1
|
|
|
# Copyright 2019-2020 by Christopher C. Little. |
2
|
|
|
# This file is part of Abydos. |
3
|
|
|
# |
4
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
5
|
|
|
# it under the terms of the GNU General Public License as published by |
6
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
7
|
|
|
# (at your option) any later version. |
8
|
|
|
# |
9
|
|
|
# Abydos is distributed in the hope that it will be useful, |
10
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
11
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12
|
|
|
# GNU General Public License for more details. |
13
|
|
|
# |
14
|
|
|
# You should have received a copy of the GNU General Public License |
15
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
16
|
|
|
|
17
|
|
|
"""abydos.distance._rees_levenshtein. |
18
|
|
|
|
19
|
1 |
|
Rees-Levenshtein distance |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
from typing import Any, Callable, List, cast |
23
|
|
|
|
24
|
1 |
|
from numpy import int_ as np_int |
25
|
|
|
from numpy import zeros as np_zeros |
26
|
|
|
|
27
|
|
|
from ._distance import _Distance |
28
|
|
|
|
29
|
|
|
__all__ = ['ReesLevenshtein'] |
30
|
|
|
|
31
|
1 |
|
|
32
|
1 |
|
class ReesLevenshtein(_Distance): |
33
|
|
|
r"""Rees-Levenshtein distance. |
34
|
1 |
|
|
35
|
|
|
Rees-Levenshtein distance :cite:`Rees:2014,Rees:2013` is the "Modified |
36
|
1 |
|
Damerau-Levenshtein Distance Algorithm, created by Tony Rees as part of |
37
|
|
|
Taxamatch. |
38
|
|
|
|
39
|
1 |
|
.. versionadded:: 0.4.0 |
40
|
|
|
""" |
41
|
|
|
|
42
|
|
|
def __init__( |
43
|
|
|
self, |
44
|
|
|
block_limit: int = 2, |
45
|
|
|
normalizer: Callable[[List[float]], float] = max, |
46
|
|
|
**kwargs: Any |
47
|
|
|
) -> None: |
48
|
|
|
"""Initialize ReesLevenshtein instance. |
49
|
1 |
|
|
50
|
|
|
Parameters |
51
|
|
|
---------- |
52
|
|
|
block_limit : int |
53
|
|
|
The block length limit |
54
|
|
|
normalizer : function |
55
|
|
|
A function that takes an list and computes a normalization term |
56
|
|
|
by which the edit distance is divided (max by default). Another |
57
|
|
|
good option is the sum function. |
58
|
|
|
**kwargs |
59
|
|
|
Arbitrary keyword arguments |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
.. versionadded:: 0.4.0 |
63
|
|
|
|
64
|
|
|
""" |
65
|
|
|
super(ReesLevenshtein, self).__init__(**kwargs) |
66
|
|
|
self._normalizer = normalizer |
67
|
1 |
|
self._block_limit = block_limit |
68
|
1 |
|
|
69
|
1 |
|
def dist_abs(self, src: str, tar: str) -> float: |
70
|
|
|
"""Return the Rees-Levenshtein distance of two strings. |
71
|
1 |
|
|
72
|
|
|
This is a straightforward port of the PL/SQL implementation at |
73
|
|
|
https://confluence.csiro.au/public/taxamatch/the-mdld-modified-damerau-levenshtein-distance-algorithm |
74
|
|
|
|
75
|
|
|
Parameters |
76
|
|
|
---------- |
77
|
|
|
src : str |
78
|
|
|
Source string for comparison |
79
|
|
|
tar : str |
80
|
|
|
Target string for comparison |
81
|
|
|
|
82
|
|
|
Returns |
83
|
|
|
------- |
84
|
|
|
float |
85
|
|
|
Rees-Levenshtein distance |
86
|
|
|
|
87
|
|
|
Examples |
88
|
|
|
-------- |
89
|
|
|
>>> cmp = ReesLevenshtein() |
90
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
91
|
|
|
1 |
92
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
93
|
|
|
3 |
94
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
95
|
|
|
7 |
96
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
97
|
|
|
2 |
98
|
|
|
|
99
|
|
|
|
100
|
|
|
.. versionadded:: 0.4.0 |
101
|
|
|
|
102
|
|
|
""" |
103
|
|
|
v_str1_length = len(src) |
104
|
|
|
v_str2_length = len(tar) |
105
|
1 |
|
|
106
|
1 |
|
if tar == src: |
107
|
|
|
return 0 |
108
|
1 |
|
if not src: |
109
|
1 |
|
return len(tar) |
110
|
1 |
|
if not tar: |
111
|
1 |
|
return len(src) |
112
|
1 |
|
if v_str1_length == 1 and v_str2_length == 1: |
113
|
1 |
|
return 1 |
114
|
1 |
|
|
115
|
1 |
|
def _substr(string: str, start: int, length: int) -> str: |
116
|
|
|
if start > 0: |
117
|
1 |
|
start -= 1 |
118
|
1 |
|
else: |
119
|
1 |
|
start += len(string) - 1 |
120
|
|
|
|
121
|
1 |
|
end = start + length |
122
|
|
|
|
123
|
1 |
|
return string[start:end] |
124
|
|
|
|
125
|
1 |
|
v_temp_str1 = str(src) |
126
|
|
|
v_temp_str2 = str(tar) |
127
|
1 |
|
|
128
|
1 |
|
# first trim common leading characters |
129
|
|
|
while v_temp_str1[:1] == v_temp_str2[:1]: |
130
|
|
|
v_temp_str1 = v_temp_str1[1:] |
131
|
1 |
|
v_temp_str2 = v_temp_str2[1:] |
132
|
1 |
|
|
133
|
1 |
|
# then trim common trailing characters |
134
|
|
|
while v_temp_str1[-1:] == v_temp_str2[-1:]: |
135
|
|
|
v_temp_str1 = v_temp_str1[:-1] |
136
|
1 |
|
v_temp_str2 = v_temp_str2[:-1] |
137
|
1 |
|
|
138
|
1 |
|
v_str1_length = len(v_temp_str1) |
139
|
|
|
v_str2_length = len(v_temp_str2) |
140
|
1 |
|
|
141
|
1 |
|
# then calculate standard Levenshtein Distance |
142
|
|
|
if v_str1_length == 0 or v_str2_length == 0: |
143
|
|
|
return max(v_str2_length, v_str1_length) |
144
|
1 |
|
if v_str1_length == 1 and v_str2_length == 1: |
145
|
1 |
|
return 1 |
146
|
1 |
|
|
147
|
1 |
|
# create table (NB: this is transposed relative to the PL/SQL version) |
148
|
|
|
d_mat = np_zeros((v_str1_length + 1, v_str2_length + 1), dtype=np_int) |
149
|
|
|
|
150
|
1 |
|
# enter values in first (leftmost) column |
151
|
|
|
for i in range(1, v_str1_length + 1): |
152
|
|
|
d_mat[i, 0] = i |
153
|
1 |
|
# populate remaining columns |
154
|
1 |
|
for j in range(1, v_str2_length + 1): |
155
|
|
|
d_mat[0, j] = j |
156
|
1 |
|
|
157
|
1 |
|
for i in range(1, v_str1_length + 1): |
158
|
|
|
if v_temp_str1[i - 1] == v_temp_str2[j - 1]: |
159
|
1 |
|
v_this_cost = 0 |
160
|
1 |
|
else: |
161
|
1 |
|
v_this_cost = 1 |
162
|
|
|
|
163
|
1 |
|
# extension to cover multiple single, double, triple, etc. |
164
|
|
|
# character transpositions |
165
|
|
|
# that includes calculation of original Levenshtein distance |
166
|
|
|
# when no transposition found |
167
|
|
|
v_temp_block_length = int( |
168
|
|
|
min( |
169
|
1 |
|
v_str1_length / 2, v_str2_length / 2, self._block_limit |
170
|
|
|
) |
171
|
|
|
) |
172
|
|
|
|
173
|
|
|
while v_temp_block_length >= 1: |
174
|
|
|
if ( |
175
|
1 |
|
(i >= v_temp_block_length * 2) |
176
|
1 |
|
and (j >= v_temp_block_length * 2) |
177
|
|
|
and ( |
178
|
|
|
_substr( |
179
|
|
|
v_temp_str1, |
180
|
|
|
i - v_temp_block_length * 2 - 1, |
181
|
|
|
v_temp_block_length, |
182
|
|
|
) |
183
|
|
|
== _substr( |
184
|
|
|
v_temp_str2, |
185
|
|
|
j - v_temp_block_length - 1, |
186
|
|
|
v_temp_block_length, |
187
|
|
|
) |
188
|
|
|
) |
189
|
|
|
and ( |
190
|
|
|
_substr( |
191
|
|
|
v_temp_str1, |
192
|
|
|
i - v_temp_block_length - 1, |
193
|
|
|
v_temp_block_length, |
194
|
|
|
) |
195
|
|
|
== _substr( |
196
|
|
|
v_temp_str2, |
197
|
|
|
j - v_temp_block_length * 2 - 1, |
198
|
|
|
v_temp_block_length, |
199
|
|
|
) |
200
|
|
|
) |
201
|
|
|
): |
202
|
|
|
# transposition found |
203
|
|
|
d_mat[i, j] = min( |
204
|
|
|
d_mat[i, j - 1] + 1, |
205
|
1 |
|
d_mat[i - 1, j] + 1, |
206
|
|
|
d_mat[ |
207
|
|
|
i - v_temp_block_length * 2, |
208
|
|
|
j - v_temp_block_length * 2, |
209
|
|
|
] |
210
|
|
|
+ v_this_cost |
211
|
|
|
+ v_temp_block_length |
212
|
|
|
- 1, |
213
|
|
|
) |
214
|
|
|
v_temp_block_length = 0 |
215
|
|
|
elif v_temp_block_length == 1: |
216
|
1 |
|
# no transposition |
217
|
1 |
|
d_mat[i, j] = min( |
218
|
|
|
d_mat[i, j - 1] + 1, |
219
|
1 |
|
d_mat[i - 1, j] + 1, |
220
|
|
|
d_mat[i - 1, j - 1] + v_this_cost, |
221
|
|
|
) |
222
|
|
|
v_temp_block_length -= 1 |
223
|
|
|
|
224
|
1 |
|
return cast(float, d_mat[v_str1_length, v_str2_length]) |
225
|
|
|
|
226
|
1 |
|
def dist(self, src: str, tar: str) -> float: |
227
|
|
|
"""Return the normalized Rees-Levenshtein distance of two strings. |
228
|
1 |
|
|
229
|
|
|
Parameters |
230
|
|
|
---------- |
231
|
|
|
src : str |
232
|
|
|
Source string for comparison |
233
|
|
|
tar : str |
234
|
|
|
Target string for comparison |
235
|
|
|
|
236
|
|
|
Returns |
237
|
|
|
------- |
238
|
|
|
float |
239
|
|
|
Normalized Rees-Levenshtein distance |
240
|
|
|
|
241
|
|
|
Examples |
242
|
|
|
-------- |
243
|
|
|
>>> cmp = ReesLevenshtein() |
244
|
|
|
>>> cmp.dist('cat', 'hat') |
245
|
|
|
0.3333333333333333 |
246
|
|
|
>>> cmp.dist('Niall', 'Neil') |
247
|
|
|
0.6 |
248
|
|
|
>>> cmp.dist('aluminum', 'Catalan') |
249
|
|
|
0.875 |
250
|
|
|
>>> cmp.dist('ATCG', 'TAGC') |
251
|
|
|
0.5 |
252
|
|
|
|
253
|
|
|
|
254
|
|
|
.. versionadded:: 0.4.0 |
255
|
|
|
|
256
|
|
|
""" |
257
|
|
|
if src == tar: |
258
|
|
|
return 0.0 |
259
|
1 |
|
return self.dist_abs(src, tar) / ( |
260
|
1 |
|
self._normalizer([len(src), len(tar)]) |
261
|
1 |
|
) |
262
|
|
|
|
263
|
|
|
|
264
|
|
|
if __name__ == '__main__': |
265
|
|
|
import doctest |
266
|
|
|
|
267
|
|
|
doctest.testmod() |
268
|
|
|
|