
|
|
|
|
967
|
|
|
|
968
|
|
|
def sim_minkowski(src, tar, qval=2, pval=1): |
969
|
|
|
"""Return Minkowski similarity of two strings, normalized to [0, 1]. |
970
|
|
|
|
971
|
|
|
:param src: |
972
|
|
|
:param tar: |
973
|
|
|
:param qval2: |
974
|
|
|
:param pval: |
975
|
|
|
:return: |
976
|
|
|
""" |
977
|
|
|
return 1-minkowski(src, tar, qval, pval, True) |
978
|
|
|
|
979
|
|
|
|
980
|
|
|
def manhattan(src, tar, qval=2, normalize=False): |
981
|
|
|
"""Return the Manhattan distance between two strings. |
982
|
|
|
|
983
|
|
|
:param src: |
984
|
|
|
:param tar: |
985
|
|
|
:param qval: |
986
|
|
|
:return: |
987
|
|
|
""" |
988
|
|
|
return minkowski(src, tar, qval, 1, normalize) |
989
|
|
|
|
990
|
|
|
|
991
|
|
|
def dist_manhattan(src, tar, qval=2): |
992
|
|
|
"""Return the Manhattan distance between two strings, normalized to [0, 1]. |
993
|
|
|
|
994
|
|
|
This is identical to Canberra distance. |
995
|
|
|
|
996
|
|
|
:param src: |
997
|
|
|
:param tar: |
998
|
|
|
:param qval: |
999
|
|
|
:return: |
1000
|
|
|
""" |
1001
|
|
|
return manhattan(src, tar, qval, 1, True) |
|
|
|
|
1002
|
|
|
|
1003
|
|
|
|
1004
|
|
|
def sim_manhattan(src, tar, qval=2): |
1005
|
|
|
"""Return the Manhattan similarity of two strings, normalized to [0, 1]. |
1006
|
|
|
|
1007
|
|
|
:param src: |
1008
|
|
|
:param tar: |
1009
|
|
|
:param qval: |
1010
|
|
|
:return: |
1011
|
|
|
""" |
1012
|
|
|
return 1-manhattan(src, tar, qval, 1, True) |
|
|
|
|
1013
|
|
|
|
1014
|
|
|
|
1015
|
|
|
def euclidean(src, tar, qval=2, normalize=False): |
1016
|
|
|
"""Return the Euclidean distance between two strings. |
1017
|
|
|
|
1018
|
|
|
:param src: |
1019
|
|
|
:param tar: |
1020
|
|
|
:param qval: |
1021
|
|
|
:return: |
1022
|
|
|
""" |
1023
|
|
|
return minkowski(src, tar, qval, 2, normalize) |
1024
|
|
|
|
1025
|
|
|
|
1026
|
|
|
def dist_euclidean(src, tar, qval=2): |
1027
|
|
|
"""Return the Euclidean distance between two strings, normalized to [0, 1]. |
1028
|
|
|
|
1029
|
|
|
:param src: |
1030
|
|
|
:param tar: |
1031
|
|
|
:param qval: |
1032
|
|
|
:return: |
1033
|
|
|
""" |
1034
|
|
|
return euclidean(src, tar, qval, True) |
1035
|
|
|
|
1036
|
|
|
|
1037
|
|
|
def sim_euclidean(src, tar, qval=2): |
1038
|
|
|
"""Return the Euclidean similarity of two strings, normalized to [0, 1]. |
1039
|
|
|
|
1040
|
|
|
:param src: |
1041
|
|
|
:param tar: |
1042
|
|
|
:param qval: |
1043
|
|
|
:return: |
1044
|
|
|
""" |
1045
|
|
|
return 1-euclidean(src, tar, qval, True) |
1046
|
|
|
|
1047
|
|
|
|
1048
|
|
|
def chebyshev(src, tar, qval=2, normalize=False): |
1049
|
|
|
"""Return the Chebyshev distance between two strings. |
1050
|
|
|
|
1051
|
|
|
:param src: |
1052
|
|
|
:param tar: |
1053
|
|
|
:param qval: |
1054
|
|
|
:return: |
1055
|
|
|
""" |
1056
|
|
|
return minkowski(src, tar, qval, float('inf'), normalize) |
1057
|
|
|
|
1058
|
|
|
|
1059
|
|
|
def dist_chebyshev(src, tar, qval=2): |
1060
|
|
|
"""Return the Chebyshev distance between two strings, normalized to [0, 1]. |
1061
|
|
|
|
1062
|
|
|
:param src: |
1063
|
|
|
:param tar: |
1064
|
|
|
:param qval: |
1065
|
|
|
:return: |
1066
|
|
|
""" |
1067
|
|
|
return chebyshev(src, tar, qval, True) |
1068
|
|
|
|
1069
|
|
|
|
1070
|
|
|
def sim_chebyshev(src, tar, qval=2): |
1071
|
|
|
"""Return the Chebyshev similarity of two strings, normalized to [0, 1]. |
1072
|
|
|
|
1073
|
|
|
:param src: |
1074
|
|
|
:param tar: |
1075
|
|
|
:param qval: |
1076
|
|
|
:return: |
1077
|
|
|
""" |
1078
|
|
|
return 1 - chebyshev(src, tar, qval, True) |
1079
|
|
|
|
1080
|
|
|
|
1081
|
|
|
def sim_cosine(src, tar, qval=2): |
1082
|
|
|
r"""Return the cosine similarity of two strings. |
1083
|
|
|
|
1084
|
|
|
Cosine similarity (Ochiai coefficient) |
1085
|
|
|
|
1086
|
|
|
For two sets X and Y, the cosine similarity (Ochiai coefficient) is: |
1087
|
|
|
:math:`sim_{cosine}(X, Y) = \\frac{|X \\cap Y|}{\\sqrt{|X| \\cdot |Y|}}` |
1088
|
|
|
|
1089
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
1090
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
1091
|
|
|
version |
1092
|
|
|
:returns: cosine similarity |
1093
|
|
|
:rtype: float |
1094
|
|
|
|
1095
|
|
|
>>> sim_cosine('cat', 'hat') |
1096
|
|
|
0.5 |
1097
|
|
|
>>> sim_cosine('Niall', 'Neil') |
1098
|
|
|
0.3651483716701107 |
1099
|
|
|
>>> sim_cosine('aluminum', 'Catalan') |
1100
|
|
|
0.11785113019775793 |
1101
|
|
|
>>> sim_cosine('ATCG', 'TAGC') |
1102
|
|
|
0.0 |
1103
|
|
|
""" |
1104
|
|
|
if src == tar: |
1105
|
|
|
return 1.0 |
1106
|
|
|
if not src or not tar: |
1107
|
|
|
return 0.0 |
1108
|
|
|
|
1109
|
|
|
q_src, q_tar = _get_qgrams(src, tar, qval) |
1110
|
|
|
q_src_mag = sum(q_src.values()) |
1111
|
|
|
q_tar_mag = sum(q_tar.values()) |
1112
|
|
|
q_intersection_mag = sum((q_src & q_tar).values()) |
1113
|
|
|
|
1114
|
|
|
return q_intersection_mag / math.sqrt(q_src_mag * q_tar_mag) |
1115
|
|
|
|
1116
|
|
|
|
1117
|
|
|
def dist_cosine(src, tar, qval=2): |
1118
|
|
|
"""Return the cosine distance between two strings. |
1119
|
|
|
|
1120
|
|
|
Cosine distance |
1121
|
|
|
|
1122
|
|
|
Cosine distance is the complement of cosine similarity: |
1123
|
|
|
:math:`dist_{cosine} = 1 - sim_{cosine}` |
1124
|
|
|
|
1125
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
1126
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
1127
|
|
|
version |
1128
|
|
|
:returns: cosine distance |
1129
|
|
|
:rtype: float |
1130
|
|
|
|
1131
|
|
|
>>> dist_cosine('cat', 'hat') |
1132
|
|
|
0.5 |
1133
|
|
|
>>> dist_cosine('Niall', 'Neil') |
1134
|
|
|
0.6348516283298893 |
1135
|
|
|
>>> dist_cosine('aluminum', 'Catalan') |
1136
|
|
|
0.882148869802242 |
1137
|
|
|
>>> dist_cosine('ATCG', 'TAGC') |
1138
|
|
|
1.0 |
1139
|
|
|
""" |
1140
|
|
|
return 1 - sim_cosine(src, tar, qval) |
1141
|
|
|
|
1142
|
|
|
|
1143
|
|
|
def sim_strcmp95(src, tar, long_strings=False): |
|
|
|
|
1144
|
|
|
"""Return the strcmp95 similarity of two strings. |
1145
|
|
|
|
1146
|
|
|
strcmp95 similarity |
1147
|
|
|
|
1148
|
|
|
This is a Python translation of the C code for strcmp95: |
1149
|
|
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
1150
|
|
|
The above file is a US Government publication and, accordingly, |
1151
|
|
|
in the public domain. |
1152
|
|
|
|
1153
|
|
|
This is based on the Jaro-Winkler distance, but also attempts to correct |
1154
|
|
|
for some common typos and frequently confused characters. It is also |
1155
|
|
|
limited to uppercase ASCII characters, so it is appropriate to American |
1156
|
|
|
names, but not much else. |
1157
|
|
|
|
1158
|
|
|
:param str src, tar: two strings to be compared |
1159
|
|
|
:param bool long_strings: set to True to "Increase the probability of a |
1160
|
|
|
match when the number of matched characters is large. This option |
1161
|
|
|
allows for a little more tolerance when the strings are large. It is |
1162
|
|
|
not an appropriate test when comparing fixed length fields such as |
1163
|
|
|
phone and social security numbers." |
1164
|
|
|
:returns: strcmp95 similarity |
1165
|
|
|
:rtype: float |
1166
|
|
|
|
1167
|
|
|
>>> sim_strcmp95('cat', 'hat') |
1168
|
|
|
0.7777777777777777 |
1169
|
|
|
>>> sim_strcmp95('Niall', 'Neil') |
1170
|
|
|
0.8454999999999999 |
1171
|
|
|
>>> sim_strcmp95('aluminum', 'Catalan') |
1172
|
|
|
0.6547619047619048 |
1173
|
|
|
>>> sim_strcmp95('ATCG', 'TAGC') |
1174
|
|
|
0.8333333333333334 |
1175
|
|
|
""" |
1176
|
|
|
def _inrange(char): |
1177
|
|
|
"""Return True if char is in the range (0, 91).""" |
1178
|
|
|
return ord(char) > 0 and ord(char) < 91 |
1179
|
|
|
|
1180
|
|
|
ying = src.strip().upper() |
1181
|
|
|
yang = tar.strip().upper() |
1182
|
|
|
|
1183
|
|
|
if ying == yang: |
1184
|
|
|
return 1.0 |
1185
|
|
|
# If either string is blank - return - added in Version 2 |
1186
|
|
|
if not ying or not yang: |
1187
|
|
|
return 0.0 |
1188
|
|
|
|
1189
|
|
|
adjwt = defaultdict(int) |
1190
|
|
|
sp_mx = ( |
1191
|
|
|
('A', 'E'), ('A', 'I'), ('A', 'O'), ('A', 'U'), ('B', 'V'), ('E', 'I'), |
1192
|
|
|
('E', 'O'), ('E', 'U'), ('I', 'O'), ('I', 'U'), ('O', 'U'), ('I', 'Y'), |
1193
|
|
|
('E', 'Y'), ('C', 'G'), ('E', 'F'), ('W', 'U'), ('W', 'V'), ('X', 'K'), |
1194
|
|
|
('S', 'Z'), ('X', 'S'), ('Q', 'C'), ('U', 'V'), ('M', 'N'), ('L', 'I'), |
1195
|
|
|
('Q', 'O'), ('P', 'R'), ('I', 'J'), ('2', 'Z'), ('5', 'S'), ('8', 'B'), |
1196
|
|
|
('1', 'I'), ('1', 'L'), ('0', 'O'), ('0', 'Q'), ('C', 'K'), ('G', 'J') |
1197
|
|
|
) |
1198
|
|
|
|
1199
|
|
|
# Initialize the adjwt array on the first call to the function only. |
1200
|
|
|
# The adjwt array is used to give partial credit for characters that |
1201
|
|
|
# may be errors due to known phonetic or character recognition errors. |
1202
|
|
|
# A typical example is to match the letter "O" with the number "0" |
1203
|
|
|
for i in sp_mx: |
1204
|
|
|
adjwt[(i[0], i[1])] = 3 |
1205
|
|
|
adjwt[(i[1], i[0])] = 3 |
1206
|
|
|
|
1207
|
|
|
if len(ying) > len(yang): |
1208
|
|
|
search_range = len(ying) |
1209
|
|
|
minv = len(yang) |
1210
|
|
|
else: |
1211
|
|
|
search_range = len(yang) |
1212
|
|
|
minv = len(ying) |
1213
|
|
|
|
1214
|
|
|
# Blank out the flags |
1215
|
|
|
ying_flag = [0] * search_range |
1216
|
|
|
yang_flag = [0] * search_range |
1217
|
|
|
search_range = max(0, search_range // 2 - 1) |
1218
|
|
|
|
1219
|
|
|
# Looking only within the search range, count and flag the matched pairs. |
1220
|
|
|
num_com = 0 |
1221
|
|
|
yl1 = len(yang) - 1 |
1222
|
|
|
for i in range(len(ying)): |
|
|
|
|
1223
|
|
|
lowlim = (i - search_range) if (i >= search_range) else 0 |
1224
|
|
|
hilim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
1225
|
|
|
for j in range(lowlim, hilim+1): |
1226
|
|
|
if (yang_flag[j] == 0) and (yang[j] == ying[i]): |
1227
|
|
|
yang_flag[j] = 1 |
1228
|
|
|
ying_flag[i] = 1 |
1229
|
|
|
num_com += 1 |
1230
|
|
|
break |
1231
|
|
|
|
1232
|
|
|
# If no characters in common - return |
1233
|
|
|
if num_com == 0: |
1234
|
|
|
return 0.0 |
1235
|
|
|
|
1236
|
|
|
# Count the number of transpositions |
1237
|
|
|
k = n_trans = 0 |
1238
|
|
|
for i in range(len(ying)): |
|
|
|
|
1239
|
|
|
if ying_flag[i] != 0: |
1240
|
|
|
for j in range(k, len(yang)): |
1241
|
|
|
if yang_flag[j] != 0: |
1242
|
|
|
k = j + 1 |
1243
|
|
|
break |
1244
|
|
|
if ying[i] != yang[j]: |
|
|
|
|
1245
|
|
|
n_trans += 1 |
1246
|
|
|
n_trans = n_trans // 2 |
1247
|
|
|
|
1248
|
|
|
# Adjust for similarities in unmatched characters |
1249
|
|
|
n_simi = 0 |
1250
|
|
|
if minv > num_com: |
|
|
|
|
1251
|
|
|
for i in range(len(ying)): |
|
|
|
|
1252
|
|
|
if ying_flag[i] == 0 and _inrange(ying[i]): |
1253
|
|
|
for j in range(len(yang)): |
|
|
|
|
1254
|
|
|
if yang_flag[j] == 0 and _inrange(yang[j]): |
1255
|
|
|
if (ying[i], yang[j]) in adjwt: |
1256
|
|
|
n_simi += adjwt[(ying[i], yang[j])] |
1257
|
|
|
yang_flag[j] = 2 |
1258
|
|
|
break |
1259
|
|
|
num_sim = n_simi/10.0 + num_com |
1260
|
|
|
|
1261
|
|
|
# Main weight computation |
1262
|
|
|
weight = num_sim / len(ying) + num_sim / len(yang) + \ |
1263
|
|
|
(num_com - n_trans) / num_com |
1264
|
|
|
weight = weight / 3.0 |
1265
|
|
|
|
1266
|
|
|
# Continue to boost the weight if the strings are similar |
1267
|
|
|
if weight > 0.7: |
1268
|
|
|
|
1269
|
|
|
# Adjust for having up to the first 4 characters in common |
1270
|
|
|
j = 4 if (minv >= 4) else minv |
1271
|
|
|
i = 0 |
1272
|
|
|
while (i < j) and (ying[i] == yang[i]) and (not ying[i].isdigit()): |
1273
|
|
|
i += 1 |
1274
|
|
|
if i: |
1275
|
|
|
weight += i * 0.1 * (1.0 - weight) |
1276
|
|
|
|
1277
|
|
|
# Optionally adjust for long strings. |
1278
|
|
|
|
1279
|
|
|
# After agreeing beginning chars, at least two more must agree and |
1280
|
|
|
# the agreeing characters must be > .5 of remaining characters. |
1281
|
|
|
if (((long_strings) and (minv > 4) and (num_com > i+1) and |
1282
|
|
|
(2*num_com >= minv+i))): |
1283
|
|
|
if not ying[0].isdigit(): |
1284
|
|
|
weight += (1.0-weight) * ((num_com-i-1) / |
1285
|
|
|
(len(ying)+len(yang)-i*2+2)) |
1286
|
|
|
|
1287
|
|
|
return weight |
1288
|
|
|
|
1289
|
|
|
|
1290
|
|
|
def dist_strcmp95(src, tar, long_strings=False): |
1291
|
|
|
"""Return the strcmp95 distance between two strings. |
1292
|
|
|
|
1293
|
|
|
strcmp95 distance |
1294
|
|
|
|
1295
|
|
|
strcmp95 distance is 1 - strcmp95 similarity |
1296
|
|
|
|
1297
|
|
|
:param str src, tar: two strings to be compared |
1298
|
|
|
:param bool long_strings: set to True to "Increase the probability of a |
1299
|
|
|
match when the number of matched characters is large. This option |
1300
|
|
|
allows for a little more tolerance when the strings are large. It is |
1301
|
|
|
not an appropriate test when comparing fixed length fields such as |
1302
|
|
|
phone and social security numbers." |
1303
|
|
|
:returns: strcmp95 distance |
1304
|
|
|
:rtype: float |
1305
|
|
|
|
1306
|
|
|
>>> dist_strcmp95('cat', 'hat') |
1307
|
|
|
0.22222222222222232 |
1308
|
|
|
>>> dist_strcmp95('Niall', 'Neil') |
1309
|
|
|
0.15450000000000008 |
1310
|
|
|
>>> dist_strcmp95('aluminum', 'Catalan') |
1311
|
|
|
0.34523809523809523 |
1312
|
|
|
>>> dist_strcmp95('ATCG', 'TAGC') |
1313
|
|
|
0.16666666666666663 |
1314
|
|
|
""" |
1315
|
|
|
return 1 - sim_strcmp95(src, tar, long_strings) |
1316
|
|
|
|
1317
|
|
|
|
1318
|
|
|
def sim_jaro_winkler(src, tar, qval=1, mode='winkler', long_strings=False, |
|
|
|
|
1319
|
|
|
boost_threshold=0.7, scaling_factor=0.1): |
1320
|
|
|
"""Return the Jaro or Jaro-Winkler similarity of two strings. |
1321
|
|
|
|
1322
|
|
|
Jaro(-Winkler) distance |
1323
|
|
|
|
1324
|
|
|
This is Python based on the C code for strcmp95: |
1325
|
|
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
1326
|
|
|
The above file is a US Government publication and, accordingly, |
1327
|
|
|
in the public domain. |
1328
|
|
|
|
1329
|
|
|
:param str src, tar: two strings to be compared |
1330
|
|
|
:param int qval: the length of each q-gram (defaults to 1: character-wise |
1331
|
|
|
matching) |
1332
|
|
|
:param str mode: indicates which variant of this distance metric to |
1333
|
|
|
compute: |
1334
|
|
|
|
1335
|
|
|
- 'winkler' -- computes the Jaro-Winkler distance (default) which |
1336
|
|
|
increases the score for matches near the start of the word |
1337
|
|
|
- 'jaro' -- computes the Jaro distance |
1338
|
|
|
|
1339
|
|
|
The following arguments apply only when mode is 'winkler': |
1340
|
|
|
|
1341
|
|
|
:param bool long_strings: set to True to "Increase the probability of a |
1342
|
|
|
match when the number of matched characters is large. This option |
1343
|
|
|
allows for a little more tolerance when the strings are large. It is |
1344
|
|
|
not an appropriate test when comparing fixed length fields such as |
1345
|
|
|
phone and social security numbers." |
1346
|
|
|
:param float boost_threshold: a value between 0 and 1, below which the |
1347
|
|
|
Winkler boost is not applied (defaults to 0.7) |
1348
|
|
|
:param float scaling_factor: a value between 0 and 0.25, indicating by how |
1349
|
|
|
much to boost scores for matching prefixes (defaults to 0.1) |
1350
|
|
|
|
1351
|
|
|
:returns: Jaro or Jaro-Winkler similarity |
1352
|
|
|
:rtype: float |
1353
|
|
|
|
1354
|
|
|
>>> sim_jaro_winkler('cat', 'hat') |
1355
|
|
|
0.7777777777777777 |
1356
|
|
|
>>> sim_jaro_winkler('Niall', 'Neil') |
1357
|
|
|
0.8049999999999999 |
1358
|
|
|
>>> sim_jaro_winkler('aluminum', 'Catalan') |
1359
|
|
|
0.6011904761904762 |
1360
|
|
|
>>> sim_jaro_winkler('ATCG', 'TAGC') |
1361
|
|
|
0.8333333333333334 |
1362
|
|
|
|
1363
|
|
|
>>> sim_jaro_winkler('cat', 'hat', mode='jaro') |
1364
|
|
|
0.7777777777777777 |
1365
|
|
|
>>> sim_jaro_winkler('Niall', 'Neil', mode='jaro') |
1366
|
|
|
0.7833333333333333 |
1367
|
|
|
>>> sim_jaro_winkler('aluminum', 'Catalan', mode='jaro') |
1368
|
|
|
0.6011904761904762 |
1369
|
|
|
>>> sim_jaro_winkler('ATCG', 'TAGC', mode='jaro') |
1370
|
|
|
0.8333333333333334 |
1371
|
|
|
""" |
1372
|
|
|
if mode == 'winkler': |
1373
|
|
|
if boost_threshold > 1 or boost_threshold < 0: |
1374
|
|
|
raise ValueError('Unsupported boost_threshold assignment; ' + |
1375
|
|
|
'boost_threshold must be between 0 and 1.') |
1376
|
|
|
if scaling_factor > 0.25 or scaling_factor < 0: |
1377
|
|
|
raise ValueError('Unsupported scaling_factor assignment; ' + |
1378
|
|
|
'scaling_factor must be between 0 and 0.25.') |
1379
|
|
|
|
1380
|
|
|
if src == tar: |
1381
|
|
|
return 1.0 |
1382
|
|
|
|
1383
|
|
|
src = QGrams(src.strip(), qval).ordered_list |
1384
|
|
|
tar = QGrams(tar.strip(), qval).ordered_list |
1385
|
|
|
|
1386
|
|
|
lens = len(src) |
1387
|
|
|
lent = len(tar) |
1388
|
|
|
|
1389
|
|
|
# If either string is blank - return - added in Version 2 |
1390
|
|
|
if lens == 0 or lent == 0: |
1391
|
|
|
return 0.0 |
1392
|
|
|
|
1393
|
|
|
if lens > lent: |
1394
|
|
|
search_range = lens |
1395
|
|
|
minv = lent |
1396
|
|
|
else: |
1397
|
|
|
search_range = lent |
1398
|
|
|
minv = lens |
1399
|
|
|
|
1400
|
|
|
# Zero out the flags |
1401
|
|
|
src_flag = [0] * search_range |
1402
|
|
|
tar_flag = [0] * search_range |
1403
|
|
|
search_range = max(0, search_range//2 - 1) |
1404
|
|
|
|
1405
|
|
|
# Looking only within the search range, count and flag the matched pairs. |
1406
|
|
|
num_com = 0 |
1407
|
|
|
yl1 = lent - 1 |
1408
|
|
|
for i in range(lens): |
1409
|
|
|
lowlim = (i - search_range) if (i >= search_range) else 0 |
1410
|
|
|
hilim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
1411
|
|
|
for j in range(lowlim, hilim+1): |
1412
|
|
|
if (tar_flag[j] == 0) and (tar[j] == src[i]): |
1413
|
|
|
tar_flag[j] = 1 |
1414
|
|
|
src_flag[i] = 1 |
1415
|
|
|
num_com += 1 |
1416
|
|
|
break |
1417
|
|
|
|
1418
|
|
|
# If no characters in common - return |
1419
|
|
|
if num_com == 0: |
1420
|
|
|
return 0.0 |
1421
|
|
|
|
1422
|
|
|
# Count the number of transpositions |
1423
|
|
|
k = n_trans = 0 |
1424
|
|
|
for i in range(lens): |
1425
|
|
|
if src_flag[i] != 0: |
1426
|
|
|
for j in range(k, lent): |
1427
|
|
|
if tar_flag[j] != 0: |
1428
|
|
|
k = j + 1 |
1429
|
|
|
break |
1430
|
|
|
if src[i] != tar[j]: |
|
|
|
|
1431
|
|
|
n_trans += 1 |
1432
|
|
|
n_trans = n_trans // 2 |
1433
|
|
|
|
1434
|
|
|
# Main weight computation for Jaro distance |
1435
|
|
|
weight = num_com / lens + num_com / lent + (num_com - n_trans) / num_com |
1436
|
|
|
weight = weight / 3.0 |
1437
|
|
|
|
1438
|
|
|
# Continue to boost the weight if the strings are similar |
1439
|
|
|
# This is the Winkler portion of Jaro-Winkler distance |
1440
|
|
|
if mode == 'winkler' and weight > boost_threshold: |
1441
|
|
|
|
1442
|
|
|
# Adjust for having up to the first 4 characters in common |
1443
|
|
|
j = 4 if (minv >= 4) else minv |
1444
|
|
|
i = 0 |
1445
|
|
|
while (i < j) and (src[i] == tar[i]): |
1446
|
|
|
i += 1 |
1447
|
|
|
if i: |
1448
|
|
|
weight += i * scaling_factor * (1.0 - weight) |
1449
|
|
|
|
1450
|
|
|
# Optionally adjust for long strings. |
1451
|
|
|
|
1452
|
|
|
# After agreeing beginning chars, at least two more must agree and |
1453
|
|
|
# the agreeing characters must be > .5 of remaining characters. |
1454
|
|
|
if (((long_strings) and (minv > 4) and (num_com > i+1) and |
1455
|
|
|
(2*num_com >= minv+i))): |
1456
|
|
|
weight += (1.0-weight) * ((num_com-i-1) / (lens+lent-i*2+2)) |
1457
|
|
|
|
1458
|
|
|
return weight |
1459
|
|
|
|
1460
|
|
|
|
1461
|
|
|
def dist_jaro_winkler(src, tar, qval=1, mode='winkler', long_strings=False, |
|
|
|
|
1462
|
|
|
boost_threshold=0.7, scaling_factor=0.1): |
1463
|
|
|
"""Return the Jaro or Jaro-Winkler distance between two strings. |
1464
|
|
|
|
1465
|
|
|
Jaro(-Winkler) distance |
1466
|
|
|
|
1467
|
|
|
Jaro-Winkler distance is 1 - the Jaro-Winkler similarity |
1468
|
|
|
|
1469
|
|
|
:param str src, tar: two strings to be compared |
1470
|
|
|
:param int qval: the length of each q-gram (defaults to 1: character-wise |
1471
|
|
|
matching) |
1472
|
|
|
:param str mode: indicates which variant of this distance metric to |
1473
|
|
|
compute: |
1474
|
|
|
|
1475
|
|
|
- 'winkler' -- computes the Jaro-Winkler distance (default) which |
1476
|
|
|
increases the score for matches near the start of the word |
1477
|
|
|
- 'jaro' -- computes the Jaro distance |
1478
|
|
|
|
1479
|
|
|
The following arguments apply only when mode is 'winkler': |
1480
|
|
|
|
1481
|
|
|
:param bool long_strings: set to True to "Increase the probability of a |
1482
|
|
|
match when the number of matched characters is large. This option |
1483
|
|
|
allows for a little more tolerance when the strings are large. It is |
1484
|
|
|
not an appropriate test when comparing fixed length fields such as |
1485
|
|
|
phone and social security numbers." |
1486
|
|
|
:param float boost_threshold: a value between 0 and 1, below which the |
1487
|
|
|
Winkler boost is not applied (defaults to 0.7) |
1488
|
|
|
:param float scaling_factor: a value between 0 and 0.25, indicating by how |
1489
|
|
|
much to boost scores for matching prefixes (defaults to 0.1) |
1490
|
|
|
|
1491
|
|
|
:returns: Jaro or Jaro-Winkler distance |
1492
|
|
|
:rtype: float |
1493
|
|
|
|
1494
|
|
|
>>> dist_jaro_winkler('cat', 'hat') |
1495
|
|
|
0.22222222222222232 |
1496
|
|
|
>>> dist_jaro_winkler('Niall', 'Neil') |
1497
|
|
|
0.19500000000000006 |
1498
|
|
|
>>> dist_jaro_winkler('aluminum', 'Catalan') |
1499
|
|
|
0.39880952380952384 |
1500
|
|
|
>>> dist_jaro_winkler('ATCG', 'TAGC') |
1501
|
|
|
0.16666666666666663 |
1502
|
|
|
|
1503
|
|
|
>>> dist_jaro_winkler('cat', 'hat', mode='jaro') |
1504
|
|
|
0.22222222222222232 |
1505
|
|
|
>>> dist_jaro_winkler('Niall', 'Neil', mode='jaro') |
1506
|
|
|
0.21666666666666667 |
1507
|
|
|
>>> dist_jaro_winkler('aluminum', 'Catalan', mode='jaro') |
1508
|
|
|
0.39880952380952384 |
1509
|
|
|
>>> dist_jaro_winkler('ATCG', 'TAGC', mode='jaro') |
1510
|
|
|
0.16666666666666663 |
1511
|
|
|
""" |
1512
|
|
|
return 1 - sim_jaro_winkler(src, tar, qval, mode, long_strings, |
1513
|
|
|
boost_threshold, scaling_factor) |
1514
|
|
|
|
1515
|
|
|
|
1516
|
|
|
def lcsseq(src, tar): |
1517
|
|
|
"""Return the longest common subsequence of two strings. |
1518
|
|
|
|
1519
|
|
|
Longest common subsequence (LCSseq) |
1520
|
|
|
|
1521
|
|
|
Based on the dynamic programming algorithm from |
1522
|
|
|
http://rosettacode.org/wiki/Longest_common_subsequence#Dynamic_Programming_6 |
1523
|
|
|
This is licensed GFDL 1.2 |
1524
|
|
|
|
1525
|
|
|
Modifications include: |
1526
|
|
|
conversion to a numpy array in place of a list of lists |
1527
|
|
|
|
1528
|
|
|
:param str src, tar: two strings to be compared |
1529
|
|
|
:returns: the longes common subsequence |
1530
|
|
|
:rtype: str |
1531
|
|
|
|
1532
|
|
|
>>> lcsseq('cat', 'hat') |
1533
|
|
|
'at' |
1534
|
|
|
>>> lcsseq('Niall', 'Neil') |
1535
|
|
|
'Nil' |
1536
|
|
|
>>> lcsseq('aluminum', 'Catalan') |
1537
|
|
|
'aln' |
1538
|
|
|
>>> lcsseq('ATCG', 'TAGC') |
1539
|
|
|
'AC' |
1540
|
|
|
""" |
1541
|
|
|
# pylint: disable=no-member |
1542
|
|
|
lengths = np.zeros((len(src)+1, len(tar)+1), dtype=np.int) |
1543
|
|
|
# pylint: enable=no-member |
1544
|
|
|
|
1545
|
|
|
# row 0 and column 0 are initialized to 0 already |
1546
|
|
|
for i, src_char in enumerate(src): |
1547
|
|
|
for j, tar_char in enumerate(tar): |
1548
|
|
|
if src_char == tar_char: |
1549
|
|
|
lengths[i+1, j+1] = lengths[i, j] + 1 |
1550
|
|
|
else: |
1551
|
|
|
lengths[i+1, j+1] = max(lengths[i+1, j], lengths[i, j+1]) |
1552
|
|
|
|
1553
|
|
|
# read the substring out from the matrix |
1554
|
|
|
result = '' |
1555
|
|
|
i, j = len(src), len(tar) |
1556
|
|
|
while i != 0 and j != 0: |
1557
|
|
|
if lengths[i, j] == lengths[i-1, j]: |
1558
|
|
|
i -= 1 |
1559
|
|
|
elif lengths[i, j] == lengths[i, j-1]: |
1560
|
|
|
j -= 1 |
1561
|
|
|
else: |
1562
|
|
|
result = src[i-1] + result |
1563
|
|
|
i -= 1 |
1564
|
|
|
j -= 1 |
1565
|
|
|
return result |
1566
|
|
|
|
1567
|
|
|
|
1568
|
|
|
def sim_lcsseq(src, tar): |
1569
|
|
|
r"""Return the longest common subsequence similarity of two strings. |
1570
|
|
|
|
1571
|
|
|
Longest common subsequence similarity (:math:`sim_{LCSseq}`) |
1572
|
|
|
|
1573
|
|
|
This employs the LCSseq function to derive a similarity metric: |
1574
|
|
|
:math:`sim_{LCSseq}(s,t) = \\frac{|LCSseq(s,t)|}{max(|s|, |t|)}` |
1575
|
|
|
|
1576
|
|
|
:param str src, tar: two strings to be compared |
1577
|
|
|
:returns: LCSseq similarity |
1578
|
|
|
:rtype: float |
1579
|
|
|
|
1580
|
|
|
>>> sim_lcsseq('cat', 'hat') |
1581
|
|
|
0.6666666666666666 |
1582
|
|
|
>>> sim_lcsseq('Niall', 'Neil') |
1583
|
|
|
0.6 |
1584
|
|
|
>>> sim_lcsseq('aluminum', 'Catalan') |
1585
|
|
|
0.375 |
1586
|
|
|
>>> sim_lcsseq('ATCG', 'TAGC') |
1587
|
|
|
0.5 |
1588
|
|
|
""" |
1589
|
|
|
if src == tar: |
|
|
|
|
1590
|
|
|
return 1.0 |
1591
|
|
|
elif not src or not tar: |
1592
|
|
|
return 0.0 |
1593
|
|
|
return len(lcsseq(src, tar)) / max(len(src), len(tar)) |
1594
|
|
|
|
1595
|
|
|
|
1596
|
|
|
def dist_lcsseq(src, tar): |
1597
|
|
|
"""Return the longest common subsequence distance between two strings. |
1598
|
|
|
|
1599
|
|
|
Longest common subsequence distance (:math:`dist_{LCSseq}`) |
1600
|
|
|
|
1601
|
|
|
This employs the LCSseq function to derive a similarity metric: |
1602
|
|
|
:math:`dist_{LCSseq}(s,t) = 1 - sim_{LCSseq}(s,t)` |
1603
|
|
|
|
1604
|
|
|
:param str src, tar: two strings to be compared |
1605
|
|
|
:returns: LCSseq distance |
1606
|
|
|
:rtype: float |
1607
|
|
|
|
1608
|
|
|
>>> dist_lcsseq('cat', 'hat') |
1609
|
|
|
0.33333333333333337 |
1610
|
|
|
>>> dist_lcsseq('Niall', 'Neil') |
1611
|
|
|
0.4 |
1612
|
|
|
>>> dist_lcsseq('aluminum', 'Catalan') |
1613
|
|
|
0.625 |
1614
|
|
|
>>> dist_lcsseq('ATCG', 'TAGC') |
1615
|
|
|
0.5 |
1616
|
|
|
""" |
1617
|
|
|
return 1 - sim_lcsseq(src, tar) |
1618
|
|
|
|
1619
|
|
|
|
1620
|
|
|
def lcsstr(src, tar): |
1621
|
|
|
"""Return the longest common substring of two strings. |
1622
|
|
|
|
1623
|
|
|
Longest common substring (LCSstr) |
1624
|
|
|
|
1625
|
|
|
Based on the code from |
1626
|
|
|
https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Longest_common_substring#Python |
1627
|
|
|
This is licensed Creative Commons: Attribution-ShareAlike 3.0 |
1628
|
|
|
|
1629
|
|
|
Modifications include: |
1630
|
|
|
|
1631
|
|
|
- conversion to a numpy array in place of a list of lists |
1632
|
|
|
- conversion to Python 2/3-safe range from xrange via six |
1633
|
|
|
|
1634
|
|
|
:param str src, tar: two strings to be compared |
1635
|
|
|
:returns: the longes common substring |
1636
|
|
|
:rtype: float |
1637
|
|
|
|
1638
|
|
|
>>> lcsstr('cat', 'hat') |
1639
|
|
|
'at' |
1640
|
|
|
>>> lcsstr('Niall', 'Neil') |
1641
|
|
|
'N' |
1642
|
|
|
>>> lcsstr('aluminum', 'Catalan') |
1643
|
|
|
'al' |
1644
|
|
|
>>> lcsstr('ATCG', 'TAGC') |
1645
|
|
|
'A' |
1646
|
|
|
""" |
1647
|
|
|
# pylint: disable=no-member |
1648
|
|
|
lengths = np.zeros((len(src)+1, len(tar)+1), dtype=np.int) |
1649
|
|
|
# pylint: enable=no-member |
1650
|
|
|
longest, i_longest = 0, 0 |
1651
|
|
|
for i in range(1, len(src)+1): |
1652
|
|
|
for j in range(1, len(tar)+1): |
1653
|
|
|
if src[i-1] == tar[j-1]: |
1654
|
|
|
lengths[i, j] = lengths[i-1, j-1] + 1 |
1655
|
|
|
if lengths[i, j] > longest: |
1656
|
|
|
longest = lengths[i, j] |
1657
|
|
|
i_longest = i |
1658
|
|
|
else: |
1659
|
|
|
lengths[i, j] = 0 |
1660
|
|
|
return src[i_longest - longest:i_longest] |
1661
|
|
|
|
1662
|
|
|
|
1663
|
|
|
def sim_lcsstr(src, tar): |
1664
|
|
|
r"""Return the longest common substring similarity of two strings. |
1665
|
|
|
|
1666
|
|
|
Longest common substring similarity (:math:`sim_{LCSstr}`) |
1667
|
|
|
|
1668
|
|
|
This employs the LCS function to derive a similarity metric: |
1669
|
|
|
:math:`sim_{LCSstr}(s,t) = \\frac{|LCSstr(s,t)|}{max(|s|, |t|)}` |
1670
|
|
|
|
1671
|
|
|
:param str src, tar: two strings to be compared |
1672
|
|
|
:returns: LCSstr similarity |
1673
|
|
|
:rtype: float |
1674
|
|
|
|
1675
|
|
|
>>> sim_lcsstr('cat', 'hat') |
1676
|
|
|
0.6666666666666666 |
1677
|
|
|
>>> sim_lcsstr('Niall', 'Neil') |
1678
|
|
|
0.2 |
1679
|
|
|
>>> sim_lcsstr('aluminum', 'Catalan') |
1680
|
|
|
0.25 |
1681
|
|
|
>>> sim_lcsstr('ATCG', 'TAGC') |
1682
|
|
|
0.25 |
1683
|
|
|
""" |
1684
|
|
|
if src == tar: |
|
|
|
|
1685
|
|
|
return 1.0 |
1686
|
|
|
elif not src or not tar: |
1687
|
|
|
return 0.0 |
1688
|
|
|
return len(lcsstr(src, tar)) / max(len(src), len(tar)) |
1689
|
|
|
|
1690
|
|
|
|
1691
|
|
|
def dist_lcsstr(src, tar): |
1692
|
|
|
"""Return the longest common substring distance between two strings. |
1693
|
|
|
|
1694
|
|
|
Longest common substring distance (:math:`dist_{LCSstr}`) |
1695
|
|
|
|
1696
|
|
|
This employs the LCS function to derive a similarity metric: |
1697
|
|
|
:math:`dist_{LCSstr}(s,t) = 1 - sim_{LCSstr}(s,t)` |
1698
|
|
|
|
1699
|
|
|
:param str src, tar: two strings to be compared |
1700
|
|
|
:returns: LCSstr distance |
1701
|
|
|
:rtype: float |
1702
|
|
|
|
1703
|
|
|
>>> dist_lcsstr('cat', 'hat') |
1704
|
|
|
0.33333333333333337 |
1705
|
|
|
>>> dist_lcsstr('Niall', 'Neil') |
1706
|
|
|
0.8 |
1707
|
|
|
>>> dist_lcsstr('aluminum', 'Catalan') |
1708
|
|
|
0.75 |
1709
|
|
|
>>> dist_lcsstr('ATCG', 'TAGC') |
1710
|
|
|
0.75 |
1711
|
|
|
""" |
1712
|
|
|
return 1 - sim_lcsstr(src, tar) |
1713
|
|
|
|
1714
|
|
|
|
1715
|
|
|
def sim_ratcliff_obershelp(src, tar): |
1716
|
|
|
"""Return the Ratcliff-Obershelp similarity of two strings. |
1717
|
|
|
|
1718
|
|
|
Ratcliff-Obershelp similarity |
1719
|
|
|
|
1720
|
|
|
This follows the Ratcliff-Obershelp algorithm to derive a similarity |
1721
|
|
|
measure: |
1722
|
|
|
|
1723
|
|
|
1. Find the length of the longest common substring in src & tar. |
1724
|
|
|
2. Recurse on the strings to the left & right of each this substring |
1725
|
|
|
in src & tar. The base case is a 0 length common substring, in which |
1726
|
|
|
case, return 0. Otherwise, return the sum of the current longest |
1727
|
|
|
common substring and the left & right recursed sums. |
1728
|
|
|
3. Multiply this length by 2 and divide by the sum of the lengths of |
1729
|
|
|
src & tar. |
1730
|
|
|
|
1731
|
|
|
Cf. |
1732
|
|
|
http://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970 |
1733
|
|
|
|
1734
|
|
|
:param str src, tar: two strings to be compared |
1735
|
|
|
:returns: Ratcliff-Obserhelp similarity |
1736
|
|
|
:rtype: float |
1737
|
|
|
|
1738
|
|
|
>>> sim_ratcliff_obershelp('cat', 'hat') |
1739
|
|
|
0.66666666666666663 |
1740
|
|
|
>>> sim_ratcliff_obershelp('Niall', 'Neil') |
1741
|
|
|
0.66666666666666663 |
1742
|
|
|
>>> sim_ratcliff_obershelp('aluminum', 'Catalan') |
1743
|
|
|
0.40000000000000002 |
1744
|
|
|
>>> sim_ratcliff_obershelp('ATCG', 'TAGC') |
1745
|
|
|
0.5 |
1746
|
|
|
""" |
1747
|
|
|
def _lcsstr_stl(src, tar): |
1748
|
|
|
"""Return start positions & length for Ratcliff-Obershelp. |
1749
|
|
|
|
1750
|
|
|
Return the start position in the source string, start position in |
1751
|
|
|
the target string, and length of the longest common substring of |
1752
|
|
|
strings src and tar. |
1753
|
|
|
""" |
1754
|
|
|
# pylint: disable=no-member |
1755
|
|
|
lengths = np.zeros((len(src)+1, len(tar)+1), dtype=np.int) |
1756
|
|
|
# pylint: enable=no-member |
1757
|
|
|
longest, src_longest, tar_longest = 0, 0, 0 |
1758
|
|
|
for i in range(1, len(src)+1): |
1759
|
|
|
for j in range(1, len(tar)+1): |
1760
|
|
|
if src[i-1] == tar[j-1]: |
1761
|
|
|
lengths[i, j] = lengths[i-1, j-1] + 1 |
1762
|
|
|
if lengths[i, j] > longest: |
1763
|
|
|
longest = lengths[i, j] |
1764
|
|
|
src_longest = i |
1765
|
|
|
tar_longest = j |
1766
|
|
|
else: |
1767
|
|
|
lengths[i, j] = 0 |
1768
|
|
|
return (src_longest-longest, tar_longest-longest, longest) |
1769
|
|
|
|
1770
|
|
|
def _sstr_matches(src, tar): |
1771
|
|
|
"""Return the sum of substring match lengths. |
1772
|
|
|
|
1773
|
|
|
This follows the Ratcliff-Obershelp algorithm: |
1774
|
|
|
1. Find the length of the longest common substring in src & tar. |
1775
|
|
|
2. Recurse on the strings to the left & right of each this |
1776
|
|
|
substring in src & tar. |
1777
|
|
|
3. Base case is a 0 length common substring, in which case, |
1778
|
|
|
return 0. |
1779
|
|
|
4. Return the sum. |
1780
|
|
|
""" |
1781
|
|
|
src_start, tar_start, length = _lcsstr_stl(src, tar) |
1782
|
|
|
if length == 0: |
1783
|
|
|
return 0 |
1784
|
|
|
return (_sstr_matches(src[:src_start], tar[:tar_start]) + |
1785
|
|
|
length + |
1786
|
|
|
_sstr_matches(src[src_start+length:], tar[tar_start+length:])) |
1787
|
|
|
|
1788
|
|
|
if src == tar: |
|
|
|
|
1789
|
|
|
return 1.0 |
1790
|
|
|
elif not src or not tar: |
1791
|
|
|
return 0.0 |
1792
|
|
|
return 2*_sstr_matches(src, tar)/(len(src)+len(tar)) |
1793
|
|
|
|
1794
|
|
|
|
1795
|
|
|
def dist_ratcliff_obershelp(src, tar): |
1796
|
|
|
"""Return the Ratcliff-Obershelp distance between two strings. |
1797
|
|
|
|
1798
|
|
|
Ratcliff-Obershelp distance |
1799
|
|
|
|
1800
|
|
|
Ratcliff-Obsershelp distance the complement of Ratcliff-Obershelp |
1801
|
|
|
similarity: |
1802
|
|
|
:math:`dist_{Ratcliff-Obershelp} = 1 - sim_{Ratcliff-Obershelp}` |
1803
|
|
|
|
1804
|
|
|
:param str src, tar: two strings to be compared |
1805
|
|
|
:returns: Ratcliffe-Obershelp distance |
1806
|
|
|
:rtype: float |
1807
|
|
|
|
1808
|
|
|
>>> dist_ratcliff_obershelp('cat', 'hat') |
1809
|
|
|
0.33333333333333337 |
1810
|
|
|
>>> dist_ratcliff_obershelp('Niall', 'Neil') |
1811
|
|
|
0.33333333333333337 |
1812
|
|
|
>>> dist_ratcliff_obershelp('aluminum', 'Catalan') |
1813
|
|
|
0.59999999999999998 |
1814
|
|
|
>>> dist_ratcliff_obershelp('ATCG', 'TAGC') |
1815
|
|
|
0.5 |
1816
|
|
|
""" |
1817
|
|
|
return 1 - sim_ratcliff_obershelp(src, tar) |
1818
|
|
|
|
1819
|
|
|
|
1820
|
|
|
def mra_compare(src, tar): |
1821
|
|
|
"""Return the MRA comparison rating of two strings. |
1822
|
|
|
|
1823
|
|
|
Western Airlines Surname Match Rating Algorithm comparison rating |
1824
|
|
|
|
1825
|
|
|
A description of the algorithm can be found on page 18 of |
1826
|
|
|
https://archive.org/details/accessingindivid00moor |
1827
|
|
|
|
1828
|
|
|
:param str src, tar: two strings to be compared |
1829
|
|
|
:returns: MRA comparison rating |
1830
|
|
|
:rtype: int |
1831
|
|
|
|
1832
|
|
|
>>> mra_compare('cat', 'hat') |
1833
|
|
|
5 |
1834
|
|
|
>>> mra_compare('Niall', 'Neil') |
1835
|
|
|
6 |
1836
|
|
|
>>> mra_compare('aluminum', 'Catalan') |
1837
|
|
|
0 |
1838
|
|
|
>>> mra_compare('ATCG', 'TAGC') |
1839
|
|
|
5 |
1840
|
|
|
""" |
1841
|
|
|
if src == tar: |
1842
|
|
|
return 6 |
1843
|
|
|
if src == '' or tar == '': |
1844
|
|
|
return 0 |
1845
|
|
|
src = list(mra(src)) |
1846
|
|
|
tar = list(mra(tar)) |
1847
|
|
|
|
1848
|
|
|
if abs(len(src)-len(tar)) > 2: |
1849
|
|
|
return 0 |
1850
|
|
|
|
1851
|
|
|
length_sum = len(src) + len(tar) |
1852
|
|
|
if length_sum < 5: |
1853
|
|
|
min_rating = 5 |
1854
|
|
|
elif length_sum < 8: |
1855
|
|
|
min_rating = 4 |
1856
|
|
|
elif length_sum < 12: |
1857
|
|
|
min_rating = 3 |
1858
|
|
|
else: |
1859
|
|
|
min_rating = 2 |
1860
|
|
|
|
1861
|
|
|
for _ in range(2): |
1862
|
|
|
new_src = [] |
1863
|
|
|
new_tar = [] |
1864
|
|
|
minlen = min(len(src), len(tar)) |
1865
|
|
|
for i in range(minlen): |
1866
|
|
|
if src[i] != tar[i]: |
1867
|
|
|
new_src.append(src[i]) |
1868
|
|
|
new_tar.append(tar[i]) |
1869
|
|
|
src = new_src+src[minlen:] |
1870
|
|
|
tar = new_tar+tar[minlen:] |
1871
|
|
|
src.reverse() |
1872
|
|
|
tar.reverse() |
1873
|
|
|
|
1874
|
|
|
similarity = 6 - max(len(src), len(tar)) |
1875
|
|
|
|
1876
|
|
|
if similarity >= min_rating: |
1877
|
|
|
return similarity |
1878
|
|
|
return 0 |
1879
|
|
|
|
1880
|
|
|
|
1881
|
|
|
def sim_mra(src, tar): |
1882
|
|
|
"""Return the normalized MRA similarity of two strings. |
1883
|
|
|
|
1884
|
|
|
Normalized Match Rating Algorithm similarity |
1885
|
|
|
|
1886
|
|
|
This is the MRA normalized to :math:`[0, 1]`, given that MRA itself is |
1887
|
|
|
constrained to the range :math:`[0, 6]`. |
1888
|
|
|
|
1889
|
|
|
:param str src, tar: two strings to be compared |
1890
|
|
|
:returns: normalized MRA similarity |
1891
|
|
|
:rtype: float |
1892
|
|
|
|
1893
|
|
|
>>> sim_mra('cat', 'hat') |
1894
|
|
|
0.8333333333333334 |
1895
|
|
|
>>> sim_mra('Niall', 'Neil') |
1896
|
|
|
1.0 |
1897
|
|
|
>>> sim_mra('aluminum', 'Catalan') |
1898
|
|
|
0.0 |
1899
|
|
|
>>> sim_mra('ATCG', 'TAGC') |
1900
|
|
|
0.8333333333333334 |
1901
|
|
|
""" |
1902
|
|
|
return mra_compare(src, tar)/6 |
1903
|
|
|
|
1904
|
|
|
|
1905
|
|
|
def dist_mra(src, tar): |
1906
|
|
|
"""Return the normalized MRA distance between two strings. |
1907
|
|
|
|
1908
|
|
|
Normalized Match Rating Algorithm distance |
1909
|
|
|
|
1910
|
|
|
MRA distance is the complement of MRA similarity: |
1911
|
|
|
:math:`dist_{MRA} = 1 - sim_{MRA}` |
1912
|
|
|
|
1913
|
|
|
:param str src, tar: two strings to be compared |
1914
|
|
|
:returns: normalized MRA distance |
1915
|
|
|
:rtype: float |
1916
|
|
|
|
1917
|
|
|
>>> dist_mra('cat', 'hat') |
1918
|
|
|
0.16666666666666663 |
1919
|
|
|
>>> dist_mra('Niall', 'Neil') |
1920
|
|
|
0.0 |
1921
|
|
|
>>> dist_mra('aluminum', 'Catalan') |
1922
|
|
|
1.0 |
1923
|
|
|
>>> dist_mra('ATCG', 'TAGC') |
1924
|
|
|
0.16666666666666663 |
1925
|
|
|
""" |
1926
|
|
|
return 1 - sim_mra(src, tar) |
1927
|
|
|
|
1928
|
|
|
|
1929
|
|
|
def dist_compression(src, tar, compressor='bz2', probs=None): |
1930
|
|
|
"""Return the normalized compression distance between two strings. |
1931
|
|
|
|
1932
|
|
|
Normalized compression distance (NCD) |
1933
|
|
|
|
1934
|
|
|
Cf. |
1935
|
|
|
https://en.wikipedia.org/wiki/Normalized_compression_distance#Normalized_compression_distance |
1936
|
|
|
|
1937
|
|
|
:param str src, tar: two strings to be compared |
1938
|
|
|
:param str compressor: a compression scheme to use for the similarity |
1939
|
|
|
calculation, from the following: |
1940
|
|
|
|
1941
|
|
|
- `zlib` -- standard zlib/gzip |
1942
|
|
|
- `bz2` -- bzip2 (default) |
1943
|
|
|
- `lzma` -- Lempel–Ziv–Markov chain algorithm |
1944
|
|
|
- `arith` -- arithmetic coding |
1945
|
|
|
- `rle` -- run-length encoding |
1946
|
|
|
- `bwtrle` -- Burrows-Wheeler transform followed by run-length |
1947
|
|
|
encoding |
1948
|
|
|
|
1949
|
|
|
:param doct probs: a dictionary trained with ac_train (for the arith |
1950
|
|
|
compressor only) |
1951
|
|
|
:returns: compression distance |
1952
|
|
|
:rtype: float |
1953
|
|
|
|
1954
|
|
|
>>> dist_compression('cat', 'hat') |
1955
|
|
|
0.08 |
1956
|
|
|
>>> dist_compression('Niall', 'Neil') |
1957
|
|
|
0.037037037037037035 |
1958
|
|
|
>>> dist_compression('aluminum', 'Catalan') |
1959
|
|
|
0.20689655172413793 |
1960
|
|
|
>>> dist_compression('ATCG', 'TAGC') |
1961
|
|
|
0.037037037037037035 |
1962
|
|
|
|
1963
|
|
|
>>> dist_compression('Niall', 'Neil', compressor='zlib') |
1964
|
|
|
0.45454545454545453 |
1965
|
|
|
>>> dist_compression('Niall', 'Neil', compressor='bz2') |
1966
|
|
|
0.037037037037037035 |
1967
|
|
|
>>> dist_compression('Niall', 'Neil', compressor='lzma') |
1968
|
|
|
0.16 |
1969
|
|
|
>>> dist_compression('Niall', 'Neil', compressor='arith') |
1970
|
|
|
0.6875 |
1971
|
|
|
>>> dist_compression('Niall', 'Neil', compressor='rle') |
1972
|
|
|
1.0 |
1973
|
|
|
>>> dist_compression('Niall', 'Neil', compressor='bwtrle') |
1974
|
|
|
0.8333333333333334 |
1975
|
|
|
""" |
1976
|
|
|
if src == tar: |
1977
|
|
|
return 0.0 |
1978
|
|
|
|
1979
|
|
|
if compressor not in {'arith', 'rle', 'bwtrle'}: |
1980
|
|
|
src = src.encode('utf-8') |
1981
|
|
|
tar = tar.encode('utf-8') |
1982
|
|
|
|
1983
|
|
|
if compressor == 'bz2': |
1984
|
|
|
src_comp = codecs.encode(src, 'bz2_codec')[15:] |
1985
|
|
|
tar_comp = codecs.encode(tar, 'bz2_codec')[15:] |
1986
|
|
|
concat_comp = codecs.encode(src+tar, 'bz2_codec')[15:] |
1987
|
|
|
concat_comp2 = codecs.encode(tar+src, 'bz2_codec')[15:] |
1988
|
|
|
elif compressor == 'lzma': |
1989
|
|
|
if 'lzma' in sys.modules: |
1990
|
|
|
src_comp = lzma.compress(src)[14:] |
1991
|
|
|
tar_comp = lzma.compress(tar)[14:] |
1992
|
|
|
concat_comp = lzma.compress(src+tar)[14:] |
1993
|
|
|
concat_comp2 = lzma.compress(tar+src)[14:] |
1994
|
|
|
else: # pragma: no cover |
1995
|
|
|
raise ValueError('Install the PylibLZMA module in order to use ' + |
1996
|
|
|
'lzma compression similarity') |
1997
|
|
|
elif compressor == 'arith': |
1998
|
|
|
if probs is None: |
1999
|
|
|
# lacking a reasonable dictionary, train on the strings themselves |
2000
|
|
|
probs = ac_train(src+tar) |
2001
|
|
|
src_comp = ac_encode(src, probs)[1] |
2002
|
|
|
tar_comp = ac_encode(tar, probs)[1] |
2003
|
|
|
concat_comp = ac_encode(src+tar, probs)[1] |
2004
|
|
|
concat_comp2 = ac_encode(tar+src, probs)[1] |
2005
|
|
|
return ((min(concat_comp, concat_comp2) - min(src_comp, tar_comp)) / |
2006
|
|
|
max(src_comp, tar_comp)) |
2007
|
|
|
elif compressor in {'rle', 'bwtrle'}: |
2008
|
|
|
src_comp = rle_encode(src, (compressor == 'bwtrle')) |
2009
|
|
|
tar_comp = rle_encode(tar, (compressor == 'bwtrle')) |
2010
|
|
|
concat_comp = rle_encode(src+tar, (compressor == 'bwtrle')) |
2011
|
|
|
concat_comp2 = rle_encode(tar+src, (compressor == 'bwtrle')) |
2012
|
|
|
else: # zlib |
2013
|
|
|
src_comp = codecs.encode(src, 'zlib_codec')[2:] |
2014
|
|
|
tar_comp = codecs.encode(tar, 'zlib_codec')[2:] |
2015
|
|
|
concat_comp = codecs.encode(src+tar, 'zlib_codec')[2:] |
2016
|
|
|
concat_comp2 = codecs.encode(tar+src, 'zlib_codec')[2:] |
2017
|
|
|
return ((min(len(concat_comp), len(concat_comp2)) - |
2018
|
|
|
min(len(src_comp), len(tar_comp))) / |
2019
|
|
|
max(len(src_comp), len(tar_comp))) |
2020
|
|
|
|
2021
|
|
|
|
2022
|
|
|
def sim_compression(src, tar, compressor='bz2', probs=None): |
2023
|
|
|
"""Return the normalized compression similarity of two strings. |
2024
|
|
|
|
2025
|
|
|
Normalized compression similarity (NCS) |
2026
|
|
|
|
2027
|
|
|
Normalized compression similarity is the complement of normalized |
2028
|
|
|
compression distance: |
2029
|
|
|
:math:`sim_{NCS} = 1 - dist_{NCD}` |
2030
|
|
|
|
2031
|
|
|
:param str src, tar: two strings to be compared |
2032
|
|
|
:param str compressor: a compression scheme to use for the similarity |
2033
|
|
|
calculation: |
2034
|
|
|
|
2035
|
|
|
- `zlib` -- standard zlib/gzip |
2036
|
|
|
- `bz2` -- bzip2 (default) |
2037
|
|
|
- `lzma` -- Lempel–Ziv–Markov chain algorithm |
2038
|
|
|
- `arith` -- arithmetic coding |
2039
|
|
|
- `rle` -- run-length encoding |
2040
|
|
|
- `bwtrle` -- Burrows-Wheeler transform followed by run-length |
2041
|
|
|
encoding |
2042
|
|
|
|
2043
|
|
|
:param dict probs: a dictionary trained with ac_train (for the arith |
2044
|
|
|
compressor only) |
2045
|
|
|
:returns: compression similarity |
2046
|
|
|
:rtype: float |
2047
|
|
|
|
2048
|
|
|
>>> sim_compression('cat', 'hat') |
2049
|
|
|
0.92 |
2050
|
|
|
>>> sim_compression('Niall', 'Neil') |
2051
|
|
|
0.962962962962963 |
2052
|
|
|
>>> sim_compression('aluminum', 'Catalan') |
2053
|
|
|
0.7931034482758621 |
2054
|
|
|
>>> sim_compression('ATCG', 'TAGC') |
2055
|
|
|
0.962962962962963 |
2056
|
|
|
|
2057
|
|
|
>>> sim_compression('Niall', 'Neil', compressor='zlib') |
2058
|
|
|
0.5454545454545454 |
2059
|
|
|
>>> sim_compression('Niall', 'Neil', compressor='bz2') |
2060
|
|
|
0.962962962962963 |
2061
|
|
|
>>> sim_compression('Niall', 'Neil', compressor='lzma') |
2062
|
|
|
0.84 |
2063
|
|
|
>>> sim_compression('Niall', 'Neil', compressor='arith') |
2064
|
|
|
0.3125 |
2065
|
|
|
>>> sim_compression('Niall', 'Neil', compressor='rle') |
2066
|
|
|
0.0 |
2067
|
|
|
>>> sim_compression('Niall', 'Neil', compressor='bwtrle') |
2068
|
|
|
0.16666666666666663 |
2069
|
|
|
""" |
2070
|
|
|
return 1 - dist_compression(src, tar, compressor, probs) |
2071
|
|
|
|
2072
|
|
|
|
2073
|
|
|
def sim_monge_elkan(src, tar, sim_func=sim_levenshtein, symmetric=False): |
2074
|
|
|
"""Return the Monge-Elkan similarity of two strings. |
2075
|
|
|
|
2076
|
|
|
Monge-Elkan similarity |
2077
|
|
|
|
2078
|
|
|
Monge-Elkan is defined in: |
2079
|
|
|
Monge, Alvaro E. and Charles P. Elkan. 1996. "The field matching problem: |
2080
|
|
|
Algorithms and applications." KDD-9 Proceedings. |
2081
|
|
|
http://www.aaai.org/Papers/KDD/1996/KDD96-044.pdf |
2082
|
|
|
|
2083
|
|
|
Note: Monge-Elkan is NOT a symmetric similarity algoritm. Thus, the |
2084
|
|
|
similarity of src to tar is not necessarily equal to the similarity of |
2085
|
|
|
tar to src. If the sym argument is True, a symmetric value is calculated, |
2086
|
|
|
at the cost of doubling the computation time (since the |
2087
|
|
|
:math:`sim_{Monge-Elkan}(src, tar)` and |
2088
|
|
|
:math:`sim_{Monge-Elkan}(tar, src)` are both calculated and then averaged). |
2089
|
|
|
|
2090
|
|
|
:param str src, tar: two strings to be compared |
2091
|
|
|
:param function sim_func: the internal similarity metric to emply |
2092
|
|
|
:param bool symmetric: return a symmetric similarity measure |
2093
|
|
|
:returns: Monge-Elkan similarity |
2094
|
|
|
:rtype: float |
2095
|
|
|
|
2096
|
|
|
>>> sim_monge_elkan('cat', 'hat') |
2097
|
|
|
0.75 |
2098
|
|
|
>>> sim_monge_elkan('Niall', 'Neil') |
2099
|
|
|
0.66666666666666663 |
2100
|
|
|
>>> sim_monge_elkan('aluminum', 'Catalan') |
2101
|
|
|
0.3888888888888889 |
2102
|
|
|
>>> sim_monge_elkan('ATCG', 'TAGC') |
2103
|
|
|
0.5 |
2104
|
|
|
""" |
2105
|
|
|
if src == tar: |
2106
|
|
|
return 1.0 |
2107
|
|
|
|
2108
|
|
|
q_src = sorted(QGrams(src).elements()) |
2109
|
|
|
q_tar = sorted(QGrams(tar).elements()) |
2110
|
|
|
|
2111
|
|
|
if not q_src or not q_tar: |
2112
|
|
|
return 0.0 |
2113
|
|
|
|
2114
|
|
|
sum_of_maxes = 0 |
2115
|
|
|
for q_s in q_src: |
2116
|
|
|
max_sim = float('-inf') |
2117
|
|
|
for q_t in q_tar: |
2118
|
|
|
max_sim = max(max_sim, sim_func(q_s, q_t)) |
2119
|
|
|
sum_of_maxes += max_sim |
2120
|
|
|
sim_em = sum_of_maxes / len(q_src) |
2121
|
|
|
|
2122
|
|
|
if symmetric: |
2123
|
|
|
sim_em = (sim_em + sim_monge_elkan(tar, src, sim, False))/2 |
2124
|
|
|
|
2125
|
|
|
return sim_em |
2126
|
|
|
|
2127
|
|
|
|
2128
|
|
|
def dist_monge_elkan(src, tar, sim_func=sim_levenshtein, symmetric=False): |
2129
|
|
|
"""Return the Monge-Elkan distance between two strings. |
2130
|
|
|
|
2131
|
|
|
Monge-Elkan distance |
2132
|
|
|
|
2133
|
|
|
Monge-Elkan is defined in: |
2134
|
|
|
Monge, Alvaro E. and Charles P. Elkan. 1996. "The field matching problem: |
2135
|
|
|
Algorithms and applications." KDD-9 Proceedings. |
2136
|
|
|
http://www.aaai.org/Papers/KDD/1996/KDD96-044.pdf |
2137
|
|
|
|
2138
|
|
|
Note: Monge-Elkan is NOT a symmetric similarity algoritm. Thus, the |
2139
|
|
|
distance between src and tar is not necessarily equal to the distance |
2140
|
|
|
between tar and src. If the sym argument is True, a symmetric value is |
2141
|
|
|
calculated, at the cost of doubling the computation time (since the |
2142
|
|
|
:math:`sim_{Monge-Elkan}(src, tar)` and :math:`sim_{Monge-Elkan}(tar, src)` |
2143
|
|
|
are both calculated and then averaged). |
2144
|
|
|
|
2145
|
|
|
:param str src, tar: two strings to be compared |
2146
|
|
|
:param function sim_func: the internal similarity metric to emply |
2147
|
|
|
:param bool symmetric: return a symmetric similarity measure |
2148
|
|
|
:returns: Monge-Elkan distance |
2149
|
|
|
:rtype: float |
2150
|
|
|
|
2151
|
|
|
>>> dist_monge_elkan('cat', 'hat') |
2152
|
|
|
0.25 |
2153
|
|
|
>>> dist_monge_elkan('Niall', 'Neil') |
2154
|
|
|
0.33333333333333337 |
2155
|
|
|
>>> dist_monge_elkan('aluminum', 'Catalan') |
2156
|
|
|
0.61111111111111116 |
2157
|
|
|
>>> dist_monge_elkan('ATCG', 'TAGC') |
2158
|
|
|
0.5 |
2159
|
|
|
""" |
2160
|
|
|
return 1 - sim_monge_elkan(src, tar, sim_func, symmetric) |
2161
|
|
|
|
2162
|
|
|
|
2163
|
|
|
def sim_ident(src, tar): |
2164
|
|
|
"""Return the identity similarity of two strings. |
2165
|
|
|
|
2166
|
|
|
Identity similarity |
2167
|
|
|
|
2168
|
|
|
This is 1 if the two strings are identical, otherwise 0. |
2169
|
|
|
|
2170
|
|
|
:param str src, tar: two strings to be compared |
2171
|
|
|
:returns: identity similarity |
2172
|
|
|
:rtype: int |
2173
|
|
|
|
2174
|
|
|
>>> sim_ident('cat', 'hat') |
2175
|
|
|
0 |
2176
|
|
|
>>> sim_ident('cat', 'cat') |
2177
|
|
|
1 |
2178
|
|
|
""" |
2179
|
|
|
return int(src == tar) |
2180
|
|
|
|
2181
|
|
|
|
2182
|
|
|
def dist_ident(src, tar): |
2183
|
|
|
"""Return the identity distance between two strings. |
2184
|
|
|
|
2185
|
|
|
Identity distance |
2186
|
|
|
|
2187
|
|
|
This is 0 if the two strings are identical, otherwise 1, i.e. |
2188
|
|
|
:math:`dist_{identity} = 1 - sim_{identity}` |
2189
|
|
|
|
2190
|
|
|
:param str src, tar: two strings to be compared |
2191
|
|
|
:returns: indentity distance |
2192
|
|
|
:rtype: int |
2193
|
|
|
|
2194
|
|
|
>>> dist_ident('cat', 'hat') |
2195
|
|
|
1 |
2196
|
|
|
>>> dist_ident('cat', 'cat') |
2197
|
|
|
0 |
2198
|
|
|
""" |
2199
|
|
|
return 1 - sim_ident(src, tar) |
2200
|
|
|
|
2201
|
|
|
|
2202
|
|
|
def sim_matrix(src, tar, mat=None, mismatch_cost=0, match_cost=1, |
|
|
|
|
2203
|
|
|
symmetric=True, alphabet=None): |
2204
|
|
|
"""Return the matrix similarity of two strings. |
2205
|
|
|
|
2206
|
|
|
Matrix similarity |
2207
|
|
|
|
2208
|
|
|
With the default parameters, this is identical to sim_ident. |
2209
|
|
|
It is possible for sim_matrix to return values outside of the range |
2210
|
|
|
:math:`[0, 1]`, if values outside that range are present in mat, |
2211
|
|
|
mismatch_cost, or match_cost. |
2212
|
|
|
|
2213
|
|
|
:param str src, tar: two strings to be compared |
2214
|
|
|
:param dict mat: a dict mapping tuples to costs; the tuples are (src, tar) |
2215
|
|
|
pairs of symbols from the alphabet parameter |
2216
|
|
|
:param float mismatch_cost: the value returned if (src, tar) is absent from |
2217
|
|
|
mat when src does not equal tar |
2218
|
|
|
:param float match_cost: the value returned if (src, tar) is absent from |
2219
|
|
|
mat when src equals tar |
2220
|
|
|
:param bool symmetric: True if the cost of src not matching tar is |
2221
|
|
|
identical to the cost of tar not matching src; in this case, the values |
2222
|
|
|
in mat need only contain (src, tar) or (tar, src), not both |
2223
|
|
|
:param str alphabet: a collection of tokens from which src and tar are |
2224
|
|
|
drawn; if this is defined a ValueError is raised if either tar or src |
2225
|
|
|
is not found in alphabet |
2226
|
|
|
:returns: matrix similarity |
2227
|
|
|
:rtype: float |
2228
|
|
|
|
2229
|
|
|
>>> sim_matrix('cat', 'hat') |
2230
|
|
|
0 |
2231
|
|
|
>>> sim_matrix('hat', 'hat') |
2232
|
|
|
1 |
2233
|
|
|
""" |
2234
|
|
|
if alphabet: |
2235
|
|
|
alphabet = tuple(alphabet) |
2236
|
|
|
for i in src: |
2237
|
|
|
if i not in alphabet: |
2238
|
|
|
raise ValueError('src value not in alphabet') |
2239
|
|
|
for i in tar: |
2240
|
|
|
if i not in alphabet: |
2241
|
|
|
raise ValueError('tar value not in alphabet') |
2242
|
|
|
|
2243
|
|
|
if src == tar: |
2244
|
|
|
if mat and (src, src) in mat: |
2245
|
|
|
return mat[(src, src)] |
2246
|
|
|
return match_cost |
2247
|
|
|
if mat and (src, tar) in mat: |
|
|
|
|
2248
|
|
|
return mat[(src, tar)] |
2249
|
|
|
elif symmetric and mat and (tar, src) in mat: |
2250
|
|
|
return mat[(tar, src)] |
2251
|
|
|
return mismatch_cost |
2252
|
|
|
|
2253
|
|
|
|
2254
|
|
View Code Duplication |
def needleman_wunsch(src, tar, gap_cost=1, sim_func=sim_ident): |
|
|
|
|
2255
|
|
|
"""Return the Needleman-Wunsch score of two strings. |
2256
|
|
|
|
2257
|
|
|
Needleman-Wunsch score |
2258
|
|
|
|
2259
|
|
|
This is the standard edit distance measure. |
2260
|
|
|
|
2261
|
|
|
Cf. https://en.wikipedia.org/wiki/Needleman–Wunsch_algorithm |
2262
|
|
|
|
2263
|
|
|
Cf. |
2264
|
|
|
http://csb.stanford.edu/class/public/readings/Bioinformatics_I_Lecture6/Needleman_Wunsch_JMB_70_Global_alignment.pdf |
2265
|
|
|
|
2266
|
|
|
:param str src, tar: two strings to be compared |
2267
|
|
|
:param float gap_cost: the cost of an alignment gap (1 by default) |
2268
|
|
|
:param function sim_func: a function that returns the similarity of two |
2269
|
|
|
characters (identity similarity by default) |
2270
|
|
|
:returns: Needleman-Wunsch score |
2271
|
|
|
:rtype: int (in fact dependent on the gap_cost & return value of sim_func) |
2272
|
|
|
|
2273
|
|
|
>>> needleman_wunsch('cat', 'hat') |
2274
|
|
|
2.0 |
2275
|
|
|
>>> needleman_wunsch('Niall', 'Neil') |
2276
|
|
|
1.0 |
2277
|
|
|
>>> needleman_wunsch('aluminum', 'Catalan') |
2278
|
|
|
-1.0 |
2279
|
|
|
>>> needleman_wunsch('ATCG', 'TAGC') |
2280
|
|
|
0.0 |
2281
|
|
|
""" |
2282
|
|
|
# pylint: disable=no-member |
2283
|
|
|
d_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.float) |
2284
|
|
|
# pylint: enable=no-member |
2285
|
|
|
|
2286
|
|
|
for i in range(len(src)+1): |
2287
|
|
|
d_mat[i, 0] = -(i * gap_cost) |
2288
|
|
|
for j in range(len(tar)+1): |
2289
|
|
|
d_mat[0, j] = -(j * gap_cost) |
2290
|
|
|
for i in range(1, len(src)+1): |
2291
|
|
|
for j in range(1, len(tar)+1): |
2292
|
|
|
match = d_mat[i-1, j-1] + sim_func(src[i-1], tar[j-1]) |
2293
|
|
|
delete = d_mat[i-1, j] - gap_cost |
2294
|
|
|
insert = d_mat[i, j-1] - gap_cost |
2295
|
|
|
d_mat[i, j] = max(match, delete, insert) |
2296
|
|
|
return d_mat[d_mat.shape[0]-1, d_mat.shape[1]-1] |
2297
|
|
|
|
2298
|
|
|
|
2299
|
|
View Code Duplication |
def smith_waterman(src, tar, gap_cost=1, sim_func=sim_ident): |
|
|
|
|
2300
|
|
|
"""Return the Smith-Waterman score of two strings. |
2301
|
|
|
|
2302
|
|
|
Smith-Waterman score |
2303
|
|
|
|
2304
|
|
|
This is the standard edit distance measure. |
2305
|
|
|
|
2306
|
|
|
Cf. https://en.wikipedia.org/wiki/Smith–Waterman_algorithm |
2307
|
|
|
|
2308
|
|
|
:param str src, tar: two strings to be compared |
2309
|
|
|
:param float gap_cost: the cost of an alignment gap (1 by default) |
2310
|
|
|
:param function sim_func: a function that returns the similarity of two |
2311
|
|
|
characters (identity similarity by default) |
2312
|
|
|
:returns: Smith-Waterman score |
2313
|
|
|
:rtype: int (in fact dependent on the gap_cost & return value of sim_func) |
2314
|
|
|
|
2315
|
|
|
>>> smith_waterman('cat', 'hat') |
2316
|
|
|
2.0 |
2317
|
|
|
>>> smith_waterman('Niall', 'Neil') |
2318
|
|
|
1.0 |
2319
|
|
|
>>> smith_waterman('aluminum', 'Catalan') |
2320
|
|
|
0.0 |
2321
|
|
|
>>> smith_waterman('ATCG', 'TAGC') |
2322
|
|
|
1.0 |
2323
|
|
|
""" |
2324
|
|
|
# pylint: disable=no-member |
2325
|
|
|
d_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.float) |
2326
|
|
|
# pylint: enable=no-member |
2327
|
|
|
|
2328
|
|
|
for i in range(len(src)+1): |
2329
|
|
|
d_mat[i, 0] = 0 |
2330
|
|
|
for j in range(len(tar)+1): |
2331
|
|
|
d_mat[0, j] = 0 |
2332
|
|
|
for i in range(1, len(src)+1): |
2333
|
|
|
for j in range(1, len(tar)+1): |
2334
|
|
|
match = d_mat[i-1, j-1] + sim_func(src[i-1], tar[j-1]) |
2335
|
|
|
delete = d_mat[i-1, j] - gap_cost |
2336
|
|
|
insert = d_mat[i, j-1] - gap_cost |
2337
|
|
|
d_mat[i, j] = max(0, match, delete, insert) |
2338
|
|
|
return d_mat[d_mat.shape[0]-1, d_mat.shape[1]-1] |
2339
|
|
|
|
2340
|
|
|
|
2341
|
|
|
def gotoh(src, tar, gap_open=1, gap_ext=0.4, sim_func=sim_ident): |
2342
|
|
|
"""Return the Gotoh score of two strings. |
2343
|
|
|
|
2344
|
|
|
Gotoh score |
2345
|
|
|
|
2346
|
|
|
Gotoh's algorithm is essentially Needleman-Wunsch with affine gap |
2347
|
|
|
penalties: |
2348
|
|
|
https://www.cs.umd.edu/class/spring2003/cmsc838t/papers/gotoh1982.pdf |
2349
|
|
|
|
2350
|
|
|
:param str src, tar: two strings to be compared |
2351
|
|
|
:param float gap_open: the cost of an open alignment gap (1 by default) |
2352
|
|
|
:param float gap_ext: the cost of an alignment gap extension (0.4 by |
2353
|
|
|
default) |
2354
|
|
|
:param function sim_func: a function that returns the similarity of two |
2355
|
|
|
characters (identity similarity by default) |
2356
|
|
|
:returns: Gotoh score |
2357
|
|
|
:rtype: float (in fact dependent on the gap_cost & return value of |
2358
|
|
|
sim_func) |
2359
|
|
|
|
2360
|
|
|
>>> gotoh('cat', 'hat') |
2361
|
|
|
2.0 |
2362
|
|
|
>>> gotoh('Niall', 'Neil') |
2363
|
|
|
1.0 |
2364
|
|
|
>>> gotoh('aluminum', 'Catalan') |
2365
|
|
|
-0.40000000000000002 |
2366
|
|
|
>>> gotoh('cat', 'hat') |
2367
|
|
|
2.0 |
2368
|
|
|
""" |
2369
|
|
|
# pylint: disable=no-member |
2370
|
|
|
d_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.float) |
2371
|
|
|
p_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.float) |
2372
|
|
|
q_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.float) |
2373
|
|
|
# pylint: enable=no-member |
2374
|
|
|
|
2375
|
|
|
d_mat[0, 0] = 0 |
2376
|
|
|
p_mat[0, 0] = float('-inf') |
2377
|
|
|
q_mat[0, 0] = float('-inf') |
2378
|
|
|
for i in range(1, len(src)+1): |
2379
|
|
|
d_mat[i, 0] = float('-inf') |
2380
|
|
|
p_mat[i, 0] = -gap_open - gap_ext*(i-1) |
2381
|
|
|
q_mat[i, 0] = float('-inf') |
2382
|
|
|
q_mat[i, 1] = -gap_open |
2383
|
|
|
for j in range(1, len(tar)+1): |
2384
|
|
|
d_mat[0, j] = float('-inf') |
2385
|
|
|
p_mat[0, j] = float('-inf') |
2386
|
|
|
p_mat[1, j] = -gap_open |
2387
|
|
|
q_mat[0, j] = -gap_open - gap_ext*(j-1) |
2388
|
|
|
|
2389
|
|
|
for i in range(1, len(src)+1): |
2390
|
|
|
for j in range(1, len(tar)+1): |
2391
|
|
|
sim_val = sim_func(src[i-1], tar[j-1]) |
2392
|
|
|
d_mat[i, j] = max(d_mat[i-1, j-1] + sim_val, |
2393
|
|
|
p_mat[i-1, j-1] + sim_val, |
2394
|
|
|
q_mat[i-1, j-1] + sim_val) |
2395
|
|
|
|
2396
|
|
|
p_mat[i, j] = max(d_mat[i-1, j] - gap_open, |
2397
|
|
|
p_mat[i-1, j] - gap_ext) |
2398
|
|
|
|
2399
|
|
|
q_mat[i, j] = max(d_mat[i, j-1] - gap_open, |
2400
|
|
|
q_mat[i, j-1] - gap_ext) |
2401
|
|
|
|
2402
|
|
|
i, j = (n - 1 for n in d_mat.shape) |
|
|
|
|
2403
|
|
|
return max(d_mat[i, j], p_mat[i, j], q_mat[i, j]) |
2404
|
|
|
|
2405
|
|
|
|
2406
|
|
|
def sim_length(src, tar): |
2407
|
|
|
"""Return the length similarty of two strings. |
2408
|
|
|
|
2409
|
|
|
Length similarity |
2410
|
|
|
|
2411
|
|
|
This is the ratio of the length of the shorter string to the longer. |
2412
|
|
|
|
2413
|
|
|
:param str src, tar: two strings to be compared |
2414
|
|
|
:returns: length similarity |
2415
|
|
|
:rtype: float |
2416
|
|
|
|
2417
|
|
|
>>> sim_length('cat', 'hat') |
2418
|
|
|
1.0 |
2419
|
|
|
>>> sim_length('Niall', 'Neil') |
2420
|
|
|
0.8 |
2421
|
|
|
>>> sim_length('aluminum', 'Catalan') |
2422
|
|
|
0.875 |
2423
|
|
|
>>> sim_length('ATCG', 'TAGC') |
2424
|
|
|
1.0 |
2425
|
|
|
""" |
2426
|
|
|
if src == tar: |
2427
|
|
|
return 1.0 |
2428
|
|
|
if not src or not tar: |
2429
|
|
|
return 0.0 |
2430
|
|
|
return len(src)/len(tar) if len(src) < len(tar) else len(tar)/len(src) |
2431
|
|
|
|
2432
|
|
|
|
2433
|
|
|
def dist_length(src, tar): |
2434
|
|
|
"""Return the length distance between two strings. |
2435
|
|
|
|
2436
|
|
|
Length distance |
2437
|
|
|
|
2438
|
|
|
Length distance is the complement of length similarity: |
2439
|
|
|
:math:`dist_{length} = 1 - sim_{length}` |
2440
|
|
|
|
2441
|
|
|
:param str src, tar: two strings to be compared |
2442
|
|
|
:returns: length distance |
2443
|
|
|
:rtype: float |
2444
|
|
|
|
2445
|
|
|
>>> dist_length('cat', 'hat') |
2446
|
|
|
0.0 |
2447
|
|
|
>>> dist_length('Niall', 'Neil') |
2448
|
|
|
0.19999999999999996 |
2449
|
|
|
>>> dist_length('aluminum', 'Catalan') |
2450
|
|
|
0.125 |
2451
|
|
|
>>> dist_length('ATCG', 'TAGC') |
2452
|
|
|
0.0 |
2453
|
|
|
""" |
2454
|
|
|
return 1 - sim_length(src, tar) |
2455
|
|
|
|
2456
|
|
|
|
2457
|
|
View Code Duplication |
def sim_prefix(src, tar): |
|
|
|
|
2458
|
|
|
"""Return the prefix similarty of two strings. |
2459
|
|
|
|
2460
|
|
|
Prefix similarity |
2461
|
|
|
|
2462
|
|
|
Prefix similarity is the ratio of the length of the shorter term that |
2463
|
|
|
exactly matches the longer term to the length of the shorter term, |
2464
|
|
|
beginning at the start of both terms. |
2465
|
|
|
|
2466
|
|
|
:param str src, tar: two strings to be compared |
2467
|
|
|
:returns: prefix similarity |
2468
|
|
|
:rtype: float |
2469
|
|
|
|
2470
|
|
|
>>> sim_prefix('cat', 'hat') |
2471
|
|
|
0.0 |
2472
|
|
|
>>> sim_prefix('Niall', 'Neil') |
2473
|
|
|
0.25 |
2474
|
|
|
>>> sim_prefix('aluminum', 'Catalan') |
2475
|
|
|
0.0 |
2476
|
|
|
>>> sim_prefix('ATCG', 'TAGC') |
2477
|
|
|
0.0 |
2478
|
|
|
""" |
2479
|
|
|
if src == tar: |
2480
|
|
|
return 1.0 |
2481
|
|
|
if not src or not tar: |
2482
|
|
|
return 0.0 |
2483
|
|
|
min_word, max_word = (src, tar) if len(src) < len(tar) else (tar, src) |
2484
|
|
|
min_len = len(min_word) |
2485
|
|
|
for i in range(min_len, 0, -1): |
2486
|
|
|
if min_word[:i] == max_word[:i]: |
2487
|
|
|
return i/min_len |
2488
|
|
|
return 0.0 |
2489
|
|
|
|
2490
|
|
|
|
2491
|
|
|
def dist_prefix(src, tar): |
2492
|
|
|
"""Return the prefix distance between two strings. |
2493
|
|
|
|
2494
|
|
|
Prefix distance |
2495
|
|
|
|
2496
|
|
|
Prefix distance is the complement of prefix similarity: |
2497
|
|
|
:math:`dist_{prefix} = 1 - sim_{prefix}` |
2498
|
|
|
|
2499
|
|
|
:param str src, tar: two strings to be compared |
2500
|
|
|
:returns: prefix distance |
2501
|
|
|
:rtype: float |
2502
|
|
|
|
2503
|
|
|
>>> dist_prefix('cat', 'hat') |
2504
|
|
|
1.0 |
2505
|
|
|
>>> dist_prefix('Niall', 'Neil') |
2506
|
|
|
0.75 |
2507
|
|
|
>>> dist_prefix('aluminum', 'Catalan') |
2508
|
|
|
1.0 |
2509
|
|
|
>>> dist_prefix('ATCG', 'TAGC') |
2510
|
|
|
1.0 |
2511
|
|
|
""" |
2512
|
|
|
return 1 - sim_prefix(src, tar) |
2513
|
|
|
|
2514
|
|
|
|
2515
|
|
View Code Duplication |
def sim_suffix(src, tar): |
|
|
|
|
2516
|
|
|
"""Return the suffix similarity of two strings. |
2517
|
|
|
|
2518
|
|
|
Suffix similarity |
2519
|
|
|
|
2520
|
|
|
Suffix similarity is the ratio of the length of the shorter term that |
2521
|
|
|
exactly matches the longer term to the length of the shorter term, |
2522
|
|
|
beginning at the end of both terms. |
2523
|
|
|
|
2524
|
|
|
:param str src, tar: two strings to be compared |
2525
|
|
|
:returns: suffix similarity |
2526
|
|
|
:rtype: float |
2527
|
|
|
|
2528
|
|
|
>>> sim_suffix('cat', 'hat') |
2529
|
|
|
0.6666666666666666 |
2530
|
|
|
>>> sim_suffix('Niall', 'Neil') |
2531
|
|
|
0.25 |
2532
|
|
|
>>> sim_suffix('aluminum', 'Catalan') |
2533
|
|
|
0.0 |
2534
|
|
|
>>> sim_suffix('ATCG', 'TAGC') |
2535
|
|
|
0.0 |
2536
|
|
|
""" |
2537
|
|
|
if src == tar: |
2538
|
|
|
return 1.0 |
2539
|
|
|
if not src or not tar: |
2540
|
|
|
return 0.0 |
2541
|
|
|
min_word, max_word = (src, tar) if len(src) < len(tar) else (tar, src) |
2542
|
|
|
min_len = len(min_word) |
2543
|
|
|
for i in range(min_len, 0, -1): |
2544
|
|
|
if min_word[-i:] == max_word[-i:]: |
2545
|
|
|
return i/min_len |
2546
|
|
|
return 0.0 |
2547
|
|
|
|
2548
|
|
|
|
2549
|
|
|
def dist_suffix(src, tar): |
2550
|
|
|
"""Return the suffix distance between two strings. |
2551
|
|
|
|
2552
|
|
|
Suffix distance |
2553
|
|
|
|
2554
|
|
|
Suffix distance is the complement of suffix similarity: |
2555
|
|
|
:math:`dist_{suffix} = 1 - sim_{suffix}` |
2556
|
|
|
|
2557
|
|
|
:param str src, tar: two strings to be compared |
2558
|
|
|
:returns: suffix distance |
2559
|
|
|
:rtype: float |
2560
|
|
|
|
2561
|
|
|
>>> dist_suffix('cat', 'hat') |
2562
|
|
|
0.33333333333333337 |
2563
|
|
|
>>> dist_suffix('Niall', 'Neil') |
2564
|
|
|
0.75 |
2565
|
|
|
>>> dist_suffix('aluminum', 'Catalan') |
2566
|
|
|
1.0 |
2567
|
|
|
>>> dist_suffix('ATCG', 'TAGC') |
2568
|
|
|
1.0 |
2569
|
|
|
""" |
2570
|
|
|
return 1 - sim_suffix(src, tar) |
2571
|
|
|
|
2572
|
|
|
|
2573
|
|
|
def sim_mlipns(src, tar, threshold=0.25, maxmismatches=2): |
2574
|
|
|
"""Return the MLIPNS similarity of two strings. |
2575
|
|
|
|
2576
|
|
|
Modified Language-Independent Product Name Search (MLIPNS) |
2577
|
|
|
|
2578
|
|
|
The MLIPNS algorithm is described in Shannaq, Boumedyen A. N. and Victor V. |
2579
|
|
|
Alexandrov. 2010. "Using Product Similarity for Adding Business." Global |
2580
|
|
|
Journal of Computer Science and Technology. 10(12). 2-8. |
2581
|
|
|
http://www.sial.iias.spb.su/files/386-386-1-PB.pdf |
2582
|
|
|
|
2583
|
|
|
This function returns only 1.0 (similar) or 0.0 (not similar). |
2584
|
|
|
|
2585
|
|
|
LIPNS similarity is identical to normalized Hamming similarity. |
2586
|
|
|
|
2587
|
|
|
:param str src, tar: two strings to be compared |
2588
|
|
|
:param float threshold: a number [0, 1] indicating the maximum similarity |
2589
|
|
|
score, below which the strings are considered 'similar' (0.25 by |
2590
|
|
|
default) |
2591
|
|
|
:param int maxmismatches: a number indicating the allowable number of |
2592
|
|
|
mismatches to remove before declaring two strings not similar (2 by |
2593
|
|
|
default) |
2594
|
|
|
:returns: MLIPNS similarity |
2595
|
|
|
:rtype: float |
2596
|
|
|
|
2597
|
|
|
>>> sim_mlipns('cat', 'hat') |
2598
|
|
|
1.0 |
2599
|
|
|
>>> sim_mlipns('Niall', 'Neil') |
2600
|
|
|
0.0 |
2601
|
|
|
>>> sim_mlipns('aluminum', 'Catalan') |
2602
|
|
|
0.0 |
2603
|
|
|
>>> sim_mlipns('ATCG', 'TAGC') |
2604
|
|
|
0.0 |
2605
|
|
|
""" |
2606
|
|
|
if tar == src: |
2607
|
|
|
return 1.0 |
2608
|
|
|
if not src or not tar: |
2609
|
|
|
return 0.0 |
2610
|
|
|
|
2611
|
|
|
mismatches = 0 |
2612
|
|
|
ham = hamming(src, tar, difflens=True) |
2613
|
|
|
maxlen = max(len(src), len(tar)) |
2614
|
|
|
while src and tar and mismatches <= maxmismatches: |
2615
|
|
|
if maxlen < 1 or (1-(maxlen-ham)/maxlen) <= threshold: |
|
|
|
|
2616
|
|
|
return 1.0 |
2617
|
|
|
else: |
2618
|
|
|
mismatches += 1 |
2619
|
|
|
ham -= 1 |
2620
|
|
|
maxlen -= 1 |
2621
|
|
|
|
2622
|
|
|
if maxlen < 1: |
2623
|
|
|
return 1.0 |
2624
|
|
|
return 0.0 |
2625
|
|
|
|
2626
|
|
|
|
2627
|
|
|
def dist_mlipns(src, tar, threshold=0.25, maxmismatches=2): |
2628
|
|
|
"""Return the MLIPNS distance between two strings. |
2629
|
|
|
|
2630
|
|
|
Modified Language-Independent Product Name Search (MLIPNS) |
2631
|
|
|
|
2632
|
|
|
MLIPNS distance is the complement of MLIPNS similarity: |
2633
|
|
|
:math:`dist_{MLIPNS} = 1 - sim_{MLIPNS}` |
2634
|
|
|
|
2635
|
|
|
This function returns only 0.0 (distant) or 1.0 (not distant) |
2636
|
|
|
|
2637
|
|
|
:param str src, tar: two strings to be compared |
2638
|
|
|
:param float threshold: a number [0, 1] indicating the maximum similarity |
2639
|
|
|
score, below which the strings are considered 'similar' (0.25 by |
2640
|
|
|
default) |
2641
|
|
|
:param int maxmismatches: a number indicating the allowable number of |
2642
|
|
|
mismatches to remove before declaring two strings not similar (2 by |
2643
|
|
|
default) |
2644
|
|
|
:returns: MLIPNS distance |
2645
|
|
|
:rtype: float |
2646
|
|
|
|
2647
|
|
|
>>> dist_mlipns('cat', 'hat') |
2648
|
|
|
0.0 |
2649
|
|
|
>>> dist_mlipns('Niall', 'Neil') |
2650
|
|
|
1.0 |
2651
|
|
|
>>> dist_mlipns('aluminum', 'Catalan') |
2652
|
|
|
1.0 |
2653
|
|
|
>>> dist_mlipns('ATCG', 'TAGC') |
2654
|
|
|
1.0 |
2655
|
|
|
""" |
2656
|
|
|
return 1.0 - sim_mlipns(src, tar, threshold, maxmismatches) |
2657
|
|
|
|
2658
|
|
|
|
2659
|
|
|
def bag(src, tar): |
2660
|
|
|
"""Return the bag distance between two strings. |
2661
|
|
|
|
2662
|
|
|
Bag distance |
2663
|
|
|
|
2664
|
|
|
Bag distance is proposed in Bartolini, Illaria, Paolo Ciaccia, and Marco |
2665
|
|
|
Patella. 2002. "String Matching with Metric Trees Using and Approximate |
2666
|
|
|
Distance. Proceedings of the 9th International Symposium on String |
2667
|
|
|
Processing and Information Retrieval, Lisbone, Portugal, September 2002. |
2668
|
|
|
271-283. |
2669
|
|
|
http://www-db.disi.unibo.it/research/papers/SPIRE02.pdf |
2670
|
|
|
|
2671
|
|
|
It is defined as: |
2672
|
|
|
:math:`max( |multiset(src)-multiset(tar)|, |multiset(tar)-multiset(src)| )` |
2673
|
|
|
|
2674
|
|
|
:param str src, tar: two strings to be compared |
2675
|
|
|
:returns: bag distance |
2676
|
|
|
:rtype: int |
2677
|
|
|
|
2678
|
|
|
>>> bag('cat', 'hat') |
2679
|
|
|
1 |
2680
|
|
|
>>> bag('Niall', 'Neil') |
2681
|
|
|
2 |
2682
|
|
|
>>> bag('aluminum', 'Catalan') |
2683
|
|
|
5 |
2684
|
|
|
>>> bag('ATCG', 'TAGC') |
2685
|
|
|
0 |
2686
|
|
|
>>> bag('abcdefg', 'hijklm') |
2687
|
|
|
7 |
2688
|
|
|
>>> bag('abcdefg', 'hijklmno') |
2689
|
|
|
8 |
2690
|
|
|
""" |
2691
|
|
|
if tar == src: |
|
|
|
|
2692
|
|
|
return 0 |
2693
|
|
|
elif not src: |
2694
|
|
|
return len(tar) |
2695
|
|
|
elif not tar: |
2696
|
|
|
return len(src) |
2697
|
|
|
|
2698
|
|
|
src_bag = Counter(src) |
2699
|
|
|
tar_bag = Counter(tar) |
2700
|
|
|
return max(sum((src_bag-tar_bag).values()), |
2701
|
|
|
sum((tar_bag-src_bag).values())) |
2702
|
|
|
|
2703
|
|
|
|
2704
|
|
|
def dist_bag(src, tar): |
2705
|
|
|
"""Return the normalized bag distance between two strings. |
2706
|
|
|
|
2707
|
|
|
Normalized bag distance |
2708
|
|
|
|
2709
|
|
|
Bag distance is normalized by dividing by :math:`max( |src|, |tar| )`. |
2710
|
|
|
|
2711
|
|
|
:param str src, tar: two strings to be compared |
2712
|
|
|
:returns: normalized bag distance |
2713
|
|
|
:rtype: float |
2714
|
|
|
|
2715
|
|
|
>>> dist_bag('cat', 'hat') |
2716
|
|
|
0.3333333333333333 |
2717
|
|
|
>>> dist_bag('Niall', 'Neil') |
2718
|
|
|
0.4 |
2719
|
|
|
>>> dist_bag('aluminum', 'Catalan') |
2720
|
|
|
0.375 |
2721
|
|
|
>>> dist_bag('ATCG', 'TAGC') |
2722
|
|
|
0.0 |
2723
|
|
|
""" |
2724
|
|
|
if tar == src: |
2725
|
|
|
return 0.0 |
2726
|
|
|
if not src or not tar: |
2727
|
|
|
return 1.0 |
2728
|
|
|
|
2729
|
|
|
maxlen = max(len(src), len(tar)) |
2730
|
|
|
|
2731
|
|
|
return bag(src, tar)/maxlen |
2732
|
|
|
|
2733
|
|
|
|
2734
|
|
|
def sim_bag(src, tar): |
2735
|
|
|
"""Return the normalized bag similarity of two strings. |
2736
|
|
|
|
2737
|
|
|
Normalized bag similarity |
2738
|
|
|
|
2739
|
|
|
Normalized bag similarity is the complement of normalized bag distance: |
2740
|
|
|
:math:`sim_{bag} = 1 - dist_{bag}` |
2741
|
|
|
|
2742
|
|
|
:param str src, tar: two strings to be compared |
2743
|
|
|
:returns: normalized bag similarity |
2744
|
|
|
:rtype: float |
2745
|
|
|
|
2746
|
|
|
>>> sim_bag('cat', 'hat') |
2747
|
|
|
0.6666666666666667 |
2748
|
|
|
>>> sim_bag('Niall', 'Neil') |
2749
|
|
|
0.6 |
2750
|
|
|
>>> sim_bag('aluminum', 'Catalan') |
2751
|
|
|
0.625 |
2752
|
|
|
>>> sim_bag('ATCG', 'TAGC') |
2753
|
|
|
1.0 |
2754
|
|
|
""" |
2755
|
|
|
return 1-dist_bag(src, tar) |
2756
|
|
|
|
2757
|
|
|
|
2758
|
|
|
def editex(src, tar, cost=(0, 1, 2), local=False): |
|
|
|
|
2759
|
|
|
"""Return the Editex distance between two strings. |
2760
|
|
|
|
2761
|
|
|
Editex distance |
2762
|
|
|
|
2763
|
|
|
As described on pages 3 & 4 of |
2764
|
|
|
Zobel, Justin and Philip Dart. 1996. Phonetic string matching: Lessons from |
2765
|
|
|
information retrieval. In: Proceedings of the ACM-SIGIR Conference on |
2766
|
|
|
Research and Development in Information Retrieval, Zurich, Switzerland. |
2767
|
|
|
166–173. http://goanna.cs.rmit.edu.au/~jz/fulltext/sigir96.pdf |
2768
|
|
|
|
2769
|
|
|
The local variant is based on |
2770
|
|
|
Ring, Nicholas and Alexandra L. Uitdenbogerd. 2009. Finding ‘Lucy in |
2771
|
|
|
Disguise’: The Misheard Lyric Matching Problem. In: Proceedings of the 5th |
2772
|
|
|
Asia Information Retrieval Symposium, Sapporo, Japan. 157-167. |
2773
|
|
|
http://www.seg.rmit.edu.au/research/download.php?manuscript=404 |
2774
|
|
|
|
2775
|
|
|
:param str src, tar: two strings to be compared |
2776
|
|
|
:param tuple cost: a 3-tuple representing the cost of the four possible |
2777
|
|
|
edits: |
2778
|
|
|
match, same-group, and mismatch respectively (by default: (0, 1, 2)) |
2779
|
|
|
:param bool local: if True, the local variant of Editex is used |
2780
|
|
|
:returns: Editex distance |
2781
|
|
|
:rtype: int |
2782
|
|
|
|
2783
|
|
|
>>> editex('cat', 'hat') |
2784
|
|
|
2 |
2785
|
|
|
>>> editex('Niall', 'Neil') |
2786
|
|
|
2 |
2787
|
|
|
>>> editex('aluminum', 'Catalan') |
2788
|
|
|
12 |
2789
|
|
|
>>> editex('ATCG', 'TAGC') |
2790
|
|
|
6 |
2791
|
|
|
""" |
2792
|
|
|
match_cost, group_cost, mismatch_cost = cost |
2793
|
|
|
letter_groups = ({'A', 'E', 'I', 'O', 'U', 'Y'}, |
2794
|
|
|
{'B', 'P'}, |
2795
|
|
|
{'C', 'K', 'Q'}, |
2796
|
|
|
{'D', 'T'}, |
2797
|
|
|
{'L', 'R'}, |
2798
|
|
|
{'M', 'N'}, |
2799
|
|
|
{'G', 'J'}, |
2800
|
|
|
{'F', 'P', 'V'}, |
2801
|
|
|
{'S', 'X', 'Z'}, |
2802
|
|
|
{'C', 'S', 'Z'}) |
2803
|
|
|
all_letters = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'I', 'J', 'K', 'L', 'M', |
2804
|
|
|
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'X', 'Y', 'Z'} |
2805
|
|
|
|
2806
|
|
|
def r_cost(ch1, ch2): |
2807
|
|
|
"""Return r(a,b) according to Zobel & Dart's definition.""" |
2808
|
|
|
if ch1 == ch2: |
2809
|
|
|
return match_cost |
2810
|
|
|
if ch1 in all_letters and ch2 in all_letters: |
2811
|
|
|
for group in letter_groups: |
2812
|
|
|
if ch1 in group and ch2 in group: |
2813
|
|
|
return group_cost |
2814
|
|
|
return mismatch_cost |
2815
|
|
|
|
2816
|
|
|
def d_cost(ch1, ch2): |
2817
|
|
|
"""Return d(a,b) according to Zobel & Dart's definition.""" |
2818
|
|
|
if ch1 != ch2 and (ch1 == 'H' or ch1 == 'W'): |
|
|
|
|
2819
|
|
|
return group_cost |
2820
|
|
|
return r_cost(ch1, ch2) |
2821
|
|
|
|
2822
|
|
|
# convert both src & tar to NFKD normalized unicode |
2823
|
|
|
src = unicodedata.normalize('NFKD', text_type(src.upper())) |
2824
|
|
|
tar = unicodedata.normalize('NFKD', text_type(tar.upper())) |
2825
|
|
|
# convert ß to SS (for Python2) |
2826
|
|
|
src = src.replace('ß', 'SS') |
2827
|
|
|
tar = tar.replace('ß', 'SS') |
2828
|
|
|
|
2829
|
|
|
if src == tar: |
2830
|
|
|
return 0 |
2831
|
|
|
if not src: |
2832
|
|
|
return len(tar) * mismatch_cost |
2833
|
|
|
if not tar: |
2834
|
|
|
return len(src) * mismatch_cost |
2835
|
|
|
|
2836
|
|
|
# pylint: disable=no-member |
2837
|
|
|
d_mat = np.zeros((len(src)+1, len(tar)+1), dtype=np.int) |
2838
|
|
|
# pylint: enable=no-member |
2839
|
|
|
lens = len(src) |
2840
|
|
|
lent = len(tar) |
2841
|
|
|
src = ' '+src |
2842
|
|
|
tar = ' '+tar |
2843
|
|
|
|
2844
|
|
|
if not local: |
2845
|
|
|
for i in range(1, lens+1): |
2846
|
|
|
d_mat[i, 0] = d_mat[i-1, 0] + d_cost(src[i-1], src[i]) |
2847
|
|
|
for j in range(1, lent+1): |
2848
|
|
|
d_mat[0, j] = d_mat[0, j-1] + d_cost(tar[j-1], tar[j]) |
2849
|
|
|
|
2850
|
|
|
for i in range(1, lens+1): |
2851
|
|
|
for j in range(1, lent+1): |
2852
|
|
|
d_mat[i, j] = min(d_mat[i-1, j] + d_cost(src[i-1], src[i]), |
2853
|
|
|
d_mat[i, j-1] + d_cost(tar[j-1], tar[j]), |
2854
|
|
|
d_mat[i-1, j-1] + r_cost(src[i], tar[j])) |
2855
|
|
|
|
2856
|
|
|
return d_mat[lens, lent] |
2857
|
|
|
|
2858
|
|
|
|
2859
|
|
|
def dist_editex(src, tar, cost=(0, 1, 2), local=False): |
2860
|
|
|
"""Return the normalized Editex distance between two strings. |
2861
|
|
|
|
2862
|
|
|
Editex distance normalized to the interval [0, 1] |
2863
|
|
|
|
2864
|
|
|
The Editex distance is normalized by dividing the Editex distance |
2865
|
|
|
(calculated by any of the three supported methods) by the greater of |
2866
|
|
|
the number of characters in src times the cost of a delete and |
2867
|
|
|
the number of characters in tar times the cost of an insert. |
2868
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
2869
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
2870
|
|
|
|
2871
|
|
|
:param str src, tar: two strings to be compared |
2872
|
|
|
:param tuple cost: a 3-tuple representing the cost of the four possible |
2873
|
|
|
edits: |
2874
|
|
|
match, same-group, and mismatch respectively (by default: (0, 1, 2)) |
2875
|
|
|
:param bool local: if True, the local variant of Editex is used |
2876
|
|
|
:returns: normalized Editex distance |
2877
|
|
|
:rtype: float |
2878
|
|
|
|
2879
|
|
|
>>> dist_editex('cat', 'hat') |
2880
|
|
|
0.33333333333333331 |
2881
|
|
|
>>> dist_editex('Niall', 'Neil') |
2882
|
|
|
0.20000000000000001 |
2883
|
|
|
>>> dist_editex('aluminum', 'Catalan') |
2884
|
|
|
0.75 |
2885
|
|
|
>>> dist_editex('ATCG', 'TAGC') |
2886
|
|
|
0.75 |
2887
|
|
|
""" |
2888
|
|
|
if src == tar: |
2889
|
|
|
return 0 |
2890
|
|
|
mismatch_cost = cost[2] |
2891
|
|
|
return (editex(src, tar, cost, local) / |
2892
|
|
|
(max(len(src)*mismatch_cost, len(tar)*mismatch_cost))) |
2893
|
|
|
|
2894
|
|
|
|
2895
|
|
|
def sim_editex(src, tar, cost=(0, 1, 2), local=False): |
2896
|
|
|
"""Return the normalized Editex similarity of two strings. |
2897
|
|
|
|
2898
|
|
|
Editex similarity normalized to the interval [0, 1] |
2899
|
|
|
|
2900
|
|
|
The Editex similarity is the complement of Editex distance |
2901
|
|
|
:math:`sim_{Editex} = 1 - dist_{Editex}` |
2902
|
|
|
|
2903
|
|
|
The arguments are identical to those of the editex() function. |
2904
|
|
|
|
2905
|
|
|
:param str src, tar: two strings to be compared |
2906
|
|
|
:param tuple cost: a 3-tuple representing the cost of the four possible |
2907
|
|
|
edits: |
2908
|
|
|
match, same-group, and mismatch respectively (by default: (0, 1, 2)) |
2909
|
|
|
:param bool local: if True, the local variant of Editex is used |
2910
|
|
|
:returns: normalized Editex similarity |
2911
|
|
|
:rtype: float |
2912
|
|
|
|
2913
|
|
|
>>> sim_editex('cat', 'hat') |
2914
|
|
|
0.66666666666666674 |
2915
|
|
|
>>> sim_editex('Niall', 'Neil') |
2916
|
|
|
0.80000000000000004 |
2917
|
|
|
>>> sim_editex('aluminum', 'Catalan') |
2918
|
|
|
0.25 |
2919
|
|
|
>>> sim_editex('ATCG', 'TAGC') |
2920
|
|
|
0.25 |
2921
|
|
|
""" |
2922
|
|
|
return 1 - dist_editex(src, tar, cost, local) |
2923
|
|
|
|
2924
|
|
|
|
2925
|
|
|
def eudex_hamming(src, tar, weights='exponential', maxlength=8, normalized=False): |
2926
|
|
|
"""Calculate the Hamming distance between the Eudex hashes of two terms. |
2927
|
|
|
|
2928
|
|
|
If weights is set to None, a simple Hamming distance is calculated. |
2929
|
|
|
If weights is set to 'exponential', weight decays by powers of 2, as |
2930
|
|
|
proposed in the eudex specification: https://github.com/ticki/eudex. |
2931
|
|
|
If weights is set to 'fibonacci', weight decays through the Fibonacci |
2932
|
|
|
series, as in the eudex reference implementation. |
2933
|
|
|
If weights is set to a callable function, this assumes it creates a |
2934
|
|
|
generator and the generator is used to populate a series of weights. |
2935
|
|
|
If weights is set to an iterable, the iterable's values should be integers |
2936
|
|
|
and will be used as the weights. |
2937
|
|
|
|
2938
|
|
|
:param str src, tar: two strings to be compared |
2939
|
|
|
:param iterable or generator function weights: |
2940
|
|
|
:param maxlength: the number of characters to encode as a eudex hash |
2941
|
|
|
:return: |
2942
|
|
|
""" |
2943
|
|
|
|
2944
|
|
|
def _gen_fibonacci(): |
2945
|
|
|
"""Yield the next Fibonacci number. |
2946
|
|
|
|
2947
|
|
|
Based on https://www.python-course.eu/generators.php |
2948
|
|
|
Starts at Fibonacci number 3 (the second 1) |
2949
|
|
|
""" |
2950
|
|
|
a, b = 1, 2 |
|
|
|
|
2951
|
|
|
while True: |
2952
|
|
|
yield a |
2953
|
|
|
a, b = b, a + b |
|
|
|
|
2954
|
|
|
|
2955
|
|
|
def _gen_exponential(base=2): |
2956
|
|
|
"""Yield the next value in an exponential series of the base. |
2957
|
|
|
|
2958
|
|
|
Based on https://www.python-course.eu/generators.php |
2959
|
|
|
Starts at base**0 |
2960
|
|
|
""" |
2961
|
|
|
n = 0 |
|
|
|
|
2962
|
|
|
while True: |
2963
|
|
|
yield base ** n |
2964
|
|
|
n += 1 |
|
|
|
|
2965
|
|
|
|
2966
|
|
|
# Calculate the eudex hashes and XOR them |
2967
|
|
|
xored = eudex(src, maxlength=maxlength) ^ eudex(tar, maxlength=maxlength) |
2968
|
|
|
|
2969
|
|
|
# Simple hamming distance (all bits are equal) |
2970
|
|
|
if not weights: |
2971
|
|
|
return bin(xored).count('1') |
2972
|
|
|
|
2973
|
|
|
# If weights is a function, it should create a generator, |
2974
|
|
|
# which we now use to populate a list |
2975
|
|
|
if callable(weights): |
2976
|
|
|
weights = weights() |
2977
|
|
|
elif weights == 'exponential': |
2978
|
|
|
weights = _gen_exponential() |
2979
|
|
|
elif weights == 'fibonacci': |
2980
|
|
|
weights = _gen_fibonacci() |
2981
|
|
|
if isinstance(weights, types.GeneratorType): |
2982
|
|
|
weights = [next(weights) for _ in range(maxlength)][::-1] |
2983
|
|
|
|
2984
|
|
|
# Sum the weighted hamming distance |
2985
|
|
|
dist = 0 |
|
|
|
|
2986
|
|
|
maxdist = 0 |
2987
|
|
|
while (xored or normalized) and weights: |
2988
|
|
|
maxdist += 8*weights[-1] |
2989
|
|
|
dist += bin(xored & 0xFF).count('1') * weights.pop() |
2990
|
|
|
xored >>= 8 |
2991
|
|
|
|
2992
|
|
|
if normalized: |
2993
|
|
|
dist /= maxdist |
2994
|
|
|
|
2995
|
|
|
return dist |
2996
|
|
|
|
2997
|
|
|
|
2998
|
|
|
def dist_eudex(src, tar, weights='exponential', maxlength=8): |
2999
|
|
|
"""Calculate the normalized Hamming distance between the Eudex hashes of two terms. |
3000
|
|
|
|
3001
|
|
|
If weights is set to None, a simple Hamming distance is calculated. |
3002
|
|
|
If weights is set to 'exponential', weight decays by powers of 2, as |
3003
|
|
|
proposed in the eudex specification: https://github.com/ticki/eudex. |
3004
|
|
|
If weights is set to 'fibonacci', weight decays through the Fibonacci |
3005
|
|
|
series, as in the eudex reference implementation. |
3006
|
|
|
If weights is set to a callable function, this assumes it creates a |
3007
|
|
|
generator and the generator is used to populate a series of weights. |
3008
|
|
|
If weights is set to an iterable, the iterable's values should be integers |
3009
|
|
|
and will be used as the weights. |
3010
|
|
|
|
3011
|
|
|
:param str src, tar: two strings to be compared |
3012
|
|
|
:param iterable or generator function weights: |
3013
|
|
|
:param maxlength: the number of characters to encode as a eudex hash |
3014
|
|
|
:return: |
3015
|
|
|
""" |
3016
|
|
|
return eudex_hamming(src, tar, weights, maxlength, True) |
3017
|
|
|
|
3018
|
|
|
|
3019
|
|
|
def sim_eudex(src, tar, weights='exponential', maxlength=8): |
3020
|
|
|
"""Calculate the normalized Hamming similarity between the Eudex hashes of two terms. |
3021
|
|
|
|
3022
|
|
|
If weights is set to None, a simple Hamming distance is calculated. |
3023
|
|
|
If weights is set to 'exponential', weight decays by powers of 2, as |
3024
|
|
|
proposed in the eudex specification: https://github.com/ticki/eudex. |
3025
|
|
|
If weights is set to 'fibonacci', weight decays through the Fibonacci |
3026
|
|
|
series, as in the eudex reference implementation. |
3027
|
|
|
If weights is set to a callable function, this assumes it creates a |
3028
|
|
|
generator and the generator is used to populate a series of weights. |
3029
|
|
|
If weights is set to an iterable, the iterable's values should be integers |
3030
|
|
|
and will be used as the weights. |
3031
|
|
|
|
3032
|
|
|
:param str src, tar: two strings to be compared |
3033
|
|
|
:param iterable or generator function weights: |
3034
|
|
|
:param maxlength: the number of characters to encode as a eudex hash |
3035
|
|
|
:return: |
3036
|
|
|
""" |
3037
|
|
|
return 1-dist_eudex(src, tar, weights, maxlength) |
3038
|
|
|
|
3039
|
|
|
|
3040
|
|
|
def sim_tfidf(src, tar, qval=2, docs_src=None, docs_tar=None): |
|
|
|
|
3041
|
|
|
"""Return the TF-IDF similarity of two strings. |
3042
|
|
|
|
3043
|
|
|
TF-IDF similarity |
3044
|
|
|
|
3045
|
|
|
This is chiefly based on the "Formal Definition of TF/IDF Distance" at: |
3046
|
|
|
http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/TfIdfDistance.html |
3047
|
|
|
|
3048
|
|
|
:param str src, tar: two strings to be compared (or QGrams/Counter objects) |
3049
|
|
|
:param int qval: the length of each q-gram; 0 or None for non-q-gram |
3050
|
|
|
version |
3051
|
|
|
:param Counter docs_src: a Counter object or string representing the |
3052
|
|
|
document corpus for the src string |
3053
|
|
|
:param Counter docs_tar: a Counter object or string representing the |
3054
|
|
|
document corpus for the tar string (or set to None to use the docs_src |
3055
|
|
|
for both) |
3056
|
|
|
:returns: TF-IDF similarity |
3057
|
|
|
:rtype: float |
3058
|
|
|
""" |
3059
|
|
|
if src == tar: |
|
|
|
|
3060
|
|
|
return 1.0 # TODO: confirm correctness of this when docs are different |
|
|
|
|
3061
|
|
|
elif not src or not tar: |
3062
|
|
|
return 0.0 |
3063
|
|
|
|
3064
|
|
|
q_src, q_tar = _get_qgrams(src, tar, qval) |
3065
|
|
|
|
3066
|
|
|
if isinstance(docs_src, Counter): |
3067
|
|
|
q_docs = docs_src |
|
|
|
|
3068
|
|
|
elif qval and qval > 0: |
3069
|
|
|
q_docs = QGrams(docs_src, qval) |
3070
|
|
|
else: |
3071
|
|
|
q_docs = Counter(docs_src.strip().split()) |
3072
|
|
|
|
3073
|
|
|
if not q_src or not q_tar: |
3074
|
|
|
return 0.0 |
3075
|
|
|
|
3076
|
|
|
# TODO: finish implementation |
|
|
|
|
3077
|
|
|
return 0.5 # hardcoded to half |
3078
|
|
|
|
3079
|
|
|
############################################################################### |
3080
|
|
|
|
3081
|
|
|
|
3082
|
|
|
def sim(src, tar, method=sim_levenshtein): |
3083
|
|
|
"""Return a similarity of two strings. |
3084
|
|
|
|
3085
|
|
|
This is a generalized function for calling other similarity functions. |
3086
|
|
|
|
3087
|
|
|
:param str src, tar: two strings to be compared |
3088
|
|
|
:param function method: specifies the similarity metric (Levenshtein by |
3089
|
|
|
default) |
3090
|
|
|
:returns: similarity according to the specified function |
3091
|
|
|
:rtype: float |
3092
|
|
|
|
3093
|
|
|
>>> sim('cat', 'hat') |
3094
|
|
|
0.66666666666666674 |
3095
|
|
|
>>> sim('Niall', 'Neil') |
3096
|
|
|
0.40000000000000002 |
3097
|
|
|
>>> sim('aluminum', 'Catalan') |
3098
|
|
|
0.125 |
3099
|
|
|
>>> sim('ATCG', 'TAGC') |
3100
|
|
|
0.25 |
3101
|
|
|
""" |
3102
|
|
|
if callable(method): |
|
|
|
|
3103
|
|
|
return method(src, tar) |
3104
|
|
|
else: |
3105
|
|
|
raise AttributeError('Unknown similarity function: ' + str(method)) |
3106
|
|
|
|
3107
|
|
|
|
3108
|
|
|
def dist(src, tar, method=sim_levenshtein): |
3109
|
|
|
"""Return a distance between two strings. |
3110
|
|
|
|
3111
|
|
|
This is a generalized function for calling other distance functions. |
3112
|
|
|
|
3113
|
|
|
:param str src, tar: two strings to be compared |
3114
|
|
|
:param function method: specifies the similarity metric (Levenshtein by |
3115
|
|
|
default) -- Note that this takes a similarity metric function, not |
3116
|
|
|
a distance metric function. |
3117
|
|
|
:returns: distance according to the specified function |
3118
|
|
|
:rtype: float |
3119
|
|
|
|
3120
|
|
|
>>> dist('cat', 'hat') |
3121
|
|
|
0.33333333333333326 |
3122
|
|
|
>>> dist('Niall', 'Neil') |
3123
|
|
|
0.59999999999999998 |
3124
|
|
|
>>> dist('aluminum', 'Catalan') |
3125
|
|
|
0.875 |
3126
|
|
|
>>> dist('ATCG', 'TAGC') |
3127
|
|
|
0.75 |
3128
|
|
|
""" |
3129
|
|
|
if callable(method): |
|
|
|
|
3130
|
|
|
return 1 - method(src, tar) |
3131
|
|
|
else: |
3132
|
|
|
raise AttributeError('Unknown distance function: ' + str(method)) |
3133
|
|
|
|