1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
|
|
"""abydos.clustering. |
20
|
|
|
|
21
|
|
|
The clustering module implements clustering algorithms such as: |
22
|
|
|
- mean pair-wise similarity |
23
|
|
|
""" |
24
|
|
|
|
25
|
|
|
from __future__ import division, unicode_literals |
26
|
|
|
|
27
|
|
|
from six.moves import range |
28
|
|
|
|
29
|
|
|
from .distance import sim |
30
|
|
|
from .stats import amean, hmean, std |
31
|
|
|
|
32
|
|
|
__all__ = ['mean_pairwise_similarity', 'pairwise_similarity_statistics'] |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
def mean_pairwise_similarity(collection, metric=sim, |
36
|
|
|
mean_func=hmean, symmetric=False): |
37
|
|
|
"""Calculate the mean pairwise similarity of a collection of strings. |
38
|
|
|
|
39
|
|
|
Takes the mean of the pairwise similarity between each member of a |
40
|
|
|
collection, optionally in both directions (for asymmetric similarity |
41
|
|
|
metrics. |
42
|
|
|
|
43
|
|
|
:param list collection: a collection of terms or a string that can be split |
44
|
|
|
:param function metric: a similarity metric function |
45
|
|
|
:param function mean_func: a mean function that takes a list of values and |
46
|
|
|
returns a float |
47
|
|
|
:param bool symmetric: set to True if all pairwise similarities should be |
48
|
|
|
calculated in both directions |
49
|
|
|
:returns: the mean pairwise similarity of a collection of strings |
50
|
|
|
:rtype: str |
51
|
|
|
|
52
|
|
|
>>> round(mean_pairwise_similarity(['Christopher', 'Kristof', |
53
|
|
|
... 'Christobal']), 12) |
54
|
|
|
0.519801980198 |
55
|
|
|
>>> round(mean_pairwise_similarity(['Niall', 'Neal', 'Neil']), 12) |
56
|
|
|
0.545454545455 |
57
|
|
|
""" |
58
|
|
|
if not callable(mean_func): |
59
|
|
|
raise ValueError('mean_func must be a function') |
60
|
|
|
if not callable(metric): |
61
|
|
|
raise ValueError('metric must be a function') |
62
|
|
|
|
63
|
|
|
if hasattr(collection, 'split'): |
64
|
|
|
collection = collection.split() |
65
|
|
|
if not hasattr(collection, '__iter__'): |
66
|
|
|
raise ValueError('collection is neither a string nor iterable type') |
67
|
|
|
elif len(collection) < 2: |
68
|
|
|
raise ValueError('collection has fewer than two members') |
69
|
|
|
|
70
|
|
|
collection = list(collection) |
71
|
|
|
|
72
|
|
|
pairwise_values = [] |
73
|
|
|
|
74
|
|
|
for i in range(len(collection)): |
|
|
|
|
75
|
|
|
for j in range(i+1, len(collection)): |
76
|
|
|
pairwise_values.append(metric(collection[i], collection[j])) |
77
|
|
|
if symmetric: |
78
|
|
|
pairwise_values.append(metric(collection[j], collection[i])) |
79
|
|
|
|
80
|
|
|
return mean_func(pairwise_values) |
81
|
|
|
|
82
|
|
|
|
83
|
|
|
def pairwise_similarity_statistics(src_collection, tar_collection, metric=sim, |
84
|
|
|
mean_func=amean, symmetric=False): |
85
|
|
|
"""Calculate the mean pairwise similarity of a collection of strings. |
86
|
|
|
|
87
|
|
|
Takes the mean of the pairwise similarity between each member of a |
88
|
|
|
collection, optionally in both directions (for asymmetric similarity |
89
|
|
|
metrics. |
90
|
|
|
|
91
|
|
|
:param list src_collection: a collection of terms or a string that can be |
92
|
|
|
split |
93
|
|
|
:param list tar_collection: a collection of terms or a string that can be |
94
|
|
|
split |
95
|
|
|
:param function metric: a similarity metric function |
96
|
|
|
:param function mean_func: a mean function that takes a list of values and |
97
|
|
|
returns a float |
98
|
|
|
:param bool symmetric: set to True if all pairwise similarities should be |
99
|
|
|
calculated in both directions |
100
|
|
|
:returns: the max, min, mean, and standard deviation of similarities |
101
|
|
|
:rtype: str |
102
|
|
|
""" |
103
|
|
|
if not callable(mean_func): |
104
|
|
|
raise ValueError('mean_func must be a function') |
105
|
|
|
if not callable(metric): |
106
|
|
|
raise ValueError('metric must be a function') |
107
|
|
|
|
108
|
|
|
if hasattr(src_collection, 'split'): |
109
|
|
|
src_collection = src_collection.split() |
110
|
|
|
if not hasattr(src_collection, '__iter__'): |
111
|
|
|
raise ValueError('src_collection is neither a string nor iterable') |
112
|
|
|
|
113
|
|
|
if hasattr(tar_collection, 'split'): |
114
|
|
|
tar_collection = tar_collection.split() |
115
|
|
|
if not hasattr(tar_collection, '__iter__'): |
116
|
|
|
raise ValueError('tar_collection is neither a string nor iterable') |
117
|
|
|
|
118
|
|
|
src_collection = list(src_collection) |
119
|
|
|
tar_collection = list(tar_collection) |
120
|
|
|
|
121
|
|
|
pairwise_values = [] |
122
|
|
|
|
123
|
|
|
for src in src_collection: |
124
|
|
|
for tar in tar_collection: |
125
|
|
|
pairwise_values.append(metric(src, tar)) |
126
|
|
|
if symmetric: |
127
|
|
|
pairwise_values.append(metric(tar, src)) |
128
|
|
|
|
129
|
|
|
return (max(pairwise_values), min(pairwise_values), |
130
|
|
|
mean_func(pairwise_values), std(pairwise_values, mean_func, 0)) |
131
|
|
|
|
132
|
|
|
|
133
|
|
|
if __name__ == '__main__': |
134
|
|
|
import doctest |
135
|
|
|
doctest.testmod() |
136
|
|
|
|