| Conditions | 1 |
| Total Lines | 54 |
| Code Lines | 50 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | # -*- coding: utf-8 -*- |
||
| 49 | def test_mean_pairwise_similarity(self): |
||
| 50 | """Test abydos.clustering.mean_pairwise_similarity.""" |
||
| 51 | self.assertEqual(mean_pairwise_similarity(NIALL), 0.29362587170180671) |
||
| 52 | self.assertEqual(mean_pairwise_similarity(NIALL, symmetric=True), |
||
| 53 | 0.2936258717018066) |
||
| 54 | self.assertEqual(mean_pairwise_similarity(NIALL, |
||
| 55 | mean_func=stats.hmean), |
||
| 56 | 0.29362587170180671) |
||
| 57 | self.assertEqual(mean_pairwise_similarity(NIALL, mean_func=stats.hmean, |
||
| 58 | symmetric=True), |
||
| 59 | 0.2936258717018066) |
||
| 60 | self.assertEqual(mean_pairwise_similarity(NIALL, |
||
| 61 | mean_func=stats.gmean), |
||
| 62 | 0.33747245800668441) |
||
| 63 | self.assertEqual(mean_pairwise_similarity(NIALL, mean_func=stats.gmean, |
||
| 64 | symmetric=True), |
||
| 65 | 0.33747245800668441) |
||
| 66 | self.assertEqual(mean_pairwise_similarity(NIALL, |
||
| 67 | mean_func=stats.amean), |
||
| 68 | 0.38009278711484601) |
||
| 69 | self.assertEqual(mean_pairwise_similarity(NIALL, mean_func=stats.amean, |
||
| 70 | symmetric=True), |
||
| 71 | 0.38009278711484623) |
||
| 72 | |||
| 73 | self.assertEqual(mean_pairwise_similarity(NIALL_1WORD), |
||
| 74 | mean_pairwise_similarity(' '.join(NIALL_1WORD))) |
||
| 75 | self.assertEqual(mean_pairwise_similarity(NIALL_1WORD, symmetric=True), |
||
| 76 | mean_pairwise_similarity(' '.join(NIALL_1WORD), |
||
| 77 | symmetric=True)) |
||
| 78 | self.assertEqual(mean_pairwise_similarity(NIALL_1WORD, |
||
| 79 | mean_func=stats.gmean), |
||
| 80 | mean_pairwise_similarity(' '.join(NIALL_1WORD), |
||
| 81 | mean_func=stats.gmean)) |
||
| 82 | self.assertEqual(mean_pairwise_similarity(NIALL_1WORD, |
||
| 83 | mean_func=stats.amean), |
||
| 84 | mean_pairwise_similarity(' '.join(NIALL_1WORD), |
||
| 85 | mean_func=stats.amean)) |
||
| 86 | |||
| 87 | self.assertRaises(ValueError, mean_pairwise_similarity, ['a b c']) |
||
| 88 | self.assertRaises(ValueError, mean_pairwise_similarity, 'abc') |
||
| 89 | self.assertRaises(ValueError, mean_pairwise_similarity, 0) |
||
| 90 | self.assertRaises(ValueError, mean_pairwise_similarity, NIALL, |
||
| 91 | mean_func='imaginary') |
||
| 92 | self.assertRaises(ValueError, mean_pairwise_similarity, NIALL, |
||
| 93 | metric='imaginary') |
||
| 94 | |||
| 95 | self.assertEqual(mean_pairwise_similarity(NIALL), |
||
| 96 | mean_pairwise_similarity(tuple(NIALL))) |
||
| 97 | self.assertEqual(mean_pairwise_similarity(NIALL), |
||
| 98 | mean_pairwise_similarity(list(NIALL))) |
||
| 99 | self.assertAlmostEqual(mean_pairwise_similarity(NIALL), |
||
| 100 | mean_pairwise_similarity(sorted(NIALL))) |
||
| 101 | self.assertAlmostEqual(mean_pairwise_similarity(NIALL), |
||
| 102 | mean_pairwise_similarity(set(NIALL))) |
||
| 103 | |||
| 186 |