1
|
|
|
# Copyright 2019-2020 by Christopher C. Little. |
2
|
|
|
# This file is part of Abydos. |
3
|
|
|
# |
4
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
5
|
|
|
# it under the terms of the GNU General Public License as published by |
6
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
7
|
|
|
# (at your option) any later version. |
8
|
|
|
# |
9
|
|
|
# Abydos is distributed in the hope that it will be useful, |
10
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
11
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12
|
|
|
# GNU General Public License for more details. |
13
|
|
|
# |
14
|
|
|
# You should have received a copy of the GNU General Public License |
15
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
16
|
|
|
|
17
|
|
|
"""abydos.distance._scott_pi. |
18
|
|
|
|
19
|
1 |
|
Scott's Pi correlation |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
from typing import Any, Counter as TCounter, Optional, Sequence, Set, Union |
23
|
|
|
|
24
|
1 |
|
from ._token_distance import _TokenDistance |
25
|
|
|
from ..tokenizer import _Tokenizer |
26
|
|
|
|
27
|
|
|
__all__ = ['ScottPi'] |
28
|
|
|
|
29
|
|
|
|
30
|
|
|
class ScottPi(_TokenDistance): |
31
|
1 |
|
r"""Scott's Pi correlation. |
32
|
|
|
|
33
|
1 |
|
For two sets X and Y and a population N, Scott's :math:`\pi` correlation |
34
|
|
|
:cite:`Scott:1955` is |
35
|
|
|
|
36
|
1 |
|
.. math:: |
37
|
|
|
|
38
|
|
|
corr_{Scott_\pi}(X, Y) = \pi = |
39
|
|
|
\frac{p_o - p_e^\pi}{1 - p_e^\pi} |
40
|
|
|
|
41
|
|
|
where |
42
|
|
|
|
43
|
|
|
.. math:: |
44
|
|
|
|
45
|
|
|
\begin{array}{ll} |
46
|
|
|
p_o &= \frac{|X \cap Y| + |(N \setminus X) \setminus Y|}{|N|} |
47
|
|
|
|
48
|
|
|
p_e^\pi &= \Big(\frac{|X| + |Y|}{2 \cdot |N|}\Big)^2 + |
49
|
|
|
\Big(\frac{|N \setminus X| + |N \setminus Y|}{2 \cdot |N|}\Big)^2 |
50
|
|
|
\end{array} |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
In :ref:`2x2 confusion table terms <confusion_table>`, where a+b+c+d=n, |
54
|
|
|
this is |
55
|
|
|
|
56
|
|
|
.. math:: |
57
|
|
|
|
58
|
|
|
\begin{array}{ll} |
59
|
|
|
p_o &= \frac{a+d}{n} |
60
|
|
|
|
61
|
|
|
p_e^\pi &= \Big(\frac{2a+b+c}{2n}\Big)^2 + |
62
|
|
|
\Big(\frac{2d+b+c}{2n}\Big)^2 |
63
|
|
|
\end{array} |
64
|
|
|
|
65
|
|
|
|
66
|
|
|
.. versionadded:: 0.4.0 |
67
|
|
|
""" |
68
|
|
|
|
69
|
|
|
def __init__( |
70
|
|
|
self, |
71
|
|
|
alphabet: Optional[ |
72
|
|
|
Union[TCounter[str], Sequence[str], Set[str], int] |
73
|
|
|
] = None, |
74
|
|
|
tokenizer: Optional[_Tokenizer] = None, |
75
|
1 |
|
intersection_type: str = 'crisp', |
76
|
|
|
**kwargs: Any |
77
|
|
|
) -> None: |
78
|
|
|
"""Initialize ScottPi instance. |
79
|
|
|
|
80
|
|
|
Parameters |
81
|
|
|
---------- |
82
|
|
|
alphabet : Counter, collection, int, or None |
83
|
|
|
This represents the alphabet of possible tokens. |
84
|
|
|
See :ref:`alphabet <alphabet>` description in |
85
|
|
|
:py:class:`_TokenDistance` for details. |
86
|
|
|
tokenizer : _Tokenizer |
87
|
|
|
A tokenizer instance from the :py:mod:`abydos.tokenizer` package |
88
|
|
|
intersection_type : str |
89
|
|
|
Specifies the intersection type, and set type as a result: |
90
|
|
|
See :ref:`intersection_type <intersection_type>` description in |
91
|
|
|
:py:class:`_TokenDistance` for details. |
92
|
|
|
**kwargs |
93
|
|
|
Arbitrary keyword arguments |
94
|
|
|
|
95
|
|
|
Other Parameters |
96
|
|
|
---------------- |
97
|
|
|
qval : int |
98
|
|
|
The length of each q-gram. Using this parameter and tokenizer=None |
99
|
|
|
will cause the instance to use the QGram tokenizer with this |
100
|
|
|
q value. |
101
|
|
|
metric : _Distance |
102
|
|
|
A string distance measure class for use in the ``soft`` and |
103
|
|
|
``fuzzy`` variants. |
104
|
|
|
threshold : float |
105
|
|
|
A threshold value, similarities above which are counted as |
106
|
|
|
members of the intersection for the ``fuzzy`` variant. |
107
|
|
|
|
108
|
|
|
|
109
|
|
|
.. versionadded:: 0.4.0 |
110
|
|
|
|
111
|
|
|
""" |
112
|
|
|
super(ScottPi, self).__init__( |
113
|
|
|
alphabet=alphabet, |
114
|
|
|
tokenizer=tokenizer, |
115
|
|
|
intersection_type=intersection_type, |
116
|
1 |
|
**kwargs |
117
|
|
|
) |
118
|
|
|
|
119
|
|
|
def corr(self, src: str, tar: str) -> float: |
120
|
|
|
"""Return the Scott's Pi correlation of two strings. |
121
|
|
|
|
122
|
|
|
Parameters |
123
|
1 |
|
---------- |
124
|
|
|
src : str |
125
|
|
|
Source string (or QGrams/Counter objects) for comparison |
126
|
|
|
tar : str |
127
|
|
|
Target string (or QGrams/Counter objects) for comparison |
128
|
|
|
|
129
|
|
|
Returns |
130
|
|
|
------- |
131
|
|
|
float |
132
|
|
|
Scott's Pi correlation |
133
|
|
|
|
134
|
|
|
Examples |
135
|
|
|
-------- |
136
|
|
|
>>> cmp = ScottPi() |
137
|
|
|
>>> cmp.corr('cat', 'hat') |
138
|
|
|
0.49743589743589733 |
139
|
|
|
>>> cmp.corr('Niall', 'Neil') |
140
|
|
|
0.35914053833129245 |
141
|
|
|
>>> cmp.corr('aluminum', 'Catalan') |
142
|
|
|
0.10798833377524023 |
143
|
|
|
>>> cmp.corr('ATCG', 'TAGC') |
144
|
|
|
-0.006418485237489689 |
145
|
|
|
|
146
|
|
|
|
147
|
|
|
.. versionadded:: 0.4.0 |
148
|
|
|
|
149
|
|
|
""" |
150
|
|
|
if src == tar: |
151
|
|
|
return 1.0 |
152
|
|
|
|
153
|
|
|
self._tokenize(src, tar) |
154
|
1 |
|
|
155
|
1 |
|
a = self._intersection_card() |
156
|
|
|
b = self._src_only_card() |
157
|
1 |
|
c = self._tar_only_card() |
158
|
|
|
d = self._total_complement_card() |
159
|
1 |
|
n = a + b + c + d |
160
|
1 |
|
|
161
|
1 |
|
po = (a + d) / n |
162
|
1 |
|
pe = ((2 * a + b + c) / (2 * n)) ** 2 + ( |
163
|
1 |
|
(2 * d + b + c) / (2 * n) |
164
|
|
|
) ** 2 |
165
|
1 |
|
|
166
|
1 |
|
if po != pe: |
167
|
|
|
return (po - pe) / (1 - pe) |
168
|
|
|
return 0.0 |
169
|
|
|
|
170
|
1 |
|
def sim(self, src: str, tar: str) -> float: |
171
|
1 |
|
"""Return the Scott's Pi similarity of two strings. |
172
|
|
|
|
173
|
|
|
Parameters |
174
|
1 |
|
---------- |
175
|
|
|
src : str |
176
|
|
|
Source string (or QGrams/Counter objects) for comparison |
177
|
|
|
tar : str |
178
|
|
|
Target string (or QGrams/Counter objects) for comparison |
179
|
|
|
|
180
|
|
|
Returns |
181
|
|
|
------- |
182
|
|
|
float |
183
|
|
|
Scott's Pi similarity |
184
|
|
|
|
185
|
|
|
Examples |
186
|
|
|
-------- |
187
|
|
|
>>> cmp = ScottPi() |
188
|
|
|
>>> cmp.sim('cat', 'hat') |
189
|
|
|
0.7487179487179487 |
190
|
|
|
>>> cmp.sim('Niall', 'Neil') |
191
|
|
|
0.6795702691656462 |
192
|
|
|
>>> cmp.sim('aluminum', 'Catalan') |
193
|
|
|
0.5539941668876202 |
194
|
|
|
>>> cmp.sim('ATCG', 'TAGC') |
195
|
|
|
0.49679075738125517 |
196
|
|
|
|
197
|
|
|
|
198
|
|
|
.. versionadded:: 0.4.0 |
199
|
|
|
|
200
|
|
|
""" |
201
|
|
|
return (1.0 + self.corr(src, tar)) / 2.0 |
202
|
|
|
|
203
|
|
|
|
204
|
|
|
if __name__ == '__main__': |
205
|
1 |
|
import doctest |
206
|
|
|
|
207
|
|
|
doctest.testmod() |
208
|
|
|
|