|
1
|
|
|
# Copyright 2014-2020 by Christopher C. Little. |
|
2
|
|
|
# This file is part of Abydos. |
|
3
|
|
|
# |
|
4
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
|
5
|
|
|
# it under the terms of the GNU General Public License as published by |
|
6
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
|
7
|
|
|
# (at your option) any later version. |
|
8
|
|
|
# |
|
9
|
|
|
# Abydos is distributed in the hope that it will be useful, |
|
10
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
11
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
12
|
|
|
# GNU General Public License for more details. |
|
13
|
|
|
# |
|
14
|
|
|
# You should have received a copy of the GNU General Public License |
|
15
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
|
16
|
|
|
|
|
17
|
|
|
"""abydos.distance._levenshtein. |
|
18
|
|
|
|
|
19
|
1 |
|
The distance._Levenshtein module implements string edit distance functions |
|
20
|
|
|
based on Levenshtein distance, including: |
|
21
|
|
|
|
|
22
|
|
|
- Levenshtein distance |
|
23
|
|
|
- Optimal String Alignment distance |
|
24
|
|
|
""" |
|
25
|
|
|
|
|
26
|
|
|
from sys import float_info |
|
27
|
|
|
from typing import Any, Callable, List, Tuple, Union, cast |
|
28
|
1 |
|
|
|
29
|
|
|
import numpy as np |
|
30
|
|
|
|
|
31
|
|
|
from ._distance import _Distance |
|
32
|
|
|
|
|
33
|
|
|
__all__ = ['Levenshtein'] |
|
34
|
|
|
|
|
35
|
1 |
|
|
|
36
|
|
|
class Levenshtein(_Distance): |
|
37
|
1 |
|
"""Levenshtein distance. |
|
38
|
|
|
|
|
39
|
1 |
|
This is the standard edit distance measure. Cf. |
|
40
|
|
|
:cite:`Levenshtein:1965,Levenshtein:1966`. |
|
41
|
1 |
|
|
|
42
|
|
|
Optimal string alignment (aka restricted |
|
43
|
1 |
|
Damerau-Levenshtein distance) :cite:`Boytsov:2011` is also supported. |
|
44
|
1 |
|
|
|
45
|
|
|
The ordinary Levenshtein & Optimal String Alignment distance both |
|
46
|
1 |
|
employ the Wagner-Fischer dynamic programming algorithm |
|
47
|
|
|
:cite:`Wagner:1974`. |
|
48
|
|
|
|
|
49
|
1 |
|
Levenshtein edit distance ordinarily has unit insertion, deletion, and |
|
50
|
|
|
substitution costs. |
|
51
|
|
|
|
|
52
|
|
|
.. versionadded:: 0.3.6 |
|
53
|
|
|
.. versionchanged:: 0.4.0 |
|
54
|
|
|
Added taper option |
|
55
|
|
|
""" |
|
56
|
|
|
|
|
57
|
|
|
def __init__( |
|
58
|
|
|
self, |
|
59
|
|
|
mode: str = 'lev', |
|
60
|
|
|
cost: Tuple[float, float, float, float] = (1, 1, 1, 1), |
|
61
|
|
|
normalizer: Callable[[List[float]], float] = max, |
|
62
|
|
|
taper: bool = False, |
|
63
|
|
|
**kwargs: Any |
|
64
|
|
|
) -> None: |
|
65
|
|
|
"""Initialize Levenshtein instance. |
|
66
|
|
|
|
|
67
|
|
|
Parameters |
|
68
|
|
|
---------- |
|
69
|
|
|
mode : str |
|
70
|
1 |
|
Specifies a mode for computing the Levenshtein distance: |
|
71
|
|
|
|
|
72
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, |
|
73
|
|
|
in which edits may include inserts, deletes, and |
|
74
|
|
|
substitutions |
|
75
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in |
|
76
|
|
|
which edits may include inserts, deletes, substitutions, and |
|
77
|
|
|
transpositions but substrings may only be edited once |
|
78
|
|
|
|
|
79
|
|
|
cost : tuple |
|
80
|
|
|
A 4-tuple representing the cost of the four possible edits: |
|
81
|
|
|
inserts, deletes, substitutions, and transpositions, respectively |
|
82
|
|
|
(by default: (1, 1, 1, 1)) |
|
83
|
|
|
normalizer : function |
|
84
|
|
|
A function that takes an list and computes a normalization term |
|
85
|
|
|
by which the edit distance is divided (max by default). Another |
|
86
|
|
|
good option is the sum function. |
|
87
|
|
|
taper : bool |
|
88
|
|
|
Enables cost tapering. Following :cite:`Zobel:1996`, it causes |
|
89
|
|
|
edits at the start of the string to "just [exceed] twice the |
|
90
|
|
|
minimum penalty for replacement or deletion at the end of the |
|
91
|
|
|
string". |
|
92
|
|
|
**kwargs |
|
93
|
|
|
Arbitrary keyword arguments |
|
94
|
|
|
|
|
95
|
|
|
|
|
96
|
|
|
.. versionadded:: 0.4.0 |
|
97
|
|
|
|
|
98
|
|
|
""" |
|
99
|
|
|
super(Levenshtein, self).__init__(**kwargs) |
|
100
|
|
|
self._mode = mode |
|
101
|
|
|
self._cost = cost |
|
102
|
|
|
self._normalizer = normalizer |
|
103
|
|
|
self._taper_enabled = taper |
|
104
|
|
|
|
|
105
|
|
|
def _taper(self, pos: int, length: int) -> float: |
|
106
|
|
|
return ( |
|
107
|
|
|
round(1 + ((length - pos) / length) * (1 + float_info.epsilon), 15) |
|
108
|
|
|
if self._taper_enabled |
|
109
|
|
|
else 1 |
|
110
|
|
|
) |
|
111
|
|
|
|
|
112
|
1 |
|
def _alignment_matrix( |
|
113
|
1 |
|
self, src: str, tar: str, backtrace: bool = True |
|
114
|
1 |
|
) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: |
|
115
|
1 |
|
"""Return the Levenshtein alignment matrix. |
|
116
|
1 |
|
|
|
117
|
|
|
Parameters |
|
118
|
1 |
|
---------- |
|
119
|
1 |
|
src : str |
|
120
|
|
|
Source string for comparison |
|
121
|
|
|
tar : str |
|
122
|
|
|
Target string for comparison |
|
123
|
|
|
backtrace : bool |
|
124
|
|
|
Return the backtrace matrix as well |
|
125
|
1 |
|
|
|
126
|
|
|
Returns |
|
127
|
|
|
------- |
|
128
|
|
|
numpy.ndarray or tuple(numpy.ndarray, numpy.ndarray) |
|
129
|
|
|
The alignment matrix and (optionally) the backtrace matrix |
|
130
|
|
|
|
|
131
|
|
|
|
|
132
|
|
|
.. versionadded:: 0.4.1 |
|
133
|
|
|
|
|
134
|
|
|
""" |
|
135
|
|
|
ins_cost, del_cost, sub_cost, trans_cost = self._cost |
|
136
|
|
|
|
|
137
|
|
|
src_len = len(src) |
|
138
|
|
|
tar_len = len(tar) |
|
139
|
|
|
max_len = max(src_len, tar_len) |
|
140
|
|
|
|
|
141
|
|
|
d_mat = np.zeros((src_len + 1, tar_len + 1), dtype=np.float_) |
|
142
|
|
|
if backtrace: |
|
143
|
|
|
trace_mat = np.zeros((src_len + 1, tar_len + 1), dtype=np.int8) |
|
144
|
|
|
for i in range(src_len + 1): |
|
145
|
|
|
d_mat[i, 0] = i * self._taper(i, max_len) * del_cost |
|
146
|
1 |
|
if backtrace: |
|
147
|
|
|
trace_mat[i, 0] = 1 |
|
148
|
1 |
|
for j in range(tar_len + 1): |
|
149
|
1 |
|
d_mat[0, j] = j * self._taper(j, max_len) * ins_cost |
|
150
|
1 |
|
if backtrace: |
|
151
|
|
|
trace_mat[0, j] = 0 |
|
152
|
1 |
|
|
|
153
|
1 |
|
for i in range(src_len): |
|
154
|
1 |
|
for j in range(tar_len): |
|
155
|
1 |
|
opts = ( |
|
156
|
1 |
|
d_mat[i + 1, j] |
|
157
|
1 |
|
+ ins_cost * self._taper(1 + max(i, j), max_len), # ins |
|
158
|
1 |
|
d_mat[i, j + 1] |
|
159
|
1 |
|
+ del_cost * self._taper(1 + max(i, j), max_len), # del |
|
160
|
1 |
|
d_mat[i, j] |
|
161
|
1 |
|
+ ( |
|
162
|
1 |
|
sub_cost * self._taper(1 + max(i, j), max_len) |
|
163
|
|
|
if src[i] != tar[j] |
|
164
|
1 |
|
else 0 |
|
165
|
1 |
|
), # sub/== |
|
166
|
1 |
|
) |
|
167
|
|
|
d_mat[i + 1, j + 1] = min(opts) |
|
168
|
|
|
if backtrace: |
|
169
|
|
|
trace_mat[i + 1, j + 1] = int(np.argmin(opts)) |
|
170
|
|
|
|
|
171
|
|
|
if self._mode == 'osa': |
|
172
|
|
|
if ( |
|
173
|
|
|
i + 1 > 1 |
|
174
|
|
|
and j + 1 > 1 |
|
175
|
|
|
and src[i] == tar[j - 1] |
|
176
|
|
|
and src[i - 1] == tar[j] |
|
177
|
|
|
): |
|
178
|
1 |
|
# transposition |
|
179
|
1 |
|
d_mat[i + 1, j + 1] = min( |
|
180
|
1 |
|
d_mat[i + 1, j + 1], |
|
181
|
|
|
d_mat[i - 1, j - 1] |
|
182
|
1 |
|
+ trans_cost * self._taper(1 + max(i, j), max_len), |
|
183
|
1 |
|
) |
|
184
|
|
|
if backtrace: |
|
185
|
|
|
trace_mat[i + 1, j + 1] = 2 |
|
186
|
|
|
|
|
187
|
|
|
if backtrace: |
|
188
|
|
|
return d_mat, trace_mat |
|
|
|
|
|
|
189
|
|
|
return d_mat |
|
190
|
1 |
|
|
|
191
|
|
|
def alignment(self, src: str, tar: str) -> Tuple[float, str, str]: |
|
192
|
|
|
"""Return the Levenshtein alignment of two strings. |
|
193
|
|
|
|
|
194
|
|
|
Parameters |
|
195
|
1 |
|
---------- |
|
196
|
1 |
|
src : str |
|
197
|
|
|
Source string for comparison |
|
198
|
1 |
|
tar : str |
|
199
|
1 |
|
Target string for comparison |
|
200
|
1 |
|
|
|
201
|
|
|
Returns |
|
202
|
1 |
|
------- |
|
203
|
|
|
tuple |
|
204
|
|
|
A tuple containing the Levenshtein distance and the two strings, |
|
205
|
|
|
aligned. |
|
206
|
|
|
|
|
207
|
|
|
Examples |
|
208
|
|
|
-------- |
|
209
|
|
|
>>> cmp = Levenshtein() |
|
210
|
|
|
>>> cmp.alignment('cat', 'hat') |
|
211
|
|
|
(1.0, 'cat', 'hat') |
|
212
|
|
|
>>> cmp.alignment('Niall', 'Neil') |
|
213
|
|
|
(3.0, 'N-iall', 'Nei-l-') |
|
214
|
|
|
>>> cmp.alignment('aluminum', 'Catalan') |
|
215
|
|
|
(7.0, '-aluminum', 'Catalan--') |
|
216
|
|
|
>>> cmp.alignment('ATCG', 'TAGC') |
|
217
|
|
|
(3.0, 'ATCG-', '-TAGC') |
|
218
|
|
|
|
|
219
|
|
|
>>> cmp = Levenshtein(mode='osa') |
|
220
|
|
|
>>> cmp.alignment('ATCG', 'TAGC') |
|
221
|
|
|
(2.0, 'ATCG', 'TAGC') |
|
222
|
|
|
>>> cmp.alignment('ACTG', 'TAGC') |
|
223
|
|
|
(4.0, 'ACT-G-', '--TAGC') |
|
224
|
|
|
|
|
225
|
|
|
|
|
226
|
|
|
.. versionadded:: 0.4.1 |
|
227
|
|
|
|
|
228
|
|
|
""" |
|
229
|
|
|
d_mat, trace_mat = self._alignment_matrix(src, tar, backtrace=True) |
|
230
|
|
|
|
|
231
|
|
|
src_aligned = [] |
|
232
|
|
|
tar_aligned = [] |
|
233
|
|
|
|
|
234
|
|
|
src_pos = len(src) |
|
235
|
|
|
tar_pos = len(tar) |
|
236
|
|
|
|
|
237
|
|
|
distance = d_mat[src_pos, tar_pos] |
|
238
|
|
|
|
|
239
|
|
|
while src_pos and tar_pos: |
|
240
|
1 |
|
|
|
241
|
|
|
src_trace, tar_trace = ( |
|
242
|
1 |
|
(src_pos, tar_pos - 1), |
|
243
|
1 |
|
(src_pos - 1, tar_pos), |
|
244
|
|
|
(src_pos - 1, tar_pos - 1), |
|
245
|
1 |
|
)[trace_mat[src_pos, tar_pos]] |
|
246
|
1 |
|
|
|
247
|
|
|
if src_pos != src_trace and tar_pos != tar_trace: |
|
248
|
1 |
|
src_aligned.append(src[src_trace]) |
|
249
|
|
|
tar_aligned.append(tar[tar_trace]) |
|
250
|
1 |
|
elif src_pos != src_trace: |
|
251
|
|
|
src_aligned.append(src[src_trace]) |
|
252
|
1 |
|
tar_aligned.append('-') |
|
253
|
|
|
else: |
|
254
|
|
|
src_aligned.append('-') |
|
255
|
|
|
tar_aligned.append(tar[tar_trace]) |
|
256
|
|
|
src_pos, tar_pos = src_trace, tar_trace |
|
257
|
|
|
while tar_pos: |
|
258
|
1 |
|
tar_pos -= 1 |
|
259
|
1 |
|
src_aligned.append('-') |
|
260
|
1 |
|
tar_aligned.append(tar[tar_pos]) |
|
261
|
1 |
|
while src_pos: |
|
262
|
1 |
|
src_pos -= 1 |
|
263
|
1 |
|
src_aligned.append(src[src_pos]) |
|
264
|
|
|
tar_aligned.append('-') |
|
265
|
1 |
|
|
|
266
|
1 |
|
return distance, ''.join(src_aligned[::-1]), ''.join(tar_aligned[::-1]) |
|
267
|
1 |
|
|
|
268
|
1 |
|
def dist_abs(self, src: str, tar: str) -> float: |
|
269
|
1 |
|
"""Return the Levenshtein distance between two strings. |
|
270
|
1 |
|
|
|
271
|
1 |
|
Parameters |
|
272
|
1 |
|
---------- |
|
273
|
1 |
|
src : str |
|
274
|
1 |
|
Source string for comparison |
|
275
|
1 |
|
tar : str |
|
276
|
|
|
Target string for comparison |
|
277
|
1 |
|
|
|
278
|
|
|
Returns |
|
279
|
1 |
|
------- |
|
280
|
|
|
int (may return a float if cost has float values) |
|
281
|
|
|
The Levenshtein distance between src & tar |
|
282
|
|
|
|
|
283
|
|
|
Examples |
|
284
|
|
|
-------- |
|
285
|
|
|
>>> cmp = Levenshtein() |
|
286
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
|
287
|
|
|
1 |
|
288
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
|
289
|
|
|
3 |
|
290
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
|
291
|
|
|
7 |
|
292
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
|
293
|
|
|
3 |
|
294
|
|
|
|
|
295
|
|
|
>>> cmp = Levenshtein(mode='osa') |
|
296
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
|
297
|
|
|
2 |
|
298
|
|
|
>>> cmp.dist_abs('ACTG', 'TAGC') |
|
299
|
|
|
4 |
|
300
|
|
|
|
|
301
|
|
|
|
|
302
|
|
|
.. versionadded:: 0.1.0 |
|
303
|
|
|
.. versionchanged:: 0.3.6 |
|
304
|
|
|
Encapsulated in class |
|
305
|
|
|
|
|
306
|
|
|
""" |
|
307
|
|
|
ins_cost, del_cost, sub_cost, trans_cost = self._cost |
|
308
|
|
|
|
|
309
|
|
|
src_len = len(src) |
|
310
|
|
|
tar_len = len(tar) |
|
311
|
|
|
max_len = max(src_len, tar_len) |
|
312
|
|
|
|
|
313
|
|
|
if src == tar: |
|
314
|
|
|
return 0 |
|
315
|
|
|
if not src: |
|
316
|
|
|
return sum( |
|
317
|
|
|
ins_cost * self._taper(pos, max_len) for pos in range(tar_len) |
|
318
|
1 |
|
) |
|
319
|
|
|
if not tar: |
|
320
|
1 |
|
return sum( |
|
321
|
1 |
|
del_cost * self._taper(pos, max_len) for pos in range(src_len) |
|
322
|
1 |
|
) |
|
323
|
|
|
|
|
324
|
1 |
|
d_mat = cast( |
|
325
|
1 |
|
np.ndarray, self._alignment_matrix(src, tar, backtrace=False) |
|
326
|
1 |
|
) |
|
327
|
1 |
|
|
|
328
|
|
|
if int(d_mat[src_len, tar_len]) == d_mat[src_len, tar_len]: |
|
329
|
|
|
return int(d_mat[src_len, tar_len]) |
|
330
|
1 |
|
else: |
|
331
|
1 |
|
return cast(float, d_mat[src_len, tar_len]) |
|
332
|
|
|
|
|
333
|
|
|
def dist(self, src: str, tar: str) -> float: |
|
334
|
|
|
"""Return the normalized Levenshtein distance between two strings. |
|
335
|
1 |
|
|
|
336
|
|
|
The Levenshtein distance is normalized by dividing the Levenshtein |
|
337
|
1 |
|
distance (calculated by either of the two supported methods) by the |
|
338
|
1 |
|
greater of the number of characters in src times the cost of a delete |
|
339
|
|
|
and the number of characters in tar times the cost of an insert. |
|
340
|
1 |
|
For the case in which all operations have :math:`cost = 1`, this is |
|
341
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
|
342
|
1 |
|
|
|
343
|
|
|
Parameters |
|
344
|
|
|
---------- |
|
345
|
|
|
src : str |
|
346
|
|
|
Source string for comparison |
|
347
|
|
|
tar : str |
|
348
|
|
|
Target string for comparison |
|
349
|
|
|
|
|
350
|
|
|
Returns |
|
351
|
|
|
------- |
|
352
|
|
|
float |
|
353
|
|
|
The normalized Levenshtein distance between src & tar |
|
354
|
|
|
|
|
355
|
|
|
Examples |
|
356
|
|
|
-------- |
|
357
|
|
|
>>> cmp = Levenshtein() |
|
358
|
|
|
>>> round(cmp.dist('cat', 'hat'), 12) |
|
359
|
|
|
0.333333333333 |
|
360
|
|
|
>>> round(cmp.dist('Niall', 'Neil'), 12) |
|
361
|
|
|
0.6 |
|
362
|
|
|
>>> cmp.dist('aluminum', 'Catalan') |
|
363
|
|
|
0.875 |
|
364
|
|
|
>>> cmp.dist('ATCG', 'TAGC') |
|
365
|
|
|
0.75 |
|
366
|
|
|
|
|
367
|
|
|
|
|
368
|
|
|
.. versionadded:: 0.1.0 |
|
369
|
|
|
.. versionchanged:: 0.3.6 |
|
370
|
|
|
Encapsulated in class |
|
371
|
|
|
|
|
372
|
|
|
""" |
|
373
|
|
|
if src == tar: |
|
374
|
|
|
return 0.0 |
|
375
|
|
|
ins_cost, del_cost = self._cost[:2] |
|
376
|
|
|
|
|
377
|
|
|
src_len = len(src) |
|
378
|
|
|
tar_len = len(tar) |
|
379
|
|
|
|
|
380
|
|
|
if self._taper_enabled: |
|
381
|
|
|
normalize_term = self._normalizer( |
|
382
|
1 |
|
[ |
|
383
|
1 |
|
sum( |
|
384
|
1 |
|
self._taper(pos, src_len) * del_cost |
|
385
|
|
|
for pos in range(src_len) |
|
386
|
1 |
|
), |
|
387
|
1 |
|
sum( |
|
388
|
|
|
self._taper(pos, tar_len) * ins_cost |
|
389
|
1 |
|
for pos in range(tar_len) |
|
390
|
1 |
|
), |
|
391
|
|
|
] |
|
392
|
|
|
) |
|
393
|
|
|
else: |
|
394
|
|
|
normalize_term = self._normalizer( |
|
395
|
|
|
[src_len * del_cost, tar_len * ins_cost] |
|
396
|
|
|
) |
|
397
|
|
|
|
|
398
|
|
|
return self.dist_abs(src, tar) / normalize_term |
|
399
|
|
|
|
|
400
|
|
|
|
|
401
|
|
|
if __name__ == '__main__': |
|
402
|
|
|
import doctest |
|
403
|
1 |
|
|
|
404
|
|
|
doctest.testmod() |
|
405
|
|
|
|