1
|
|
|
# Copyright 2014-2020 by Christopher C. Little. |
2
|
|
|
# This file is part of Abydos. |
3
|
|
|
# |
4
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
5
|
|
|
# it under the terms of the GNU General Public License as published by |
6
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
7
|
|
|
# (at your option) any later version. |
8
|
|
|
# |
9
|
|
|
# Abydos is distributed in the hope that it will be useful, |
10
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
11
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12
|
|
|
# GNU General Public License for more details. |
13
|
|
|
# |
14
|
|
|
# You should have received a copy of the GNU General Public License |
15
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
16
|
|
|
|
17
|
|
|
"""abydos.distance._strcmp95. |
18
|
|
|
|
19
|
1 |
|
The strcmp95 algorithm variant of Jaro-Winkler distance |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
from collections import defaultdict |
23
|
|
|
from typing import Any, DefaultDict, Tuple |
24
|
1 |
|
|
25
|
|
|
from ._distance import _Distance |
26
|
|
|
|
27
|
|
|
__all__ = ['Strcmp95'] |
28
|
|
|
|
29
|
|
|
|
30
|
|
|
class Strcmp95(_Distance): |
31
|
1 |
|
"""Strcmp95. |
32
|
|
|
|
33
|
1 |
|
This is a Python translation of the C code for strcmp95: |
34
|
|
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
35
|
1 |
|
:cite:`Winkler:1994`. |
36
|
|
|
The above file is a US Government publication and, accordingly, |
37
|
1 |
|
in the public domain. |
38
|
1 |
|
|
39
|
|
|
This is based on the Jaro-Winkler distance, but also attempts to correct |
40
|
1 |
|
for some common typos and frequently confused characters. It is also |
41
|
|
|
limited to uppercase ASCII characters, so it is appropriate to American |
42
|
|
|
names, but not much else. |
43
|
1 |
|
|
44
|
|
|
.. versionadded:: 0.3.6 |
45
|
|
|
""" |
46
|
|
|
|
47
|
|
|
_sp_mx = ( |
48
|
|
|
('A', 'E'), |
49
|
|
|
('A', 'I'), |
50
|
|
|
('A', 'O'), |
51
|
|
|
('A', 'U'), |
52
|
|
|
('B', 'V'), |
53
|
|
|
('E', 'I'), |
54
|
|
|
('E', 'O'), |
55
|
|
|
('E', 'U'), |
56
|
|
|
('I', 'O'), |
57
|
|
|
('I', 'U'), |
58
|
|
|
('O', 'U'), |
59
|
|
|
('I', 'Y'), |
60
|
1 |
|
('E', 'Y'), |
61
|
|
|
('C', 'G'), |
62
|
|
|
('E', 'F'), |
63
|
|
|
('W', 'U'), |
64
|
|
|
('W', 'V'), |
65
|
|
|
('X', 'K'), |
66
|
|
|
('S', 'Z'), |
67
|
|
|
('X', 'S'), |
68
|
|
|
('Q', 'C'), |
69
|
|
|
('U', 'V'), |
70
|
|
|
('M', 'N'), |
71
|
|
|
('L', 'I'), |
72
|
|
|
('Q', 'O'), |
73
|
|
|
('P', 'R'), |
74
|
|
|
('I', 'J'), |
75
|
|
|
('2', 'Z'), |
76
|
|
|
('5', 'S'), |
77
|
|
|
('8', 'B'), |
78
|
|
|
('1', 'I'), |
79
|
|
|
('1', 'L'), |
80
|
|
|
('0', 'O'), |
81
|
|
|
('0', 'Q'), |
82
|
|
|
('C', 'K'), |
83
|
|
|
('G', 'J'), |
84
|
|
|
) |
85
|
|
|
|
86
|
|
|
def __init__(self, long_strings: bool = False, **kwargs: Any) -> None: |
87
|
|
|
"""Initialize Strcmp95 instance. |
88
|
|
|
|
89
|
|
|
Parameters |
90
|
|
|
---------- |
91
|
|
|
long_strings : bool |
92
|
|
|
Set to True to increase the probability of a match when the number |
93
|
|
|
of matched characters is large. This option allows for a little |
94
|
|
|
more tolerance when the strings are large. It is not an appropriate |
95
|
|
|
test when comparing fixed length fields such as phone and social |
96
|
|
|
security numbers. |
97
|
|
|
**kwargs |
98
|
|
|
Arbitrary keyword arguments |
99
|
1 |
|
|
100
|
|
|
|
101
|
|
|
.. versionadded:: 0.4.0 |
102
|
|
|
|
103
|
|
|
""" |
104
|
|
|
super(Strcmp95, self).__init__(**kwargs) |
105
|
|
|
self._long_strings = long_strings |
106
|
|
|
|
107
|
|
|
def sim(self, src: str, tar: str) -> float: |
108
|
|
|
"""Return the strcmp95 similarity of two strings. |
109
|
|
|
|
110
|
|
|
Parameters |
111
|
|
|
---------- |
112
|
|
|
src : str |
113
|
|
|
Source string for comparison |
114
|
|
|
tar : str |
115
|
|
|
Target string for comparison |
116
|
|
|
|
117
|
1 |
|
Returns |
118
|
1 |
|
------- |
119
|
|
|
float |
120
|
1 |
|
Strcmp95 similarity |
121
|
|
|
|
122
|
|
|
Examples |
123
|
|
|
-------- |
124
|
|
|
>>> cmp = Strcmp95() |
125
|
|
|
>>> cmp.sim('cat', 'hat') |
126
|
|
|
0.7777777777777777 |
127
|
|
|
>>> cmp.sim('Niall', 'Neil') |
128
|
|
|
0.8454999999999999 |
129
|
|
|
>>> cmp.sim('aluminum', 'Catalan') |
130
|
|
|
0.6547619047619048 |
131
|
|
|
>>> cmp.sim('ATCG', 'TAGC') |
132
|
|
|
0.8333333333333334 |
133
|
|
|
|
134
|
|
|
|
135
|
|
|
.. versionadded:: 0.1.0 |
136
|
|
|
.. versionchanged:: 0.3.6 |
137
|
|
|
Encapsulated in class |
138
|
|
|
|
139
|
|
|
""" |
140
|
|
|
|
141
|
|
|
def _in_range(char: str) -> bool: |
142
|
|
|
"""Return True if char is in the range (0, 91). |
143
|
|
|
|
144
|
|
|
Parameters |
145
|
|
|
---------- |
146
|
|
|
char : str |
147
|
|
|
The character to check |
148
|
|
|
|
149
|
|
|
Returns |
150
|
|
|
------- |
151
|
|
|
bool |
152
|
|
|
True if char is in the range (0, 91) |
153
|
|
|
|
154
|
1 |
|
.. versionadded:: 0.1.0 |
155
|
|
|
|
156
|
|
|
""" |
157
|
|
|
return 91 > ord(char) > 0 |
158
|
|
|
|
159
|
|
|
ying = src.strip().upper() |
160
|
|
|
yang = tar.strip().upper() |
161
|
|
|
|
162
|
|
|
if ying == yang: |
163
|
|
|
return 1.0 |
164
|
|
|
# If either string is blank - return - added in Version 2 |
165
|
|
|
if not ying or not yang: |
166
|
|
|
return 0.0 |
167
|
|
|
|
168
|
|
|
adjwt = defaultdict(int) # type: DefaultDict[Tuple[str, str], int] |
169
|
|
|
|
170
|
1 |
|
# Initialize the adjwt array on the first call to the function only. |
171
|
|
|
# The adjwt array is used to give partial credit for characters that |
172
|
1 |
|
# may be errors due to known phonetic or character recognition errors. |
173
|
1 |
|
# A typical example is to match the letter "O" with the number "0" |
174
|
|
|
for tup in self._sp_mx: |
175
|
1 |
|
adjwt[(tup[0], tup[1])] = 3 |
176
|
1 |
|
adjwt[(tup[1], tup[0])] = 3 |
177
|
|
|
|
178
|
1 |
|
if len(ying) > len(yang): |
179
|
1 |
|
search_range = len(ying) |
180
|
|
|
minv = len(yang) |
181
|
1 |
|
else: |
182
|
|
|
search_range = len(yang) |
183
|
|
|
minv = len(ying) |
184
|
|
|
|
185
|
|
|
# Blank out the flags |
186
|
|
|
ying_flag = [0] * search_range |
187
|
1 |
|
yang_flag = [0] * search_range |
188
|
1 |
|
search_range = max(0, search_range // 2 - 1) |
189
|
1 |
|
|
190
|
|
|
# Looking only within the search range, |
191
|
1 |
|
# count and flag the matched pairs. |
192
|
1 |
|
num_com = 0 |
193
|
1 |
|
yl1 = len(yang) - 1 |
194
|
|
|
for i in range(len(ying)): |
195
|
1 |
|
low_lim = (i - search_range) if (i >= search_range) else 0 |
196
|
1 |
|
hi_lim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
197
|
|
|
for j in range(low_lim, hi_lim + 1): |
198
|
|
|
if (yang_flag[j] == 0) and (yang[j] == ying[i]): |
199
|
1 |
|
yang_flag[j] = 1 |
200
|
1 |
|
ying_flag[i] = 1 |
201
|
1 |
|
num_com += 1 |
202
|
|
|
break |
203
|
|
|
|
204
|
|
|
# If no characters in common - return |
205
|
1 |
|
if num_com == 0: |
206
|
1 |
|
return 0.0 |
207
|
1 |
|
|
208
|
1 |
|
# Count the number of transpositions |
209
|
1 |
|
k = n_trans = 0 |
210
|
1 |
|
for i in range(len(ying)): |
211
|
1 |
|
if ying_flag[i] != 0: |
212
|
1 |
|
j = 0 |
213
|
1 |
|
for j in range(k, len(yang)): # pragma: no branch |
214
|
1 |
|
if yang_flag[j] != 0: |
215
|
1 |
|
k = j + 1 |
216
|
|
|
break |
217
|
|
|
if ying[i] != yang[j]: |
218
|
1 |
|
n_trans += 1 |
219
|
1 |
|
n_trans //= 2 |
220
|
|
|
|
221
|
|
|
# Adjust for similarities in unmatched characters |
222
|
1 |
|
n_simi = 0 |
223
|
1 |
|
if minv > num_com: |
224
|
1 |
|
for i in range(len(ying)): |
225
|
1 |
|
if ying_flag[i] == 0 and _in_range(ying[i]): |
226
|
1 |
|
for j in range(len(yang)): |
227
|
1 |
|
if yang_flag[j] == 0 and _in_range(yang[j]): |
228
|
1 |
|
if (ying[i], yang[j]) in adjwt: |
229
|
1 |
|
n_simi += adjwt[(ying[i], yang[j])] |
230
|
1 |
|
yang_flag[j] = 2 |
231
|
1 |
|
break |
232
|
1 |
|
num_sim = n_simi / 10.0 + num_com |
233
|
|
|
|
234
|
|
|
# Main weight computation |
235
|
1 |
|
weight = ( |
236
|
1 |
|
num_sim / len(ying) |
237
|
1 |
|
+ num_sim / len(yang) |
238
|
1 |
|
+ (num_com - n_trans) / num_com |
239
|
1 |
|
) |
240
|
1 |
|
weight /= 3.0 |
241
|
1 |
|
|
242
|
1 |
|
# Continue to boost the weight if the strings are similar |
243
|
1 |
|
if weight > 0.7: |
244
|
1 |
|
|
245
|
1 |
|
# Adjust for having up to the first 4 characters in common |
246
|
|
|
j = 4 if (minv >= 4) else minv |
247
|
|
|
i = 0 |
248
|
1 |
|
while (i < j) and (ying[i] == yang[i]) and (not ying[i].isdigit()): |
249
|
|
|
i += 1 |
250
|
|
|
if i: |
251
|
|
|
weight += i * 0.1 * (1.0 - weight) |
252
|
|
|
|
253
|
1 |
|
# Optionally adjust for long strings. |
254
|
|
|
|
255
|
|
|
# After agreeing beginning chars, at least two more must agree and |
256
|
1 |
|
# the agreeing characters must be > .5 of remaining characters. |
257
|
|
|
if ( |
258
|
|
|
self._long_strings |
259
|
1 |
|
and (minv > 4) |
260
|
1 |
|
and (num_com > i + 1) |
261
|
1 |
|
and (2 * num_com >= minv + i) |
262
|
1 |
|
): |
263
|
1 |
|
if not ying[0].isdigit(): |
264
|
1 |
|
weight += (1.0 - weight) * ( |
265
|
|
|
(num_com - i - 1) / (len(ying) + len(yang) - i * 2 + 2) |
266
|
|
|
) |
267
|
|
|
|
268
|
|
|
return weight |
269
|
|
|
|
270
|
1 |
|
|
271
|
|
|
if __name__ == '__main__': |
272
|
|
|
import doctest |
273
|
|
|
|
274
|
|
|
doctest.testmod() |
275
|
|
|
|