|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
|
4
|
|
|
# This file is part of Abydos. |
|
5
|
|
|
# |
|
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
|
7
|
|
|
# it under the terms of the GNU General Public License as published by |
|
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
|
9
|
|
|
# (at your option) any later version. |
|
10
|
|
|
# |
|
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
|
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
14
|
|
|
# GNU General Public License for more details. |
|
15
|
|
|
# |
|
16
|
|
|
# You should have received a copy of the GNU General Public License |
|
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
|
18
|
|
|
|
|
19
|
1 |
|
"""abydos.distance._damerau_levenshtein. |
|
20
|
|
|
|
|
21
|
|
|
Damerau-Levenshtein distance |
|
22
|
|
|
""" |
|
23
|
|
|
|
|
24
|
1 |
|
from __future__ import ( |
|
25
|
|
|
absolute_import, |
|
26
|
|
|
division, |
|
27
|
|
|
print_function, |
|
28
|
|
|
unicode_literals, |
|
29
|
|
|
) |
|
30
|
|
|
|
|
31
|
1 |
|
from sys import maxsize |
|
32
|
|
|
|
|
33
|
1 |
|
from numpy import int as np_int |
|
34
|
1 |
|
from numpy import zeros as np_zeros |
|
35
|
|
|
|
|
36
|
1 |
|
from six.moves import range |
|
37
|
|
|
|
|
38
|
1 |
|
from ._distance import _Distance |
|
39
|
|
|
|
|
40
|
1 |
|
__all__ = [ |
|
41
|
|
|
'DamerauLevenshtein', |
|
42
|
|
|
'damerau_levenshtein', |
|
43
|
|
|
'dist_damerau', |
|
44
|
|
|
'sim_damerau', |
|
45
|
|
|
] |
|
46
|
|
|
|
|
47
|
|
|
|
|
48
|
1 |
|
class DamerauLevenshtein(_Distance): |
|
|
|
|
|
|
49
|
|
|
"""Damerau-Levenshtein distance. |
|
50
|
|
|
|
|
51
|
|
|
This computes the Damerau-Levenshtein distance :cite:`Damerau:1964`. |
|
52
|
|
|
Damerau-Levenshtein code is based on Java code by Kevin L. Stern |
|
53
|
|
|
:cite:`Stern:2014`, under the MIT license: |
|
54
|
|
|
https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/string/DamerauLevenshteinAlgorithm.java |
|
55
|
|
|
""" |
|
56
|
|
|
|
|
57
|
1 |
|
def dist_abs(self, src, tar, cost=(1, 1, 1, 1)): |
|
|
|
|
|
|
58
|
|
|
"""Return the Damerau-Levenshtein distance between two strings. |
|
59
|
|
|
|
|
60
|
|
|
Args: |
|
61
|
|
|
src (str): Source string for comparison |
|
62
|
|
|
tar (str): Target string for comparison |
|
63
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
|
64
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
|
65
|
|
|
respectively (by default: (1, 1, 1, 1)) |
|
66
|
|
|
|
|
67
|
|
|
Returns: |
|
68
|
|
|
int (may return a float if cost has float values): The |
|
69
|
|
|
Damerau-Levenshtein distance between src & tar |
|
70
|
|
|
|
|
71
|
|
|
Raises: |
|
72
|
|
|
ValueError: Unsupported cost assignment; the cost of two |
|
73
|
|
|
transpositions must not be less than the cost of an insert plus |
|
74
|
|
|
a delete. |
|
75
|
|
|
|
|
76
|
|
|
Examples: |
|
77
|
|
|
>>> cmp = DamerauLevenshtein() |
|
78
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
|
79
|
|
|
1 |
|
80
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
|
81
|
|
|
3 |
|
82
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
|
83
|
|
|
7 |
|
84
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
|
85
|
|
|
2 |
|
86
|
|
|
|
|
87
|
|
|
""" |
|
88
|
1 |
|
ins_cost, del_cost, sub_cost, trans_cost = cost |
|
89
|
|
|
|
|
90
|
1 |
|
if src == tar: |
|
91
|
1 |
|
return 0 |
|
92
|
1 |
|
if not src: |
|
93
|
1 |
|
return len(tar) * ins_cost |
|
94
|
1 |
|
if not tar: |
|
95
|
1 |
|
return len(src) * del_cost |
|
96
|
|
|
|
|
97
|
1 |
|
if 2 * trans_cost < ins_cost + del_cost: |
|
98
|
1 |
|
raise ValueError( |
|
99
|
|
|
'Unsupported cost assignment; the cost of two transpositions ' |
|
100
|
|
|
+ 'must not be less than the cost of an insert plus a delete.' |
|
101
|
|
|
) |
|
102
|
|
|
|
|
103
|
1 |
|
d_mat = np_zeros((len(src)) * (len(tar)), dtype=np_int).reshape( |
|
104
|
|
|
(len(src), len(tar)) |
|
105
|
|
|
) |
|
106
|
|
|
|
|
107
|
1 |
|
if src[0] != tar[0]: |
|
108
|
1 |
|
d_mat[0, 0] = min(sub_cost, ins_cost + del_cost) |
|
109
|
|
|
|
|
110
|
1 |
|
src_index_by_character = {src[0]: 0} |
|
111
|
1 |
|
for i in range(1, len(src)): |
|
112
|
1 |
|
del_distance = d_mat[i - 1, 0] + del_cost |
|
113
|
1 |
|
ins_distance = (i + 1) * del_cost + ins_cost |
|
114
|
1 |
|
match_distance = i * del_cost + ( |
|
115
|
|
|
0 if src[i] == tar[0] else sub_cost |
|
116
|
|
|
) |
|
117
|
1 |
|
d_mat[i, 0] = min(del_distance, ins_distance, match_distance) |
|
118
|
|
|
|
|
119
|
1 |
|
for j in range(1, len(tar)): |
|
120
|
1 |
|
del_distance = (j + 1) * ins_cost + del_cost |
|
121
|
1 |
|
ins_distance = d_mat[0, j - 1] + ins_cost |
|
122
|
1 |
|
match_distance = j * ins_cost + ( |
|
123
|
|
|
0 if src[0] == tar[j] else sub_cost |
|
124
|
|
|
) |
|
125
|
1 |
|
d_mat[0, j] = min(del_distance, ins_distance, match_distance) |
|
126
|
|
|
|
|
127
|
1 |
|
for i in range(1, len(src)): |
|
128
|
1 |
|
max_src_letter_match_index = 0 if src[i] == tar[0] else -1 |
|
129
|
1 |
|
for j in range(1, len(tar)): |
|
130
|
1 |
|
candidate_swap_index = ( |
|
131
|
|
|
-1 |
|
132
|
|
|
if tar[j] not in src_index_by_character |
|
133
|
|
|
else src_index_by_character[tar[j]] |
|
134
|
|
|
) |
|
135
|
1 |
|
j_swap = max_src_letter_match_index |
|
136
|
1 |
|
del_distance = d_mat[i - 1, j] + del_cost |
|
137
|
1 |
|
ins_distance = d_mat[i, j - 1] + ins_cost |
|
138
|
1 |
|
match_distance = d_mat[i - 1, j - 1] |
|
139
|
1 |
|
if src[i] != tar[j]: |
|
140
|
1 |
|
match_distance += sub_cost |
|
141
|
|
|
else: |
|
142
|
1 |
|
max_src_letter_match_index = j |
|
143
|
|
|
|
|
144
|
1 |
|
if candidate_swap_index != -1 and j_swap != -1: |
|
145
|
1 |
|
i_swap = candidate_swap_index |
|
146
|
|
|
|
|
147
|
1 |
|
if i_swap == 0 and j_swap == 0: |
|
148
|
1 |
|
pre_swap_cost = 0 |
|
149
|
|
|
else: |
|
150
|
1 |
|
pre_swap_cost = d_mat[ |
|
151
|
|
|
max(0, i_swap - 1), max(0, j_swap - 1) |
|
152
|
|
|
] |
|
153
|
1 |
|
swap_distance = ( |
|
154
|
|
|
pre_swap_cost |
|
155
|
|
|
+ (i - i_swap - 1) * del_cost |
|
156
|
|
|
+ (j - j_swap - 1) * ins_cost |
|
157
|
|
|
+ trans_cost |
|
158
|
|
|
) |
|
159
|
|
|
else: |
|
160
|
1 |
|
swap_distance = maxsize |
|
161
|
|
|
|
|
162
|
1 |
|
d_mat[i, j] = min( |
|
163
|
|
|
del_distance, ins_distance, match_distance, swap_distance |
|
164
|
|
|
) |
|
165
|
1 |
|
src_index_by_character[src[i]] = i |
|
166
|
|
|
|
|
167
|
1 |
|
return d_mat[len(src) - 1, len(tar) - 1] |
|
168
|
|
|
|
|
169
|
1 |
|
def dist(self, src, tar, cost=(1, 1, 1, 1)): |
|
|
|
|
|
|
170
|
|
|
"""Return the Damerau-Levenshtein similarity of two strings. |
|
171
|
|
|
|
|
172
|
|
|
Damerau-Levenshtein distance normalized to the interval [0, 1]. |
|
173
|
|
|
|
|
174
|
|
|
The Damerau-Levenshtein distance is normalized by dividing the |
|
175
|
|
|
Damerau-Levenshtein distance by the greater of |
|
176
|
|
|
the number of characters in src times the cost of a delete and |
|
177
|
|
|
the number of characters in tar times the cost of an insert. |
|
178
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
|
179
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
|
180
|
|
|
|
|
181
|
|
|
Args: |
|
182
|
|
|
src (str): Source string for comparison |
|
183
|
|
|
tar (str): Target string for comparison |
|
184
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
|
185
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
|
186
|
|
|
respectively (by default: (1, 1, 1, 1)) |
|
187
|
|
|
|
|
188
|
|
|
Returns: |
|
189
|
|
|
float: The normalized Damerau-Levenshtein distance |
|
190
|
|
|
|
|
191
|
|
|
Examples: |
|
192
|
|
|
>>> cmp = DamerauLevenshtein() |
|
193
|
|
|
>>> round(cmp.dist('cat', 'hat'), 12) |
|
194
|
|
|
0.333333333333 |
|
195
|
|
|
>>> round(cmp.dist('Niall', 'Neil'), 12) |
|
196
|
|
|
0.6 |
|
197
|
|
|
>>> cmp.dist('aluminum', 'Catalan') |
|
198
|
|
|
0.875 |
|
199
|
|
|
>>> cmp.dist('ATCG', 'TAGC') |
|
200
|
|
|
0.5 |
|
201
|
|
|
|
|
202
|
|
|
""" |
|
203
|
1 |
|
if src == tar: |
|
204
|
1 |
|
return 0.0 |
|
205
|
1 |
|
ins_cost, del_cost = cost[:2] |
|
206
|
1 |
|
return self.dist_abs(src, tar, cost) / ( |
|
207
|
|
|
max(len(src) * del_cost, len(tar) * ins_cost) |
|
208
|
|
|
) |
|
209
|
|
|
|
|
210
|
|
|
|
|
211
|
1 |
|
def damerau_levenshtein(src, tar, cost=(1, 1, 1, 1)): |
|
212
|
|
|
"""Return the Damerau-Levenshtein distance between two strings. |
|
213
|
|
|
|
|
214
|
|
|
This is a wrapper of :py:meth:`DamerauLevenshtein.dist_abs`. |
|
215
|
|
|
|
|
216
|
|
|
Args: |
|
217
|
|
|
src (str): Source string for comparison |
|
218
|
|
|
tar (str): Target string for comparison |
|
219
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
|
220
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
|
221
|
|
|
respectively (by default: (1, 1, 1, 1)) |
|
222
|
|
|
|
|
223
|
|
|
Returns: |
|
224
|
|
|
int (may return a float if cost has float values): The |
|
225
|
|
|
Damerau-Levenshtein distance between src & tar |
|
226
|
|
|
|
|
227
|
|
|
Examples: |
|
228
|
|
|
>>> damerau_levenshtein('cat', 'hat') |
|
229
|
|
|
1 |
|
230
|
|
|
>>> damerau_levenshtein('Niall', 'Neil') |
|
231
|
|
|
3 |
|
232
|
|
|
>>> damerau_levenshtein('aluminum', 'Catalan') |
|
233
|
|
|
7 |
|
234
|
|
|
>>> damerau_levenshtein('ATCG', 'TAGC') |
|
235
|
|
|
2 |
|
236
|
|
|
|
|
237
|
|
|
""" |
|
238
|
1 |
|
return DamerauLevenshtein().dist_abs(src, tar, cost) |
|
239
|
|
|
|
|
240
|
|
|
|
|
241
|
1 |
|
def dist_damerau(src, tar, cost=(1, 1, 1, 1)): |
|
242
|
|
|
"""Return the Damerau-Levenshtein similarity of two strings. |
|
243
|
|
|
|
|
244
|
|
|
This is a wrapper of :py:meth:`DamerauLevenshtein.dist`. |
|
245
|
|
|
|
|
246
|
|
|
Args: |
|
247
|
|
|
src (str): Source string for comparison |
|
248
|
|
|
tar (str): Target string for comparison |
|
249
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
|
250
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
|
251
|
|
|
respectively (by default: (1, 1, 1, 1)) |
|
252
|
|
|
|
|
253
|
|
|
Returns: |
|
254
|
|
|
float: The normalized Damerau-Levenshtein distance |
|
255
|
|
|
|
|
256
|
|
|
Examples: |
|
257
|
|
|
>>> round(dist_damerau('cat', 'hat'), 12) |
|
258
|
|
|
0.333333333333 |
|
259
|
|
|
>>> round(dist_damerau('Niall', 'Neil'), 12) |
|
260
|
|
|
0.6 |
|
261
|
|
|
>>> dist_damerau('aluminum', 'Catalan') |
|
262
|
|
|
0.875 |
|
263
|
|
|
>>> dist_damerau('ATCG', 'TAGC') |
|
264
|
|
|
0.5 |
|
265
|
|
|
|
|
266
|
|
|
""" |
|
267
|
1 |
|
return DamerauLevenshtein().dist(src, tar, cost) |
|
268
|
|
|
|
|
269
|
|
|
|
|
270
|
1 |
|
def sim_damerau(src, tar, cost=(1, 1, 1, 1)): |
|
271
|
|
|
"""Return the Damerau-Levenshtein similarity of two strings. |
|
272
|
|
|
|
|
273
|
|
|
This is a wrapper of :py:meth:`DamerauLevenshtein.sim`. |
|
274
|
|
|
|
|
275
|
|
|
Args: |
|
276
|
|
|
src (str): Source string for comparison |
|
277
|
|
|
tar (str): Target string for comparison |
|
278
|
|
|
cost (tuple): a 4-tuple representing the cost of the four possible |
|
279
|
|
|
edits: inserts, deletes, substitutions, and transpositions, |
|
280
|
|
|
respectively (by default: (1, 1, 1, 1)) |
|
281
|
|
|
|
|
282
|
|
|
Returns: |
|
283
|
|
|
float: The normalized Damerau-Levenshtein similarity |
|
284
|
|
|
|
|
285
|
|
|
Examples: |
|
286
|
|
|
>>> round(sim_damerau('cat', 'hat'), 12) |
|
287
|
|
|
0.666666666667 |
|
288
|
|
|
>>> round(sim_damerau('Niall', 'Neil'), 12) |
|
289
|
|
|
0.4 |
|
290
|
|
|
>>> sim_damerau('aluminum', 'Catalan') |
|
291
|
|
|
0.125 |
|
292
|
|
|
>>> sim_damerau('ATCG', 'TAGC') |
|
293
|
|
|
0.5 |
|
294
|
|
|
|
|
295
|
|
|
""" |
|
296
|
1 |
|
return DamerauLevenshtein().sim(src, tar, cost) |
|
297
|
|
|
|
|
298
|
|
|
|
|
299
|
|
|
if __name__ == '__main__': |
|
300
|
|
|
import doctest |
|
301
|
|
|
|
|
302
|
|
|
doctest.testmod() |
|
303
|
|
|
|