1
|
|
|
# Copyright 2014-2020 by Christopher C. Little. |
2
|
|
|
# This file is part of Abydos. |
3
|
|
|
# |
4
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
5
|
|
|
# it under the terms of the GNU General Public License as published by |
6
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
7
|
|
|
# (at your option) any later version. |
8
|
|
|
# |
9
|
|
|
# Abydos is distributed in the hope that it will be useful, |
10
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
11
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12
|
|
|
# GNU General Public License for more details. |
13
|
|
|
# |
14
|
|
|
# You should have received a copy of the GNU General Public License |
15
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
16
|
|
|
|
17
|
|
|
"""abydos.distance._jaro_winkler. |
18
|
|
|
|
19
|
1 |
|
The distance._JaroWinkler module implements distance metrics based on |
20
|
|
|
:cite:`Jaro:1989` and subsequent works: |
21
|
|
|
|
22
|
|
|
- Jaro distance |
23
|
|
|
- Jaro-Winkler distance |
24
|
|
|
""" |
25
|
|
|
|
26
|
|
|
from typing import Any |
27
|
|
|
|
28
|
1 |
|
from ._distance import _Distance |
29
|
|
|
from ..tokenizer import QGrams |
30
|
|
|
|
31
|
|
|
__all__ = ['JaroWinkler'] |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
class JaroWinkler(_Distance): |
35
|
1 |
|
"""Jaro-Winkler distance. |
36
|
|
|
|
37
|
1 |
|
Jaro(-Winkler) distance is a string edit distance initially proposed by |
38
|
|
|
Jaro and extended by Winkler :cite:`Jaro:1989,Winkler:1990`. |
39
|
1 |
|
|
40
|
1 |
|
This is Python based on the C code for strcmp95: |
41
|
1 |
|
http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
42
|
|
|
:cite:`Winkler:1994`. The above file is a US Government publication and, |
43
|
1 |
|
accordingly, in the public domain. |
44
|
|
|
|
45
|
|
|
.. versionadded:: 0.3.6 |
46
|
1 |
|
""" |
47
|
|
|
|
48
|
|
|
def __init__( |
49
|
|
|
self, |
50
|
|
|
qval: int = 1, |
51
|
|
|
mode: str = 'winkler', |
52
|
|
|
long_strings: bool = False, |
53
|
|
|
boost_threshold: float = 0.7, |
54
|
|
|
scaling_factor: float = 0.1, |
55
|
|
|
**kwargs: Any |
56
|
|
|
) -> None: |
57
|
|
|
"""Initialize JaroWinkler instance. |
58
|
|
|
|
59
|
|
|
Parameters |
60
|
1 |
|
---------- |
61
|
|
|
qval : int |
62
|
|
|
The length of each q-gram (defaults to 1: character-wise matching) |
63
|
|
|
mode : str |
64
|
|
|
Indicates which variant of this distance metric to compute: |
65
|
|
|
|
66
|
|
|
- ``winkler`` -- computes the Jaro-Winkler distance (default) |
67
|
|
|
which increases the score for matches near the start of the |
68
|
|
|
word |
69
|
|
|
- ``jaro`` -- computes the Jaro distance |
70
|
|
|
|
71
|
|
|
long_strings : bool |
72
|
|
|
Set to True to "Increase the probability of a match when the number |
73
|
|
|
of matched characters is large. This option allows for a little |
74
|
|
|
more tolerance when the strings are large. It is not an appropriate |
75
|
|
|
test when comparing fixed length fields such as phone and social |
76
|
|
|
security numbers." (Used in 'winkler' mode only.) |
77
|
|
|
boost_threshold : float |
78
|
|
|
A value between 0 and 1, below which the Winkler boost is not |
79
|
|
|
applied (defaults to 0.7). (Used in 'winkler' mode only.) |
80
|
|
|
scaling_factor : float |
81
|
|
|
A value between 0 and 0.25, indicating by how much to boost scores |
82
|
|
|
for matching prefixes (defaults to 0.1). (Used in 'winkler' mode |
83
|
|
|
only.) |
84
|
|
|
|
85
|
|
|
|
86
|
|
|
.. versionadded:: 0.4.0 |
87
|
|
|
|
88
|
|
|
""" |
89
|
|
|
super(JaroWinkler, self).__init__(**kwargs) |
90
|
|
|
self._qval = qval |
91
|
|
|
self._mode = mode |
92
|
|
|
self._long_strings = long_strings |
93
|
|
|
self._boost_threshold = boost_threshold |
94
|
|
|
self._scaling_factor = scaling_factor |
95
|
|
|
|
96
|
|
|
def sim(self, src: str, tar: str) -> float: |
97
|
|
|
"""Return the Jaro or Jaro-Winkler similarity of two strings. |
98
|
|
|
|
99
|
|
|
Parameters |
100
|
|
|
---------- |
101
|
1 |
|
src : str |
102
|
1 |
|
Source string for comparison |
103
|
1 |
|
tar : str |
104
|
1 |
|
Target string for comparison |
105
|
1 |
|
|
106
|
1 |
|
Returns |
107
|
|
|
------- |
108
|
1 |
|
float |
109
|
|
|
Jaro or Jaro-Winkler similarity |
110
|
|
|
|
111
|
|
|
Raises |
112
|
|
|
------ |
113
|
|
|
ValueError |
114
|
|
|
Unsupported boost_threshold assignment; boost_threshold must be |
115
|
|
|
between 0 and 1. |
116
|
|
|
ValueError |
117
|
|
|
Unsupported scaling_factor assignment; scaling_factor must be |
118
|
|
|
between 0 and 0.25.' |
119
|
|
|
|
120
|
|
|
Examples |
121
|
|
|
-------- |
122
|
|
|
>>> cmp = JaroWinkler() |
123
|
|
|
>>> round(cmp.sim('cat', 'hat'), 12) |
124
|
|
|
0.777777777778 |
125
|
|
|
>>> round(cmp.sim('Niall', 'Neil'), 12) |
126
|
|
|
0.805 |
127
|
|
|
>>> round(cmp.sim('aluminum', 'Catalan'), 12) |
128
|
|
|
0.60119047619 |
129
|
|
|
>>> round(cmp.sim('ATCG', 'TAGC'), 12) |
130
|
|
|
0.833333333333 |
131
|
|
|
|
132
|
|
|
>>> cmp = JaroWinkler(mode='jaro') |
133
|
|
|
>>> round(cmp.sim('cat', 'hat'), 12) |
134
|
|
|
0.777777777778 |
135
|
|
|
>>> round(cmp.sim('Niall', 'Neil'), 12) |
136
|
|
|
0.783333333333 |
137
|
|
|
>>> round(cmp.sim('aluminum', 'Catalan'), 12) |
138
|
|
|
0.60119047619 |
139
|
|
|
>>> round(cmp.sim('ATCG', 'TAGC'), 12) |
140
|
|
|
0.833333333333 |
141
|
|
|
|
142
|
|
|
|
143
|
|
|
.. versionadded:: 0.1.0 |
144
|
|
|
.. versionchanged:: 0.3.6 |
145
|
|
|
Encapsulated in class |
146
|
|
|
|
147
|
|
|
""" |
148
|
|
|
if self._mode == 'winkler': |
149
|
|
|
if self._boost_threshold > 1 or self._boost_threshold < 0: |
150
|
|
|
raise ValueError( |
151
|
|
|
'Unsupported boost_threshold assignment; ' |
152
|
|
|
+ 'boost_threshold must be between 0 and 1.' |
153
|
|
|
) |
154
|
|
|
if self._scaling_factor > 0.25 or self._scaling_factor < 0: |
155
|
|
|
raise ValueError( |
156
|
|
|
'Unsupported scaling_factor assignment; ' |
157
|
|
|
+ 'scaling_factor must be between 0 and 0.25.' |
158
|
1 |
|
) |
159
|
1 |
|
|
160
|
1 |
|
if src == tar: |
161
|
|
|
return 1.0 |
162
|
|
|
|
163
|
|
|
tokenizer = QGrams(self._qval) |
164
|
1 |
|
tokenizer.tokenize(src.strip()) |
165
|
1 |
|
src_list = tokenizer.get_list() |
166
|
|
|
tokenizer.tokenize(tar.strip()) |
167
|
|
|
tar_list = tokenizer.get_list() |
168
|
|
|
|
169
|
|
|
lens = len(src_list) |
170
|
1 |
|
lent = len(tar_list) |
171
|
1 |
|
|
172
|
|
|
# If either string is blank - return - added in Version 2 |
173
|
1 |
|
if lens == 0 or lent == 0: |
174
|
1 |
|
return 0.0 |
175
|
|
|
|
176
|
1 |
|
if lens > lent: |
177
|
1 |
|
search_range = lens |
178
|
|
|
minv = lent |
179
|
|
|
else: |
180
|
1 |
|
search_range = lent |
181
|
1 |
|
minv = lens |
182
|
|
|
|
183
|
1 |
|
# Zero out the flags |
184
|
1 |
|
src_flag = [0] * search_range |
185
|
1 |
|
tar_flag = [0] * search_range |
186
|
|
|
search_range = max(0, search_range // 2 - 1) |
187
|
1 |
|
|
188
|
1 |
|
# Looking only within the search range, |
189
|
|
|
# count and flag the matched pairs. |
190
|
|
|
num_com = 0 |
191
|
1 |
|
yl1 = lent - 1 |
192
|
1 |
|
for i in range(lens): |
193
|
1 |
|
low_lim = (i - search_range) if (i >= search_range) else 0 |
194
|
|
|
hi_lim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
195
|
|
|
for j in range(low_lim, hi_lim + 1): |
196
|
|
|
if (tar_flag[j] == 0) and (tar_list[j] == src_list[i]): |
197
|
1 |
|
tar_flag[j] = 1 |
198
|
1 |
|
src_flag[i] = 1 |
199
|
1 |
|
num_com += 1 |
200
|
1 |
|
break |
201
|
1 |
|
|
202
|
1 |
|
# If no characters in common - return |
203
|
1 |
|
if num_com == 0: |
204
|
1 |
|
return 0.0 |
205
|
1 |
|
|
206
|
1 |
|
# Count the number of transpositions |
207
|
1 |
|
k = n_trans = 0 |
208
|
|
|
for i in range(lens): |
209
|
|
|
if src_flag[i] != 0: |
210
|
1 |
|
j = 0 |
211
|
1 |
|
for j in range(k, lent): # pragma: no branch |
212
|
|
|
if tar_flag[j] != 0: |
213
|
|
|
k = j + 1 |
214
|
1 |
|
break |
215
|
1 |
|
if src_list[i] != tar_list[j]: |
216
|
1 |
|
n_trans += 1 |
217
|
1 |
|
n_trans //= 2 |
218
|
1 |
|
|
219
|
1 |
|
# Main weight computation for Jaro distance |
220
|
1 |
|
weight = ( |
221
|
1 |
|
num_com / lens + num_com / lent + (num_com - n_trans) / num_com |
222
|
1 |
|
) |
223
|
1 |
|
weight /= 3.0 |
224
|
1 |
|
|
225
|
|
|
# Continue to boost the weight if the strings are similar |
226
|
|
|
# This is the Winkler portion of Jaro-Winkler distance |
227
|
1 |
|
if self._mode == 'winkler' and weight > self._boost_threshold: |
228
|
|
|
|
229
|
|
|
# Adjust for having up to the first 4 characters in common |
230
|
1 |
|
j = 4 if (minv >= 4) else minv |
231
|
|
|
i = 0 |
232
|
|
|
while (i < j) and (src_list[i] == tar_list[i]): |
233
|
|
|
i += 1 |
234
|
1 |
|
weight += i * self._scaling_factor * (1.0 - weight) |
235
|
|
|
|
236
|
|
|
# Optionally adjust for long strings. |
237
|
1 |
|
|
238
|
1 |
|
# After agreeing beginning chars, at least two more must agree and |
239
|
1 |
|
# the agreeing characters must be > .5 of remaining characters. |
240
|
1 |
|
if ( |
241
|
1 |
|
self._long_strings |
242
|
|
|
and (minv > 4) |
243
|
|
|
and (num_com > i + 1) |
244
|
|
|
and (2 * num_com >= minv + i) |
245
|
|
|
): |
246
|
|
|
weight += (1.0 - weight) * ( |
247
|
1 |
|
(num_com - i - 1) / (lens + lent - i * 2 + 2) |
248
|
|
|
) |
249
|
|
|
|
250
|
|
|
return weight |
251
|
|
|
|
252
|
|
|
|
253
|
1 |
|
if __name__ == '__main__': |
254
|
|
|
import doctest |
255
|
|
|
|
256
|
|
|
doctest.testmod() |
257
|
|
|
|