1
|
|
|
# Copyright 2014-2020 by Christopher C. Little. |
2
|
|
|
# This file is part of Abydos. |
3
|
|
|
# |
4
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
5
|
|
|
# it under the terms of the GNU General Public License as published by |
6
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
7
|
|
|
# (at your option) any later version. |
8
|
|
|
# |
9
|
|
|
# Abydos is distributed in the hope that it will be useful, |
10
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
11
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12
|
|
|
# GNU General Public License for more details. |
13
|
|
|
# |
14
|
|
|
# You should have received a copy of the GNU General Public License |
15
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
16
|
|
|
|
17
|
|
|
r"""abydos.stats._mean. |
18
|
|
|
|
19
|
1 |
|
The stats._mean module defines functions for calculating means and other |
20
|
|
|
measures of central tendencies. |
21
|
|
|
""" |
22
|
|
|
|
23
|
|
|
import math |
24
|
|
|
from collections import Counter |
25
|
1 |
|
from typing import Callable, Sequence |
26
|
|
|
|
27
|
|
|
from ..util._prod import _prod |
28
|
|
|
|
29
|
|
|
__all__ = [ |
30
|
|
|
'amean', |
31
|
|
|
'gmean', |
32
|
1 |
|
'hmean', |
33
|
1 |
|
'agmean', |
34
|
|
|
'ghmean', |
35
|
1 |
|
'aghmean', |
36
|
|
|
'cmean', |
37
|
1 |
|
'imean', |
38
|
|
|
'lmean', |
39
|
1 |
|
'qmean', |
40
|
|
|
'heronian_mean', |
41
|
|
|
'hoelder_mean', |
42
|
|
|
'lehmer_mean', |
43
|
|
|
'seiffert_mean', |
44
|
|
|
'median', |
45
|
|
|
'midrange', |
46
|
|
|
'mode', |
47
|
|
|
'std', |
48
|
|
|
'var', |
49
|
|
|
] |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
def amean(nums: Sequence[float]) -> float: |
53
|
|
|
r"""Return arithmetic mean. |
54
|
|
|
|
55
|
|
|
The arithmetic mean is defined as |
56
|
|
|
|
57
|
|
|
.. math:: |
58
|
|
|
|
59
|
|
|
\frac{\sum{nums}}{|nums|} |
60
|
|
|
|
61
|
|
|
Cf. https://en.wikipedia.org/wiki/Arithmetic_mean |
62
|
1 |
|
|
63
|
|
|
Parameters |
64
|
|
|
---------- |
65
|
|
|
nums : list |
66
|
|
|
A series of numbers |
67
|
|
|
|
68
|
|
|
Returns |
69
|
|
|
------- |
70
|
|
|
float |
71
|
|
|
The arithmetric mean of nums |
72
|
|
|
|
73
|
|
|
Examples |
74
|
|
|
-------- |
75
|
|
|
>>> amean([1, 2, 3, 4]) |
76
|
|
|
2.5 |
77
|
|
|
>>> amean([1, 2]) |
78
|
|
|
1.5 |
79
|
|
|
>>> amean([0, 5, 1000]) |
80
|
|
|
335.0 |
81
|
|
|
|
82
|
|
|
.. versionadded:: 0.1.0 |
83
|
|
|
|
84
|
|
|
""" |
85
|
|
|
return sum(nums) / len(nums) |
86
|
|
|
|
87
|
|
|
|
88
|
|
|
def gmean(nums: Sequence[float]) -> float: |
89
|
|
|
r"""Return geometric mean. |
90
|
|
|
|
91
|
|
|
The geometric mean is defined as |
92
|
|
|
|
93
|
|
|
.. math:: |
94
|
|
|
|
95
|
1 |
|
\sqrt[|nums|]{\prod\limits_{i} nums_{i}} |
96
|
|
|
|
97
|
|
|
Cf. https://en.wikipedia.org/wiki/Geometric_mean |
98
|
1 |
|
|
99
|
|
|
Parameters |
100
|
|
|
---------- |
101
|
|
|
nums : list |
102
|
|
|
A series of numbers |
103
|
|
|
|
104
|
|
|
Returns |
105
|
|
|
------- |
106
|
|
|
float |
107
|
|
|
The geometric mean of nums |
108
|
|
|
|
109
|
|
|
Examples |
110
|
|
|
-------- |
111
|
|
|
>>> gmean([1, 2, 3, 4]) |
112
|
|
|
2.213363839400643 |
113
|
|
|
>>> gmean([1, 2]) |
114
|
|
|
1.4142135623730951 |
115
|
|
|
>>> gmean([0, 5, 1000]) |
116
|
|
|
0.0 |
117
|
|
|
|
118
|
|
|
.. versionadded:: 0.1.0 |
119
|
|
|
|
120
|
|
|
""" |
121
|
|
|
return _prod(nums) ** (1 / len(nums)) |
122
|
|
|
|
123
|
|
|
|
124
|
|
|
def hmean(nums: Sequence[float]) -> float: |
125
|
|
|
r"""Return harmonic mean. |
126
|
|
|
|
127
|
|
|
The harmonic mean is defined as |
128
|
|
|
|
129
|
|
|
.. math:: |
130
|
|
|
|
131
|
1 |
|
\frac{|nums|}{\sum\limits_{i}\frac{1}{nums_i}} |
132
|
|
|
|
133
|
|
|
Following the behavior of Wolfram|Alpha: |
134
|
1 |
|
- If one of the values in nums is 0, return 0. |
135
|
|
|
- If more than one value in nums is 0, return NaN. |
136
|
|
|
|
137
|
|
|
Cf. https://en.wikipedia.org/wiki/Harmonic_mean |
138
|
|
|
|
139
|
|
|
Parameters |
140
|
|
|
---------- |
141
|
|
|
nums : list |
142
|
|
|
A series of numbers |
143
|
|
|
|
144
|
|
|
Returns |
145
|
|
|
------- |
146
|
|
|
float |
147
|
|
|
The harmonic mean of nums |
148
|
|
|
|
149
|
|
|
Raises |
150
|
|
|
------ |
151
|
|
|
ValueError |
152
|
|
|
hmean requires at least one value |
153
|
|
|
|
154
|
|
|
Examples |
155
|
|
|
-------- |
156
|
|
|
>>> hmean([1, 2, 3, 4]) |
157
|
|
|
1.9200000000000004 |
158
|
|
|
>>> hmean([1, 2]) |
159
|
|
|
1.3333333333333333 |
160
|
|
|
>>> hmean([0, 5, 1000]) |
161
|
|
|
0 |
162
|
|
|
|
163
|
|
|
.. versionadded:: 0.1.0 |
164
|
|
|
|
165
|
|
|
""" |
166
|
|
|
if len(nums) < 1: |
167
|
|
|
raise ValueError('hmean requires at least one value') |
168
|
|
|
elif len(nums) == 1: |
169
|
|
|
return nums[0] |
170
|
|
|
else: |
171
|
|
|
for i in range(1, len(nums)): |
172
|
|
|
if nums[0] != nums[i]: |
173
|
|
|
break |
174
|
|
|
else: |
175
|
|
|
return nums[0] |
176
|
1 |
|
|
177
|
1 |
|
if 0 in nums: |
178
|
1 |
|
if nums.count(0) > 1: |
179
|
1 |
|
return float('nan') |
180
|
|
|
return 0 |
181
|
1 |
|
return len(nums) / sum(1.0 / float(i) for i in nums) # type: ignore |
182
|
1 |
|
|
183
|
1 |
|
|
184
|
|
|
def qmean(nums: Sequence[float]) -> float: |
185
|
1 |
|
r"""Return quadratic mean. |
186
|
|
|
|
187
|
1 |
|
The quadratic mean is defined as |
188
|
1 |
|
|
189
|
1 |
|
.. math:: |
190
|
1 |
|
|
191
|
1 |
|
\sqrt{\sum\limits_{i} \frac{num_i^2}{|nums|}} |
192
|
|
|
|
193
|
|
|
Cf. https://en.wikipedia.org/wiki/Quadratic_mean |
194
|
1 |
|
|
195
|
|
|
Parameters |
196
|
|
|
---------- |
197
|
|
|
nums : list |
198
|
|
|
A series of numbers |
199
|
|
|
|
200
|
|
|
Returns |
201
|
|
|
------- |
202
|
|
|
float |
203
|
|
|
The quadratic mean of nums |
204
|
|
|
|
205
|
|
|
Examples |
206
|
|
|
-------- |
207
|
|
|
>>> qmean([1, 2, 3, 4]) |
208
|
|
|
2.7386127875258306 |
209
|
|
|
>>> qmean([1, 2]) |
210
|
|
|
1.5811388300841898 |
211
|
|
|
>>> qmean([0, 5, 1000]) |
212
|
|
|
577.3574860228857 |
213
|
|
|
|
214
|
|
|
.. versionadded:: 0.1.0 |
215
|
|
|
|
216
|
|
|
""" |
217
|
|
|
return (sum(i ** 2 for i in nums) / len(nums)) ** 0.5 |
218
|
|
|
|
219
|
|
|
|
220
|
|
|
def cmean(nums: Sequence[float]) -> float: |
221
|
|
|
r"""Return contraharmonic mean. |
222
|
|
|
|
223
|
|
|
The contraharmonic mean is |
224
|
|
|
|
225
|
|
|
.. math:: |
226
|
|
|
|
227
|
1 |
|
\frac{\sum\limits_i x_i^2}{\sum\limits_i x_i} |
228
|
|
|
|
229
|
|
|
Cf. https://en.wikipedia.org/wiki/Contraharmonic_mean |
230
|
1 |
|
|
231
|
|
|
Parameters |
232
|
|
|
---------- |
233
|
|
|
nums : list |
234
|
|
|
A series of numbers |
235
|
|
|
|
236
|
|
|
Returns |
237
|
|
|
------- |
238
|
|
|
float |
239
|
|
|
The contraharmonic mean of nums |
240
|
|
|
|
241
|
|
|
Examples |
242
|
|
|
-------- |
243
|
|
|
>>> cmean([1, 2, 3, 4]) |
244
|
|
|
3.0 |
245
|
|
|
>>> cmean([1, 2]) |
246
|
|
|
1.6666666666666667 |
247
|
|
|
>>> cmean([0, 5, 1000]) |
248
|
|
|
995.0497512437811 |
249
|
|
|
|
250
|
|
|
.. versionadded:: 0.1.0 |
251
|
|
|
|
252
|
|
|
""" |
253
|
|
|
return sum(x ** 2 for x in nums) / sum(nums) |
254
|
|
|
|
255
|
|
|
|
256
|
|
|
def lmean(nums: Sequence[float]) -> float: |
257
|
|
|
r"""Return logarithmic mean. |
258
|
|
|
|
259
|
|
|
The logarithmic mean of an arbitrarily long series is defined by |
260
|
|
|
http://www.survo.fi/papers/logmean.pdf |
261
|
|
|
as |
262
|
|
|
|
263
|
1 |
|
|
264
|
|
|
.. math:: |
265
|
|
|
|
266
|
1 |
|
L(x_1, x_2, ..., x_n) = |
267
|
|
|
(n-1)! \sum\limits_{i=1}^n \frac{x_i} |
268
|
|
|
{\prod\limits_{\substack{j = 1\\j \ne i}}^n |
269
|
|
|
ln \frac{x_i}{x_j}} |
270
|
|
|
|
271
|
|
|
Cf. https://en.wikipedia.org/wiki/Logarithmic_mean |
272
|
|
|
|
273
|
|
|
Parameters |
274
|
|
|
---------- |
275
|
|
|
nums : list |
276
|
|
|
A series of numbers |
277
|
|
|
|
278
|
|
|
Returns |
279
|
|
|
------- |
280
|
|
|
float |
281
|
|
|
The logarithmic mean of nums |
282
|
|
|
|
283
|
|
|
Raises |
284
|
|
|
------ |
285
|
|
|
ValueError |
286
|
|
|
No two values in the nums list may be equal |
287
|
|
|
|
288
|
|
|
Examples |
289
|
|
|
-------- |
290
|
|
|
>>> lmean([1, 2, 3, 4]) |
291
|
|
|
2.2724242417489258 |
292
|
|
|
>>> lmean([1, 2]) |
293
|
|
|
1.4426950408889634 |
294
|
|
|
|
295
|
|
|
.. versionadded:: 0.1.0 |
296
|
|
|
|
297
|
|
|
""" |
298
|
|
|
if len(nums) == 2: |
299
|
|
|
if nums[0] == nums[1]: |
300
|
|
|
return float(nums[0]) |
301
|
|
|
if 0 in nums: |
302
|
|
|
return 0.0 |
303
|
|
|
return (nums[1] - nums[0]) / (math.log(nums[1] / nums[0])) |
304
|
|
|
|
305
|
|
|
else: |
306
|
|
|
if len(nums) != len(set(nums)): |
307
|
|
|
raise ValueError('No two values in the nums list may be equal') |
308
|
1 |
|
rolling_sum = 0.0 |
309
|
1 |
|
for i in range(len(nums)): |
310
|
1 |
|
rolling_prod = 1.0 |
311
|
1 |
|
for j in range(len(nums)): |
312
|
1 |
|
if i != j: |
313
|
1 |
|
rolling_prod *= math.log(nums[i] / nums[j]) |
314
|
|
|
rolling_sum += nums[i] / rolling_prod |
315
|
|
|
return math.factorial(len(nums) - 1) * rolling_sum |
316
|
1 |
|
|
317
|
1 |
|
|
318
|
1 |
|
def imean(nums: Sequence[float]) -> float: |
319
|
1 |
|
r"""Return identric (exponential) mean. |
320
|
1 |
|
|
321
|
1 |
|
The identric mean of two numbers x and y is: |
322
|
1 |
|
x if x = y |
323
|
1 |
|
otherwise |
324
|
1 |
|
|
325
|
1 |
|
.. math:: |
326
|
|
|
|
327
|
|
|
\frac{1}{e} \sqrt[x-y]{\frac{x^x}{y^y}} |
328
|
1 |
|
|
329
|
|
|
Cf. https://en.wikipedia.org/wiki/Identric_mean |
330
|
|
|
|
331
|
|
|
Parameters |
332
|
|
|
---------- |
333
|
|
|
nums : list |
334
|
|
|
A series of numbers |
335
|
|
|
|
336
|
|
|
Returns |
337
|
|
|
------- |
338
|
|
|
float |
339
|
|
|
The identric mean of nums |
340
|
|
|
|
341
|
|
|
Raises |
342
|
|
|
------ |
343
|
|
|
ValueError |
344
|
|
|
imean supports no more than two values |
345
|
|
|
|
346
|
|
|
Examples |
347
|
|
|
-------- |
348
|
|
|
>>> imean([1, 2]) |
349
|
|
|
1.4715177646857693 |
350
|
|
|
>>> imean([1, 0]) |
351
|
|
|
nan |
352
|
|
|
>>> imean([2, 4]) |
353
|
|
|
2.9430355293715387 |
354
|
|
|
|
355
|
|
|
.. versionadded:: 0.1.0 |
356
|
|
|
|
357
|
|
|
""" |
358
|
|
|
if len(nums) == 1: |
359
|
|
|
return nums[0] |
360
|
|
|
if len(nums) > 2: |
361
|
|
|
raise ValueError('imean supports no more than two values') |
362
|
|
|
if nums[0] <= 0 or nums[1] <= 0: |
363
|
|
|
return float('NaN') |
364
|
|
|
elif nums[0] == nums[1]: |
365
|
|
|
return nums[0] |
366
|
|
|
nums = sorted(nums, reverse=True) |
367
|
|
|
return (1 / math.e) * (nums[0] ** nums[0] / nums[1] ** nums[1]) ** ( |
368
|
1 |
|
1 / (nums[0] - nums[1]) |
369
|
1 |
|
) |
370
|
1 |
|
|
371
|
1 |
|
|
372
|
1 |
|
def seiffert_mean(nums: Sequence[float]) -> float: |
373
|
1 |
|
r"""Return Seiffert's mean. |
374
|
1 |
|
|
375
|
1 |
|
Seiffert's mean of two numbers x and y is |
376
|
1 |
|
|
377
|
1 |
|
.. math:: |
378
|
|
|
|
379
|
|
|
\frac{x - y}{4 \cdot arctan \sqrt{\frac{x}{y}} - \pi} |
380
|
|
|
|
381
|
|
|
It is defined in :cite:`Seiffert:1993`. |
382
|
1 |
|
|
383
|
|
|
Parameters |
384
|
|
|
---------- |
385
|
|
|
nums : list |
386
|
|
|
A series of numbers |
387
|
|
|
|
388
|
|
|
Returns |
389
|
|
|
------- |
390
|
|
|
float |
391
|
|
|
Sieffert's mean of nums |
392
|
|
|
|
393
|
|
|
Raises |
394
|
|
|
------ |
395
|
|
|
ValueError |
396
|
|
|
seiffert_mean supports no more than two values |
397
|
|
|
|
398
|
|
|
Examples |
399
|
|
|
-------- |
400
|
|
|
>>> seiffert_mean([1, 2]) |
401
|
|
|
1.4712939827611637 |
402
|
|
|
>>> seiffert_mean([1, 0]) |
403
|
|
|
0.3183098861837907 |
404
|
|
|
>>> seiffert_mean([2, 4]) |
405
|
|
|
2.9425879655223275 |
406
|
|
|
>>> seiffert_mean([2, 1000]) |
407
|
|
|
336.84053300118825 |
408
|
|
|
|
409
|
|
|
.. versionadded:: 0.1.0 |
410
|
|
|
|
411
|
|
|
""" |
412
|
|
|
if len(nums) == 1: |
413
|
|
|
return nums[0] |
414
|
|
|
if len(nums) > 2: |
415
|
|
|
raise ValueError('seiffert_mean supports no more than two values') |
416
|
|
|
if nums[0] + nums[1] == 0 or nums[0] - nums[1] == 0: |
417
|
|
|
return float('NaN') |
418
|
|
|
return (nums[0] - nums[1]) / ( |
419
|
|
|
2 * math.asin((nums[0] - nums[1]) / (nums[0] + nums[1])) |
420
|
|
|
) |
421
|
|
|
|
422
|
1 |
|
|
423
|
1 |
|
def lehmer_mean(nums: Sequence[float], exp: float = 2.0) -> float: |
424
|
1 |
|
r"""Return Lehmer mean. |
425
|
1 |
|
|
426
|
1 |
|
The Lehmer mean is |
427
|
1 |
|
|
428
|
1 |
|
.. math:: |
429
|
|
|
|
430
|
|
|
\frac{\sum\limits_i{x_i^p}}{\sum\limits_i{x_i^(p-1)}} |
431
|
|
|
|
432
|
|
|
Cf. https://en.wikipedia.org/wiki/Lehmer_mean |
433
|
1 |
|
|
434
|
|
|
Parameters |
435
|
|
|
---------- |
436
|
|
|
nums : list |
437
|
|
|
A series of numbers |
438
|
|
|
exp : numeric |
439
|
|
|
The exponent of the Lehmer mean |
440
|
|
|
|
441
|
|
|
Returns |
442
|
|
|
------- |
443
|
|
|
float |
444
|
|
|
The Lehmer mean of nums for the given exponent |
445
|
|
|
|
446
|
|
|
Examples |
447
|
|
|
-------- |
448
|
|
|
>>> lehmer_mean([1, 2, 3, 4]) |
449
|
|
|
3.0 |
450
|
|
|
>>> lehmer_mean([1, 2]) |
451
|
|
|
1.6666666666666667 |
452
|
|
|
>>> lehmer_mean([0, 5, 1000]) |
453
|
|
|
995.0497512437811 |
454
|
|
|
|
455
|
|
|
.. versionadded:: 0.1.0 |
456
|
|
|
|
457
|
|
|
""" |
458
|
|
|
return sum(x ** exp for x in nums) / sum(x ** (exp - 1) for x in nums) |
459
|
|
|
|
460
|
|
|
|
461
|
|
|
def heronian_mean(nums: Sequence[float]) -> float: |
462
|
|
|
r"""Return Heronian mean. |
463
|
|
|
|
464
|
|
|
The Heronian mean is: |
465
|
|
|
|
466
|
|
|
.. math:: |
467
|
|
|
|
468
|
1 |
|
\frac{\sum\limits_{i, j}\sqrt{{x_i \cdot x_j}}} |
469
|
|
|
{|nums| \cdot \frac{|nums| + 1}{2}} |
470
|
|
|
|
471
|
1 |
|
for :math:`j \ge i` |
472
|
|
|
|
473
|
|
|
Cf. https://en.wikipedia.org/wiki/Heronian_mean |
474
|
|
|
|
475
|
|
|
Parameters |
476
|
|
|
---------- |
477
|
|
|
nums : list |
478
|
|
|
A series of numbers |
479
|
|
|
|
480
|
|
|
Returns |
481
|
|
|
------- |
482
|
|
|
float |
483
|
|
|
The Heronian mean of nums |
484
|
|
|
|
485
|
|
|
Examples |
486
|
|
|
-------- |
487
|
|
|
>>> heronian_mean([1, 2, 3, 4]) |
488
|
|
|
2.3888282852609093 |
489
|
|
|
>>> heronian_mean([1, 2]) |
490
|
|
|
1.4714045207910316 |
491
|
|
|
>>> heronian_mean([0, 5, 1000]) |
492
|
|
|
179.28511301977582 |
493
|
|
|
|
494
|
|
|
.. versionadded:: 0.1.0 |
495
|
|
|
|
496
|
|
|
""" |
497
|
|
|
mag = len(nums) |
498
|
|
|
rolling_sum = 0.0 |
499
|
|
|
for i in range(mag): |
500
|
|
|
for j in range(i, mag): |
501
|
|
|
if nums[i] == nums[j]: |
502
|
|
|
rolling_sum += nums[i] |
503
|
|
|
else: |
504
|
|
|
rolling_sum += (nums[i] * nums[j]) ** 0.5 |
505
|
|
|
return rolling_sum * 2 / (mag * (mag + 1)) |
506
|
|
|
|
507
|
1 |
|
|
508
|
1 |
|
def hoelder_mean(nums: Sequence[float], exp: float = 2.0) -> float: |
509
|
1 |
|
r"""Return Hölder (power/generalized) mean. |
510
|
1 |
|
|
511
|
1 |
|
The Hölder mean is defined as: |
512
|
1 |
|
|
513
|
|
|
.. math:: |
514
|
1 |
|
|
515
|
1 |
|
\sqrt[p]{\frac{1}{|nums|} \cdot \sum\limits_i{x_i^p}} |
516
|
|
|
|
517
|
|
|
for :math:`p \ne 0`, and the geometric mean for :math:`p = 0` |
518
|
1 |
|
|
519
|
|
|
Cf. https://en.wikipedia.org/wiki/Generalized_mean |
520
|
|
|
|
521
|
|
|
Parameters |
522
|
|
|
---------- |
523
|
|
|
nums : list |
524
|
|
|
A series of numbers |
525
|
|
|
exp : numeric |
526
|
|
|
The exponent of the Hölder mean |
527
|
|
|
|
528
|
|
|
Returns |
529
|
|
|
------- |
530
|
|
|
float |
531
|
|
|
The Hölder mean of nums for the given exponent |
532
|
|
|
|
533
|
|
|
Examples |
534
|
|
|
-------- |
535
|
|
|
>>> hoelder_mean([1, 2, 3, 4]) |
536
|
|
|
2.7386127875258306 |
537
|
|
|
>>> hoelder_mean([1, 2]) |
538
|
|
|
1.5811388300841898 |
539
|
|
|
>>> hoelder_mean([0, 5, 1000]) |
540
|
|
|
577.3574860228857 |
541
|
|
|
|
542
|
|
|
.. versionadded:: 0.1.0 |
543
|
|
|
|
544
|
|
|
""" |
545
|
|
|
if exp == 0: |
546
|
|
|
return gmean(nums) |
547
|
|
|
return ((1 / len(nums)) * sum(i ** exp for i in nums)) ** (1 / exp) |
548
|
|
|
|
549
|
|
|
|
550
|
|
|
def agmean(nums: Sequence[float], prec: int = 12) -> float: |
551
|
|
|
"""Return arithmetic-geometric mean. |
552
|
|
|
|
553
|
|
|
Iterates between arithmetic & geometric means until they converge to |
554
|
|
|
a single value (rounded to 10 digits). |
555
|
1 |
|
|
556
|
1 |
|
Cf. https://en.wikipedia.org/wiki/Arithmetic-geometric_mean |
557
|
1 |
|
|
558
|
|
|
Parameters |
559
|
|
|
---------- |
560
|
1 |
|
nums : list |
561
|
|
|
A series of numbers |
562
|
|
|
prec : int |
563
|
|
|
Digits of precision when testing convergeance |
564
|
|
|
|
565
|
|
|
Returns |
566
|
|
|
------- |
567
|
|
|
float |
568
|
|
|
The arithmetic-geometric mean of nums |
569
|
|
|
|
570
|
|
|
Examples |
571
|
|
|
-------- |
572
|
|
|
>>> agmean([1, 2, 3, 4]) |
573
|
|
|
2.3545004777751077 |
574
|
|
|
>>> agmean([1, 2]) |
575
|
|
|
1.4567910310469068 |
576
|
|
|
>>> agmean([0, 5, 1000]) |
577
|
|
|
2.9753977059954195e-13 |
578
|
|
|
|
579
|
|
|
.. versionadded:: 0.1.0 |
580
|
|
|
|
581
|
|
|
""" |
582
|
|
|
m_a = amean(nums) |
583
|
|
|
m_g = gmean(nums) |
584
|
|
|
if math.isnan(m_a) or math.isnan(m_g): |
585
|
|
|
return float('nan') |
586
|
|
|
while round(m_a, prec) != round(m_g, prec): |
587
|
|
|
m_a, m_g = (m_a + m_g) / 2, (m_a * m_g) ** (1 / 2) |
588
|
|
|
return m_a |
589
|
|
|
|
590
|
|
|
|
591
|
|
|
def ghmean(nums: Sequence[float], prec: int = 12) -> float: |
592
|
1 |
|
"""Return geometric-harmonic mean. |
593
|
1 |
|
|
594
|
1 |
|
Iterates between geometric & harmonic means until they converge to |
595
|
1 |
|
a single value (rounded to 10 digits). |
596
|
1 |
|
|
597
|
1 |
|
Cf. https://en.wikipedia.org/wiki/Geometric-harmonic_mean |
598
|
1 |
|
|
599
|
|
|
Parameters |
600
|
|
|
---------- |
601
|
1 |
|
nums : list |
602
|
|
|
A series of numbers |
603
|
|
|
prec : int |
604
|
|
|
Digits of precision when testing convergeance |
605
|
|
|
|
606
|
|
|
Returns |
607
|
|
|
------- |
608
|
|
|
float |
609
|
|
|
The geometric-harmonic mean of nums |
610
|
|
|
|
611
|
|
|
Examples |
612
|
|
|
-------- |
613
|
|
|
>>> ghmean([1, 2, 3, 4]) |
614
|
|
|
2.058868154613003 |
615
|
|
|
>>> ghmean([1, 2]) |
616
|
|
|
1.3728805006183502 |
617
|
|
|
>>> ghmean([0, 5, 1000]) |
618
|
|
|
0.0 |
619
|
|
|
|
620
|
|
|
>>> ghmean([0, 0]) |
621
|
|
|
0.0 |
622
|
|
|
>>> ghmean([0, 0, 5]) |
623
|
|
|
nan |
624
|
|
|
|
625
|
|
|
.. versionadded:: 0.1.0 |
626
|
|
|
|
627
|
|
|
""" |
628
|
|
|
m_g = gmean(nums) |
629
|
|
|
m_h = hmean(nums) |
630
|
|
|
if math.isnan(m_g) or math.isnan(m_h): |
631
|
|
|
return float('nan') |
632
|
|
|
while round(m_h, prec) != round(m_g, prec): |
633
|
|
|
m_g, m_h = (m_g * m_h) ** (1 / 2), (2 * m_g * m_h) / (m_g + m_h) |
634
|
|
|
return m_g |
635
|
|
|
|
636
|
|
|
|
637
|
|
|
def aghmean(nums: Sequence[float], prec: int = 12) -> float: |
638
|
1 |
|
"""Return arithmetic-geometric-harmonic mean. |
639
|
1 |
|
|
640
|
1 |
|
Iterates over arithmetic, geometric, & harmonic means until they |
641
|
1 |
|
converge to a single value (rounded to 10 digits), following the |
642
|
1 |
|
method described in :cite:`Raissouli:2009`. |
643
|
1 |
|
|
644
|
1 |
|
Parameters |
645
|
|
|
---------- |
646
|
|
|
nums : list |
647
|
1 |
|
A series of numbers |
648
|
|
|
prec : int |
649
|
|
|
Digits of precision when testing convergeance |
650
|
|
|
|
651
|
|
|
Returns |
652
|
|
|
------- |
653
|
|
|
float |
654
|
|
|
The arithmetic-geometric-harmonic mean of nums |
655
|
|
|
|
656
|
|
|
Examples |
657
|
|
|
-------- |
658
|
|
|
>>> aghmean([1, 2, 3, 4]) |
659
|
|
|
2.198327159900212 |
660
|
|
|
>>> aghmean([1, 2]) |
661
|
|
|
1.4142135623731884 |
662
|
|
|
>>> aghmean([0, 5, 1000]) |
663
|
|
|
335.0 |
664
|
|
|
|
665
|
|
|
.. versionadded:: 0.1.0 |
666
|
|
|
|
667
|
|
|
""" |
668
|
|
|
m_a = amean(nums) |
669
|
|
|
m_g = gmean(nums) |
670
|
|
|
m_h = hmean(nums) |
671
|
|
|
if math.isnan(m_a) or math.isnan(m_g) or math.isnan(m_h): |
672
|
|
|
return float('nan') |
673
|
|
|
while round(m_a, prec) != round(m_g, prec) and round(m_g, prec) != round( |
674
|
|
|
m_h, prec |
675
|
|
|
): |
676
|
|
|
m_a, m_g, m_h = ( |
677
|
|
|
(m_a + m_g + m_h) / 3, |
678
|
1 |
|
(m_a * m_g * m_h) ** (1 / 3), |
679
|
1 |
|
3 / (1 / m_a + 1 / m_g + 1 / m_h), |
680
|
1 |
|
) |
681
|
1 |
|
return m_a |
682
|
1 |
|
|
683
|
1 |
|
|
684
|
|
|
def midrange(nums: Sequence[float]) -> float: |
685
|
|
|
"""Return midrange. |
686
|
1 |
|
|
687
|
|
|
The midrange is the arithmetic mean of the maximum & minimum of a series. |
688
|
|
|
|
689
|
|
|
Cf. https://en.wikipedia.org/wiki/Midrange |
690
|
|
|
|
691
|
1 |
|
Parameters |
692
|
|
|
---------- |
693
|
|
|
nums : list |
694
|
1 |
|
A series of numbers |
695
|
|
|
|
696
|
|
|
Returns |
697
|
|
|
------- |
698
|
|
|
float |
699
|
|
|
The midrange of nums |
700
|
|
|
|
701
|
|
|
Examples |
702
|
|
|
-------- |
703
|
|
|
>>> midrange([1, 2, 3]) |
704
|
|
|
2.0 |
705
|
|
|
>>> midrange([1, 2, 2, 3]) |
706
|
|
|
2.0 |
707
|
|
|
>>> midrange([1, 2, 1000, 3]) |
708
|
|
|
500.5 |
709
|
|
|
|
710
|
|
|
.. versionadded:: 0.1.0 |
711
|
|
|
|
712
|
|
|
""" |
713
|
|
|
return 0.5 * (max(nums) + min(nums)) |
714
|
|
|
|
715
|
|
|
|
716
|
|
|
def median(nums: Sequence[float]) -> float: |
717
|
|
|
"""Return median. |
718
|
|
|
|
719
|
|
|
With numbers sorted by value, the median is the middle value (if there is |
720
|
|
|
an odd number of values) or the arithmetic mean of the two middle values |
721
|
|
|
(if there is an even number of values). |
722
|
|
|
|
723
|
1 |
|
Cf. https://en.wikipedia.org/wiki/Median |
724
|
|
|
|
725
|
|
|
Parameters |
726
|
1 |
|
---------- |
727
|
|
|
nums : list |
728
|
|
|
A series of numbers |
729
|
|
|
|
730
|
|
|
Returns |
731
|
|
|
------- |
732
|
|
|
int or float |
733
|
|
|
The median of nums |
734
|
|
|
|
735
|
|
|
Examples |
736
|
|
|
-------- |
737
|
|
|
>>> median([1, 2, 3]) |
738
|
|
|
2 |
739
|
|
|
>>> median([1, 2, 3, 4]) |
740
|
|
|
2.5 |
741
|
|
|
>>> median([1, 2, 2, 4]) |
742
|
|
|
2 |
743
|
|
|
|
744
|
|
|
.. versionadded:: 0.1.0 |
745
|
|
|
|
746
|
|
|
""" |
747
|
|
|
nums = sorted(nums) |
748
|
|
|
mag = len(nums) |
749
|
|
|
if mag % 2: |
750
|
|
|
mag = int((mag - 1) / 2) |
751
|
|
|
return nums[mag] |
752
|
|
|
mag = int(mag / 2) |
753
|
|
|
med = (nums[mag - 1] + nums[mag]) / 2 |
754
|
|
|
return med if not med.is_integer() else int(med) |
755
|
|
|
|
756
|
|
|
|
757
|
1 |
|
def mode(nums: Sequence[float]) -> float: |
758
|
1 |
|
"""Return the mode. |
759
|
1 |
|
|
760
|
1 |
|
The mode of a series is the most common element of that series |
761
|
1 |
|
|
762
|
1 |
|
Cf. https://en.wikipedia.org/wiki/Mode_(statistics) |
763
|
1 |
|
|
764
|
1 |
|
Parameters |
765
|
|
|
---------- |
766
|
|
|
nums : list |
767
|
1 |
|
A series of numbers |
768
|
|
|
|
769
|
|
|
Returns |
770
|
|
|
------- |
771
|
|
|
int or float |
772
|
|
|
The mode of nums |
773
|
|
|
|
774
|
|
|
Example |
775
|
|
|
------- |
776
|
|
|
>>> mode([1, 2, 2, 3]) |
777
|
|
|
2 |
778
|
|
|
|
779
|
|
|
.. versionadded:: 0.1.0 |
780
|
|
|
|
781
|
|
|
""" |
782
|
|
|
return Counter(nums).most_common(1)[0][0] |
783
|
|
|
|
784
|
|
|
|
785
|
|
|
def var( |
786
|
|
|
nums: Sequence[float], |
787
|
|
|
mean_func: Callable[[Sequence[float]], float] = amean, |
788
|
|
|
ddof: int = 0, |
789
|
|
|
) -> float: |
790
|
|
|
r"""Calculate the variance. |
791
|
|
|
|
792
|
1 |
|
The variance (:math:`\sigma^2`) of a series of numbers (:math:`x_i`) with |
793
|
|
|
mean :math:`\mu` and population :math:`N` is: |
794
|
|
|
|
795
|
1 |
|
.. math:: |
796
|
|
|
|
797
|
|
|
\sigma^2 = \frac{1}{N}\sum_{i=1}^{N}(x_i-\mu)^2 |
798
|
|
|
|
799
|
|
|
Cf. https://en.wikipedia.org/wiki/Variance |
800
|
|
|
|
801
|
|
|
Parameters |
802
|
|
|
---------- |
803
|
|
|
nums : list |
804
|
|
|
A series of numbers |
805
|
|
|
mean_func : function |
806
|
|
|
A mean function (amean by default) |
807
|
|
|
ddof : int |
808
|
|
|
The degrees of freedom (0 by default) |
809
|
|
|
|
810
|
|
|
Returns |
811
|
|
|
------- |
812
|
|
|
float |
813
|
|
|
The variance of the values in the series |
814
|
|
|
|
815
|
|
|
Examples |
816
|
|
|
-------- |
817
|
|
|
>>> var([1, 1, 1, 1]) |
818
|
|
|
0.0 |
819
|
|
|
>>> var([1, 2, 3, 4]) |
820
|
|
|
1.25 |
821
|
|
|
>>> round(var([1, 2, 3, 4], ddof=1), 12) |
822
|
|
|
1.666666666667 |
823
|
|
|
|
824
|
|
|
.. versionadded:: 0.3.0 |
825
|
|
|
|
826
|
|
|
""" |
827
|
|
|
x_bar = mean_func(nums) |
828
|
|
|
return sum((x - x_bar) ** 2 for x in nums) / (len(nums) - ddof) |
829
|
|
|
|
830
|
|
|
|
831
|
|
|
def std( |
832
|
|
|
nums: Sequence[float], |
833
|
1 |
|
mean_func: Callable[[Sequence[float]], float] = amean, |
834
|
1 |
|
ddof: int = 0, |
835
|
|
|
) -> float: |
836
|
|
|
"""Return the standard deviation. |
837
|
1 |
|
|
838
|
|
|
The standard deviation of a series of values is the square root of the |
839
|
|
|
variance. |
840
|
|
|
|
841
|
|
|
Cf. https://en.wikipedia.org/wiki/Standard_deviation |
842
|
|
|
|
843
|
|
|
Parameters |
844
|
|
|
---------- |
845
|
|
|
nums : list |
846
|
|
|
A series of numbers |
847
|
|
|
mean_func : function |
848
|
|
|
A mean function (amean by default) |
849
|
|
|
ddof : int |
850
|
|
|
The degrees of freedom (0 by default) |
851
|
|
|
|
852
|
|
|
Returns |
853
|
|
|
------- |
854
|
|
|
float |
855
|
|
|
The standard deviation of the values in the series |
856
|
|
|
|
857
|
|
|
Examples |
858
|
|
|
-------- |
859
|
|
|
>>> std([1, 1, 1, 1]) |
860
|
|
|
0.0 |
861
|
|
|
>>> round(std([1, 2, 3, 4]), 12) |
862
|
|
|
1.11803398875 |
863
|
|
|
>>> round(std([1, 2, 3, 4], ddof=1), 12) |
864
|
|
|
1.290994448736 |
865
|
|
|
|
866
|
|
|
.. versionadded:: 0.3.0 |
867
|
|
|
|
868
|
|
|
""" |
869
|
|
|
return var(nums, mean_func, ddof) ** 0.5 |
870
|
|
|
|
871
|
1 |
|
|
872
|
|
|
if __name__ == '__main__': |
873
|
|
|
import doctest |
874
|
|
|
|
875
|
|
|
doctest.testmod() |
876
|
|
|
|