| Total Complexity | 44 |
| Total Lines | 431 |
| Duplicated Lines | 17.63 % |
| Coverage | 100% |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like abydos.distance._discounted_levenshtein often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*- |
||
| 2 | |||
| 3 | # Copyright 2019 by Christopher C. Little. |
||
| 4 | # This file is part of Abydos. |
||
| 5 | # |
||
| 6 | # Abydos is free software: you can redistribute it and/or modify |
||
| 7 | # it under the terms of the GNU General Public License as published by |
||
| 8 | # the Free Software Foundation, either version 3 of the License, or |
||
| 9 | # (at your option) any later version. |
||
| 10 | # |
||
| 11 | # Abydos is distributed in the hope that it will be useful, |
||
| 12 | # but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
| 13 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
| 14 | # GNU General Public License for more details. |
||
| 15 | # |
||
| 16 | # You should have received a copy of the GNU General Public License |
||
| 17 | # along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
||
| 18 | |||
| 19 | 1 | """abydos.distance._discounted_levenshtein. |
|
| 20 | |||
| 21 | Discounted Levenshtein edit distance |
||
| 22 | """ |
||
| 23 | |||
| 24 | 1 | from __future__ import ( |
|
| 25 | absolute_import, |
||
| 26 | division, |
||
| 27 | print_function, |
||
| 28 | unicode_literals, |
||
| 29 | ) |
||
| 30 | |||
| 31 | 1 | from math import log |
|
| 32 | |||
| 33 | 1 | from numpy import float as np_float |
|
| 34 | 1 | from numpy import zeros as np_zeros |
|
| 35 | |||
| 36 | 1 | from six.moves import range |
|
| 37 | |||
| 38 | 1 | from ._distance import _Distance |
|
| 39 | |||
| 40 | 1 | __all__ = ['DiscountedLevenshtein'] |
|
| 41 | |||
| 42 | |||
| 43 | 1 | class DiscountedLevenshtein(_Distance): |
|
| 44 | """Discounted Levenshtein distance. |
||
| 45 | |||
| 46 | This is a variant of Levenshtein distance for which edits later in a string |
||
| 47 | have discounted cost, on the theory that earlier edits are less likely |
||
| 48 | than later ones. |
||
| 49 | |||
| 50 | .. versionadded:: 0.4.1 |
||
| 51 | """ |
||
| 52 | |||
| 53 | 1 | def __init__( |
|
| 54 | self, |
||
| 55 | mode='lev', |
||
| 56 | normalizer=max, |
||
| 57 | discount_from=1, |
||
| 58 | discount_func='log', |
||
| 59 | vowels='aeiou', |
||
| 60 | **kwargs |
||
| 61 | ): |
||
| 62 | """Initialize DiscountedLevenshtein instance. |
||
| 63 | |||
| 64 | Parameters |
||
| 65 | ---------- |
||
| 66 | mode : str |
||
| 67 | Specifies a mode for computing the discounted Levenshtein distance: |
||
| 68 | |||
| 69 | - ``lev`` (default) computes the ordinary Levenshtein distance, |
||
| 70 | in which edits may include inserts, deletes, and |
||
| 71 | substitutions |
||
| 72 | - ``osa`` computes the Optimal String Alignment distance, in |
||
| 73 | which edits may include inserts, deletes, substitutions, and |
||
| 74 | transpositions but substrings may only be edited once |
||
| 75 | |||
| 76 | normalizer : function |
||
| 77 | A function that takes an list and computes a normalization term |
||
| 78 | by which the edit distance is divided (max by default). Another |
||
| 79 | good option is the sum function. |
||
| 80 | discount_from : int or str |
||
| 81 | If an int is supplied, this is the first character whose edit cost |
||
| 82 | will be discounted. If the str ``coda`` is supplied, discounting |
||
| 83 | will start with the first non-vowel after the first vowel (the |
||
| 84 | first syllable coda). |
||
| 85 | discount_func : str or function |
||
| 86 | The two supported str arguments are ``log``, for a logarithmic |
||
| 87 | discount function, and ``exp`` for a exponential discount function. |
||
| 88 | See notes below for information on how to supply your own |
||
| 89 | discount function. |
||
| 90 | vowels : str |
||
| 91 | These are the letters to consider as vowels when discount_from is |
||
| 92 | set to ``coda``. It defaults to the English vowels 'aeiou', but |
||
| 93 | it would be reasonable to localize this to other languages or to |
||
| 94 | add orthographic semi-vowels like 'y', 'w', and even 'h'. |
||
| 95 | **kwargs |
||
| 96 | Arbitrary keyword arguments |
||
| 97 | |||
| 98 | Notes |
||
| 99 | ----- |
||
| 100 | This class is highly experimental and will need additional tuning. |
||
| 101 | |||
| 102 | The discount function can be passed as a callable function. It should |
||
| 103 | expect an integer as its only argument and return a float, ideally |
||
| 104 | less than or equal to 1.0. The argument represents the degree of |
||
| 105 | discounting to apply. |
||
| 106 | |||
| 107 | |||
| 108 | .. versionadded:: 0.4.1 |
||
| 109 | |||
| 110 | """ |
||
| 111 | 1 | super(DiscountedLevenshtein, self).__init__(**kwargs) |
|
| 112 | 1 | self._mode = mode |
|
| 113 | 1 | self._normalizer = normalizer |
|
| 114 | 1 | self._discount_from = discount_from |
|
| 115 | 1 | self._vowels = set(vowels.lower()) |
|
| 116 | 1 | if callable(discount_func): |
|
| 117 | 1 | self._cost = discount_func |
|
| 118 | 1 | elif discount_func == 'exp': |
|
| 119 | 1 | self._cost = self._exp_discount |
|
| 120 | else: |
||
| 121 | 1 | self._cost = self._log_discount |
|
| 122 | |||
| 123 | 1 | @staticmethod |
|
| 124 | def _log_discount(discounts): |
||
| 125 | 1 | return 1 / (log(1 + discounts / 5) + 1) |
|
| 126 | |||
| 127 | 1 | @staticmethod |
|
| 128 | def _exp_discount(discounts): |
||
| 129 | 1 | return 1 / (discounts + 1) ** 0.2 |
|
| 130 | |||
| 131 | 1 | def _alignment_matrix(self, src, tar): |
|
| 132 | """Return the Levenshtein alignment matrix. |
||
| 133 | |||
| 134 | Parameters |
||
| 135 | ---------- |
||
| 136 | src : str |
||
| 137 | Source string for comparison |
||
| 138 | tar : str |
||
| 139 | Target string for comparison |
||
| 140 | |||
| 141 | Returns |
||
| 142 | ------- |
||
| 143 | numpy.ndarray |
||
| 144 | The alignment matrix |
||
| 145 | |||
| 146 | |||
| 147 | .. versionadded:: 0.4.1 |
||
| 148 | |||
| 149 | """ |
||
| 150 | 1 | src_len = len(src) |
|
| 151 | 1 | tar_len = len(tar) |
|
| 152 | |||
| 153 | 1 | if self._discount_from == 'coda': |
|
| 154 | 1 | discount_from = [0, 0] |
|
| 155 | |||
| 156 | 1 | src_voc = src.lower() |
|
| 157 | 1 | for i in range(len(src_voc)): |
|
| 158 | 1 | if src_voc[i] in self._vowels: |
|
| 159 | 1 | discount_from[0] = i |
|
| 160 | 1 | break |
|
| 161 | 1 | for i in range(discount_from[0], len(src_voc)): |
|
| 162 | 1 | if src_voc[i] not in self._vowels: |
|
| 163 | 1 | discount_from[0] = i |
|
| 164 | 1 | break |
|
| 165 | else: |
||
| 166 | 1 | discount_from[0] += 1 |
|
| 167 | |||
| 168 | 1 | tar_voc = tar.lower() |
|
| 169 | 1 | for i in range(len(tar_voc)): |
|
| 170 | 1 | if tar_voc[i] in self._vowels: |
|
| 171 | 1 | discount_from[1] = i |
|
| 172 | 1 | break |
|
| 173 | 1 | for i in range(discount_from[1], len(tar_voc)): |
|
| 174 | 1 | if tar_voc[i] not in self._vowels: |
|
| 175 | 1 | discount_from[1] = i |
|
| 176 | 1 | break |
|
| 177 | else: |
||
| 178 | 1 | discount_from[1] += 1 |
|
| 179 | |||
| 180 | 1 | elif isinstance(self._discount_from, int): |
|
| 181 | 1 | discount_from = [self._discount_from, self._discount_from] |
|
| 182 | else: |
||
| 183 | 1 | discount_from = [1, 1] |
|
| 184 | |||
| 185 | 1 | d_mat = np_zeros((src_len + 1, tar_len + 1), dtype=np_float) |
|
| 186 | 1 | for i in range(1, src_len + 1): |
|
| 187 | 1 | d_mat[i, 0] = d_mat[i - 1, 0] + self._cost( |
|
| 188 | max(0, i - discount_from[0]) |
||
| 189 | ) |
||
| 190 | 1 | for j in range(1, tar_len + 1): |
|
| 191 | 1 | d_mat[0, j] = d_mat[0, j - 1] + self._cost( |
|
| 192 | max(0, j - discount_from[1]) |
||
| 193 | ) |
||
| 194 | |||
| 195 | 1 | for i in range(src_len): |
|
| 196 | 1 | i_extend = self._cost(max(0, i - discount_from[0])) |
|
| 197 | 1 | for j in range(tar_len): |
|
| 198 | 1 | cost = min(i_extend, self._cost(max(0, j - discount_from[1]))) |
|
| 199 | 1 | d_mat[i + 1, j + 1] = min( |
|
| 200 | d_mat[i + 1, j] + cost, # ins |
||
| 201 | d_mat[i, j + 1] + cost, # del |
||
| 202 | d_mat[i, j] + (cost if src[i] != tar[j] else 0), # sub/== |
||
| 203 | ) |
||
| 204 | |||
| 205 | 1 | if self._mode == 'osa': |
|
| 206 | 1 | if ( |
|
| 207 | i + 1 > 1 |
||
| 208 | and j + 1 > 1 |
||
| 209 | and src[i] == tar[j - 1] |
||
| 210 | and src[i - 1] == tar[j] |
||
| 211 | ): |
||
| 212 | # transposition |
||
| 213 | 1 | d_mat[i + 1, j + 1] = min( |
|
| 214 | d_mat[i + 1, j + 1], d_mat[i - 1, j - 1] + cost |
||
| 215 | ) |
||
| 216 | |||
| 217 | 1 | return d_mat |
|
| 218 | |||
| 219 | 1 | View Code Duplication | def alignment(self, src, tar): |
|
|
|||
| 220 | """Return the Levenshtein alignment of two strings. |
||
| 221 | |||
| 222 | Parameters |
||
| 223 | ---------- |
||
| 224 | src : str |
||
| 225 | Source string for comparison |
||
| 226 | tar : str |
||
| 227 | Target string for comparison |
||
| 228 | |||
| 229 | Returns |
||
| 230 | ------- |
||
| 231 | tuple |
||
| 232 | A tuple containing the Levenshtein distance and the two strings, |
||
| 233 | aligned. |
||
| 234 | |||
| 235 | Examples |
||
| 236 | -------- |
||
| 237 | >>> cmp = DiscountedLevenshtein() |
||
| 238 | >>> cmp.alignment('cat', 'hat') |
||
| 239 | (1.0, 'cat', 'hat') |
||
| 240 | >>> cmp.alignment('Niall', 'Neil') |
||
| 241 | (2.526064024369237, 'N-iall', 'Neil--') |
||
| 242 | >>> cmp.alignment('aluminum', 'Catalan') |
||
| 243 | (5.053867269967515, '-aluminum', 'Catalan--') |
||
| 244 | >>> cmp.alignment('ATCG', 'TAGC') |
||
| 245 | (2.594032108779918, 'ATCG-', '-TAGC') |
||
| 246 | |||
| 247 | >>> cmp = DiscountedLevenshtein(mode='osa') |
||
| 248 | >>> cmp.alignment('ATCG', 'TAGC') |
||
| 249 | (1.7482385137517997, 'ATCG', 'TAGC') |
||
| 250 | >>> cmp.alignment('ACTG', 'TAGC') |
||
| 251 | (3.342270622531718, '-ACTG', 'TAGC-') |
||
| 252 | |||
| 253 | |||
| 254 | .. versionadded:: 0.4.1 |
||
| 255 | |||
| 256 | """ |
||
| 257 | 1 | d_mat = self._alignment_matrix(src, tar) |
|
| 258 | |||
| 259 | 1 | src_aligned = [] |
|
| 260 | 1 | tar_aligned = [] |
|
| 261 | |||
| 262 | 1 | src_pos = len(src) |
|
| 263 | 1 | tar_pos = len(tar) |
|
| 264 | |||
| 265 | 1 | distance = d_mat[src_pos, tar_pos] |
|
| 266 | |||
| 267 | 1 | while src_pos and tar_pos: |
|
| 268 | 1 | up = d_mat[src_pos, tar_pos - 1] |
|
| 269 | 1 | left = d_mat[src_pos - 1, tar_pos] |
|
| 270 | 1 | diag = d_mat[src_pos - 1, tar_pos - 1] |
|
| 271 | |||
| 272 | 1 | if diag <= min(up, left): |
|
| 273 | 1 | src_pos -= 1 |
|
| 274 | 1 | tar_pos -= 1 |
|
| 275 | 1 | src_aligned.append(src[src_pos]) |
|
| 276 | 1 | tar_aligned.append(tar[tar_pos]) |
|
| 277 | 1 | elif up <= left: |
|
| 278 | 1 | tar_pos -= 1 |
|
| 279 | 1 | src_aligned.append('-') |
|
| 280 | 1 | tar_aligned.append(tar[tar_pos]) |
|
| 281 | else: |
||
| 282 | 1 | src_pos -= 1 |
|
| 283 | 1 | src_aligned.append(src[src_pos]) |
|
| 284 | 1 | tar_aligned.append('-') |
|
| 285 | 1 | while tar_pos: |
|
| 286 | 1 | tar_pos -= 1 |
|
| 287 | 1 | tar_aligned.append(tar[tar_pos]) |
|
| 288 | 1 | src_aligned.append('-') |
|
| 289 | 1 | while src_pos: |
|
| 290 | 1 | src_pos -= 1 |
|
| 291 | 1 | src_aligned.append(src[src_pos]) |
|
| 292 | 1 | tar_aligned.append('-') |
|
| 293 | |||
| 294 | 1 | return distance, ''.join(src_aligned[::-1]), ''.join(tar_aligned[::-1]) |
|
| 295 | |||
| 296 | 1 | def dist_abs(self, src, tar): |
|
| 297 | """Return the Levenshtein distance between two strings. |
||
| 298 | |||
| 299 | Parameters |
||
| 300 | ---------- |
||
| 301 | src : str |
||
| 302 | Source string for comparison |
||
| 303 | tar : str |
||
| 304 | Target string for comparison |
||
| 305 | |||
| 306 | Returns |
||
| 307 | ------- |
||
| 308 | int (may return a float if cost has float values) |
||
| 309 | The Levenshtein distance between src & tar |
||
| 310 | |||
| 311 | Examples |
||
| 312 | -------- |
||
| 313 | >>> cmp = DiscountedLevenshtein() |
||
| 314 | >>> cmp.dist_abs('cat', 'hat') |
||
| 315 | 1 |
||
| 316 | >>> cmp.dist_abs('Niall', 'Neil') |
||
| 317 | 2.526064024369237 |
||
| 318 | >>> cmp.dist_abs('aluminum', 'Catalan') |
||
| 319 | 5.053867269967515 |
||
| 320 | >>> cmp.dist_abs('ATCG', 'TAGC') |
||
| 321 | 2.594032108779918 |
||
| 322 | |||
| 323 | >>> cmp = DiscountedLevenshtein(mode='osa') |
||
| 324 | >>> cmp.dist_abs('ATCG', 'TAGC') |
||
| 325 | 1.7482385137517997 |
||
| 326 | >>> cmp.dist_abs('ACTG', 'TAGC') |
||
| 327 | 3.342270622531718 |
||
| 328 | |||
| 329 | |||
| 330 | .. versionadded:: 0.4.1 |
||
| 331 | |||
| 332 | """ |
||
| 333 | 1 | src_len = len(src) |
|
| 334 | 1 | tar_len = len(tar) |
|
| 335 | |||
| 336 | 1 | if src == tar: |
|
| 337 | 1 | return 0 |
|
| 338 | |||
| 339 | 1 | if isinstance(self._discount_from, int): |
|
| 340 | 1 | discount_from = self._discount_from |
|
| 341 | else: |
||
| 342 | 1 | discount_from = 1 |
|
| 343 | |||
| 344 | 1 | if not src: |
|
| 345 | 1 | return sum( |
|
| 346 | self._cost(max(0, pos - discount_from)) |
||
| 347 | for pos in range(tar_len) |
||
| 348 | ) |
||
| 349 | 1 | if not tar: |
|
| 350 | 1 | return sum( |
|
| 351 | self._cost(max(0, pos - discount_from)) |
||
| 352 | for pos in range(src_len) |
||
| 353 | ) |
||
| 354 | |||
| 355 | 1 | d_mat = self._alignment_matrix(src, tar) |
|
| 356 | |||
| 357 | 1 | if int(d_mat[src_len, tar_len]) == d_mat[src_len, tar_len]: |
|
| 358 | 1 | return int(d_mat[src_len, tar_len]) |
|
| 359 | else: |
||
| 360 | 1 | return d_mat[src_len, tar_len] |
|
| 361 | |||
| 362 | 1 | def dist(self, src, tar): |
|
| 363 | """Return the normalized Levenshtein distance between two strings. |
||
| 364 | |||
| 365 | The Levenshtein distance is normalized by dividing the Levenshtein |
||
| 366 | distance (calculated by any of the three supported methods) by the |
||
| 367 | greater of the number of characters in src times the cost of a delete |
||
| 368 | and the number of characters in tar times the cost of an insert. |
||
| 369 | For the case in which all operations have :math:`cost = 1`, this is |
||
| 370 | equivalent to the greater of the length of the two strings src & tar. |
||
| 371 | |||
| 372 | Parameters |
||
| 373 | ---------- |
||
| 374 | src : str |
||
| 375 | Source string for comparison |
||
| 376 | tar : str |
||
| 377 | Target string for comparison |
||
| 378 | |||
| 379 | Returns |
||
| 380 | ------- |
||
| 381 | float |
||
| 382 | The normalized Levenshtein distance between src & tar |
||
| 383 | |||
| 384 | Examples |
||
| 385 | -------- |
||
| 386 | >>> cmp = DiscountedLevenshtein() |
||
| 387 | >>> cmp.dist('cat', 'hat') |
||
| 388 | 0.3513958291799864 |
||
| 389 | >>> cmp.dist('Niall', 'Neil') |
||
| 390 | 0.5909885886270658 |
||
| 391 | >>> cmp.dist('aluminum', 'Catalan') |
||
| 392 | 0.8348163322045603 |
||
| 393 | >>> cmp.dist('ATCG', 'TAGC') |
||
| 394 | 0.7217609721523955 |
||
| 395 | |||
| 396 | |||
| 397 | .. versionadded:: 0.4.1 |
||
| 398 | |||
| 399 | """ |
||
| 400 | 1 | if src == tar: |
|
| 401 | 1 | return 0 |
|
| 402 | |||
| 403 | 1 | if isinstance(self._discount_from, int): |
|
| 404 | 1 | discount_from = self._discount_from |
|
| 405 | else: |
||
| 406 | 1 | discount_from = 1 |
|
| 407 | |||
| 408 | 1 | src_len = len(src) |
|
| 409 | 1 | tar_len = len(tar) |
|
| 410 | |||
| 411 | 1 | normalize_term = self._normalizer( |
|
| 412 | [ |
||
| 413 | sum( |
||
| 414 | self._cost(max(0, pos - discount_from)) |
||
| 415 | for pos in range(src_len) |
||
| 416 | ), |
||
| 417 | sum( |
||
| 418 | self._cost(max(0, pos - discount_from)) |
||
| 419 | for pos in range(tar_len) |
||
| 420 | ), |
||
| 421 | ] |
||
| 422 | ) |
||
| 423 | |||
| 424 | 1 | return self.dist_abs(src, tar) / normalize_term |
|
| 425 | |||
| 426 | |||
| 427 | if __name__ == '__main__': |
||
| 428 | import doctest |
||
| 429 | |||
| 430 | doctest.testmod() |
||
| 431 |