1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
|
3
|
|
|
# Copyright 2014-2018 by Christopher C. Little. |
4
|
|
|
# This file is part of Abydos. |
5
|
|
|
# |
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
7
|
|
|
# it under the terms of the GNU General Public License as published by |
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
9
|
|
|
# (at your option) any later version. |
10
|
|
|
# |
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14
|
|
|
# GNU General Public License for more details. |
15
|
|
|
# |
16
|
|
|
# You should have received a copy of the GNU General Public License |
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
18
|
|
|
|
19
|
1 |
|
"""abydos.distance._needleman_wunsch. |
20
|
|
|
|
21
|
|
|
Needleman-Wunsch score |
22
|
|
|
""" |
23
|
|
|
|
24
|
1 |
|
from __future__ import ( |
25
|
|
|
absolute_import, |
26
|
|
|
division, |
27
|
|
|
print_function, |
28
|
|
|
unicode_literals, |
29
|
|
|
) |
30
|
|
|
|
31
|
1 |
|
from numpy import float32 as np_float32 |
32
|
1 |
|
from numpy import zeros as np_zeros |
33
|
|
|
|
34
|
1 |
|
from six.moves import range |
35
|
|
|
|
36
|
1 |
|
from ._distance import _Distance |
37
|
1 |
|
from ._ident import sim_ident |
38
|
|
|
|
39
|
1 |
|
__all__ = ['NeedlemanWunsch', 'needleman_wunsch'] |
40
|
|
|
|
41
|
|
|
|
42
|
1 |
|
class NeedlemanWunsch(_Distance): |
43
|
|
|
"""Needleman-Wunsch score. |
44
|
|
|
|
45
|
|
|
The Needleman-Wunsch score :cite:`Needleman:1970` is a standard edit |
46
|
|
|
distance measure. |
47
|
|
|
""" |
48
|
|
|
|
49
|
1 |
|
@staticmethod |
50
|
1 |
|
def sim_matrix( |
51
|
|
|
src, |
52
|
|
|
tar, |
53
|
|
|
mat=None, |
54
|
|
|
mismatch_cost=0, |
55
|
|
|
match_cost=1, |
56
|
|
|
symmetric=True, |
57
|
|
|
alphabet=None, |
58
|
|
|
): |
59
|
|
|
"""Return the matrix similarity of two strings. |
60
|
|
|
|
61
|
|
|
With the default parameters, this is identical to sim_ident. |
62
|
|
|
It is possible for sim_matrix to return values outside of the range |
63
|
|
|
:math:`[0, 1]`, if values outside that range are present in mat, |
64
|
|
|
mismatch_cost, or match_cost. |
65
|
|
|
|
66
|
|
|
Parameters |
67
|
|
|
---------- |
68
|
|
|
src : str |
69
|
|
|
Source string for comparison |
70
|
|
|
tar : str |
71
|
|
|
Target string for comparison |
72
|
|
|
mat : dict |
73
|
|
|
A dict mapping tuples to costs; the tuples are (src, tar) pairs of |
74
|
|
|
symbols from the alphabet parameter |
75
|
|
|
mismatch_cost : float |
76
|
|
|
The value returned if (src, tar) is absent from mat when src does |
77
|
|
|
not equal tar |
78
|
|
|
match_cost : float |
79
|
|
|
The value returned if (src, tar) is absent from mat when src equals |
80
|
|
|
tar |
81
|
|
|
symmetric : bool |
82
|
|
|
True if the cost of src not matching tar is identical to the cost |
83
|
|
|
of tar not matching src; in this case, the values in mat need only |
84
|
|
|
contain (src, tar) or (tar, src), not both |
85
|
|
|
alphabet : str |
86
|
|
|
A collection of tokens from which src and tar are drawn; if this is |
87
|
|
|
defined a ValueError is raised if either tar or src is not found in |
88
|
|
|
alphabet |
89
|
|
|
|
90
|
|
|
Returns |
91
|
|
|
------- |
92
|
|
|
float |
93
|
|
|
Matrix similarity |
94
|
|
|
|
95
|
|
|
Raises |
96
|
|
|
------ |
97
|
|
|
ValueError |
98
|
|
|
src value not in alphabet |
99
|
|
|
ValueError |
100
|
|
|
tar value not in alphabet |
101
|
|
|
|
102
|
|
|
Examples |
103
|
|
|
-------- |
104
|
|
|
>>> NeedlemanWunsch.sim_matrix('cat', 'hat') |
105
|
|
|
0 |
106
|
|
|
>>> NeedlemanWunsch.sim_matrix('hat', 'hat') |
107
|
|
|
1 |
108
|
|
|
|
109
|
|
|
""" |
110
|
1 |
|
if alphabet: |
111
|
1 |
|
alphabet = tuple(alphabet) |
112
|
1 |
|
for i in src: |
113
|
1 |
|
if i not in alphabet: |
114
|
1 |
|
raise ValueError('src value not in alphabet') |
115
|
1 |
|
for i in tar: |
116
|
1 |
|
if i not in alphabet: |
117
|
1 |
|
raise ValueError('tar value not in alphabet') |
118
|
|
|
|
119
|
1 |
|
if src == tar: |
120
|
1 |
|
if mat and (src, src) in mat: |
121
|
1 |
|
return mat[(src, src)] |
122
|
1 |
|
return match_cost |
123
|
1 |
|
if mat and (src, tar) in mat: |
124
|
1 |
|
return mat[(src, tar)] |
125
|
1 |
|
elif symmetric and mat and (tar, src) in mat: |
126
|
1 |
|
return mat[(tar, src)] |
127
|
1 |
|
return mismatch_cost |
128
|
|
|
|
129
|
1 |
View Code Duplication |
def dist_abs(self, src, tar, gap_cost=1, sim_func=sim_ident): |
|
|
|
|
130
|
|
|
"""Return the Needleman-Wunsch score of two strings. |
131
|
|
|
|
132
|
|
|
Parameters |
133
|
|
|
---------- |
134
|
|
|
src : str |
135
|
|
|
Source string for comparison |
136
|
|
|
tar : str |
137
|
|
|
Target string for comparison |
138
|
|
|
gap_cost : float |
139
|
|
|
The cost of an alignment gap (1 by default) |
140
|
|
|
sim_func : function |
141
|
|
|
A function that returns the similarity of two characters (identity |
142
|
|
|
similarity by default) |
143
|
|
|
|
144
|
|
|
Returns |
145
|
|
|
------- |
146
|
|
|
float |
147
|
|
|
Needleman-Wunsch score |
148
|
|
|
|
149
|
|
|
Examples |
150
|
|
|
-------- |
151
|
|
|
>>> cmp = NeedlemanWunsch() |
152
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
153
|
|
|
2.0 |
154
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
155
|
|
|
1.0 |
156
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
157
|
|
|
-1.0 |
158
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
159
|
|
|
0.0 |
160
|
|
|
|
161
|
|
|
""" |
162
|
1 |
|
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float32) |
163
|
|
|
|
164
|
1 |
|
for i in range(len(src) + 1): |
165
|
1 |
|
d_mat[i, 0] = -(i * gap_cost) |
166
|
1 |
|
for j in range(len(tar) + 1): |
167
|
1 |
|
d_mat[0, j] = -(j * gap_cost) |
168
|
1 |
|
for i in range(1, len(src) + 1): |
169
|
1 |
|
for j in range(1, len(tar) + 1): |
170
|
1 |
|
match = d_mat[i - 1, j - 1] + sim_func(src[i - 1], tar[j - 1]) |
171
|
1 |
|
delete = d_mat[i - 1, j] - gap_cost |
172
|
1 |
|
insert = d_mat[i, j - 1] - gap_cost |
173
|
1 |
|
d_mat[i, j] = max(match, delete, insert) |
174
|
1 |
|
return d_mat[d_mat.shape[0] - 1, d_mat.shape[1] - 1] |
175
|
|
|
|
176
|
|
|
|
177
|
1 |
|
def needleman_wunsch(src, tar, gap_cost=1, sim_func=sim_ident): |
178
|
|
|
"""Return the Needleman-Wunsch score of two strings. |
179
|
|
|
|
180
|
|
|
This is a wrapper for :py:meth:`NeedlemanWunsch.dist_abs`. |
181
|
|
|
|
182
|
|
|
Parameters |
183
|
|
|
---------- |
184
|
|
|
src : str |
185
|
|
|
Source string for comparison |
186
|
|
|
tar : str |
187
|
|
|
Target string for comparison |
188
|
|
|
gap_cost : float |
189
|
|
|
The cost of an alignment gap (1 by default) |
190
|
|
|
sim_func : function |
191
|
|
|
A function that returns the similarity of two characters (identity |
192
|
|
|
similarity by default) |
193
|
|
|
|
194
|
|
|
Returns |
195
|
|
|
------- |
196
|
|
|
float |
197
|
|
|
Needleman-Wunsch score |
198
|
|
|
|
199
|
|
|
Examples |
200
|
|
|
-------- |
201
|
|
|
>>> needleman_wunsch('cat', 'hat') |
202
|
|
|
2.0 |
203
|
|
|
>>> needleman_wunsch('Niall', 'Neil') |
204
|
|
|
1.0 |
205
|
|
|
>>> needleman_wunsch('aluminum', 'Catalan') |
206
|
|
|
-1.0 |
207
|
|
|
>>> needleman_wunsch('ATCG', 'TAGC') |
208
|
|
|
0.0 |
209
|
|
|
|
210
|
|
|
""" |
211
|
1 |
|
return NeedlemanWunsch().dist_abs(src, tar, gap_cost, sim_func) |
212
|
|
|
|
213
|
|
|
|
214
|
|
|
if __name__ == '__main__': |
215
|
|
|
import doctest |
216
|
|
|
|
217
|
|
|
doctest.testmod() |
218
|
|
|
|