1
|
|
|
# Copyright 2019-2020 by Christopher C. Little. |
2
|
|
|
# This file is part of Abydos. |
3
|
|
|
# |
4
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
5
|
|
|
# it under the terms of the GNU General Public License as published by |
6
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
7
|
|
|
# (at your option) any later version. |
8
|
|
|
# |
9
|
|
|
# Abydos is distributed in the hope that it will be useful, |
10
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
11
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12
|
|
|
# GNU General Public License for more details. |
13
|
|
|
# |
14
|
|
|
# You should have received a copy of the GNU General Public License |
15
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
16
|
|
|
|
17
|
|
|
"""abydos.distance._covington. |
18
|
|
|
|
19
|
1 |
|
Covington distance |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
from collections import namedtuple |
23
|
|
|
from typing import Any, List, Optional, Tuple, cast |
24
|
1 |
|
from unicodedata import normalize as unicode_normalize |
25
|
|
|
|
26
|
|
|
from ._distance import _Distance |
27
|
|
|
|
28
|
|
|
__all__ = ['Covington'] |
29
|
|
|
|
30
|
|
|
Alignment = namedtuple('Alignment', ['src', 'tar', 'score']) |
31
|
1 |
|
|
32
|
1 |
|
|
33
|
|
|
class Covington(_Distance): |
34
|
1 |
|
r"""Covington distance. |
35
|
|
|
|
36
|
1 |
|
Covington distance :cite:`Covington:1996` |
37
|
|
|
|
38
|
1 |
|
.. versionadded:: 0.4.0 |
39
|
|
|
""" |
40
|
|
|
|
41
|
1 |
|
def __init__( |
42
|
|
|
self, |
43
|
|
|
weights: Tuple[int, int, int, int, int, int, int, int] = ( |
44
|
|
|
0, |
45
|
|
|
5, |
46
|
|
|
10, |
47
|
|
|
30, |
48
|
|
|
60, |
49
|
1 |
|
100, |
50
|
|
|
40, |
51
|
|
|
50, |
52
|
|
|
), |
53
|
|
|
**kwargs: Any |
54
|
|
|
) -> None: |
55
|
|
|
"""Initialize Covington instance. |
56
|
|
|
|
57
|
|
|
Parameters |
58
|
|
|
---------- |
59
|
|
|
weights : tuple |
60
|
|
|
An 8-tuple of costs for each kind of match or mismatch described in |
61
|
|
|
Covington's paper: |
62
|
|
|
|
63
|
|
|
- exact consonant or glide match |
64
|
|
|
- exact vowel match |
65
|
|
|
- vowel-vowel length mismatch or i and y or u and w |
66
|
|
|
- vowel-vowel mismatch |
67
|
|
|
- consonant-consonant mismatch |
68
|
|
|
- consonant-vowel mismatch |
69
|
|
|
- skip preceded by a skip |
70
|
|
|
- skip not preceded by a skip |
71
|
|
|
|
72
|
|
|
The weights used in Covington's first approximation can be used |
73
|
|
|
by supplying the tuple (0.0, 0.0, 0.5, 0.5, 0.5, 1.0, 0.5, 0.5) |
74
|
|
|
**kwargs |
75
|
|
|
Arbitrary keyword arguments |
76
|
1 |
|
|
77
|
1 |
|
|
78
|
1 |
|
.. versionadded:: 0.4.0 |
79
|
1 |
|
|
80
|
1 |
|
""" |
81
|
|
|
super(Covington, self).__init__(**kwargs) |
82
|
1 |
|
self._weights = weights |
83
|
|
|
self._vowels = set('aeiou') |
84
|
|
|
self._consonants = set('bcdfghjklmnpqrstvxz') |
85
|
|
|
self._glides = set('wy') |
86
|
|
|
|
87
|
|
|
def dist_abs(self, src: str, tar: str) -> float: |
88
|
|
|
"""Return the Covington distance of two strings. |
89
|
|
|
|
90
|
|
|
Parameters |
91
|
|
|
---------- |
92
|
|
|
src : str |
93
|
|
|
Source string for comparison |
94
|
|
|
tar : str |
95
|
|
|
Target string for comparison |
96
|
|
|
|
97
|
|
|
Returns |
98
|
|
|
------- |
99
|
|
|
float |
100
|
|
|
Covington distance |
101
|
|
|
|
102
|
|
|
Examples |
103
|
|
|
-------- |
104
|
|
|
>>> cmp = Covington() |
105
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
106
|
|
|
65 |
107
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
108
|
|
|
115 |
109
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
110
|
|
|
325 |
111
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
112
|
|
|
200 |
113
|
1 |
|
|
114
|
|
|
|
115
|
1 |
|
.. versionadded:: 0.4.0 |
116
|
|
|
|
117
|
|
|
""" |
118
|
|
|
return cast(float, self.alignments(src, tar, 1)[0][-1]) |
119
|
|
|
|
120
|
|
|
def dist(self, src: str, tar: str) -> float: |
121
|
|
|
"""Return the normalized Covington distance of two strings. |
122
|
|
|
|
123
|
|
|
Parameters |
124
|
|
|
---------- |
125
|
|
|
src : str |
126
|
|
|
Source string for comparison |
127
|
|
|
tar : str |
128
|
|
|
Target string for comparison |
129
|
|
|
|
130
|
|
|
Returns |
131
|
|
|
------- |
132
|
|
|
float |
133
|
|
|
Normalized Covington distance |
134
|
|
|
|
135
|
|
|
Examples |
136
|
|
|
-------- |
137
|
|
|
>>> cmp = Covington() |
138
|
|
|
>>> cmp.dist('cat', 'hat') |
139
|
|
|
0.19117647058823528 |
140
|
|
|
>>> cmp.dist('Niall', 'Neil') |
141
|
|
|
0.25555555555555554 |
142
|
|
|
>>> cmp.dist('aluminum', 'Catalan') |
143
|
|
|
0.43333333333333335 |
144
|
|
|
>>> cmp.dist('ATCG', 'TAGC') |
145
|
|
|
0.45454545454545453 |
146
|
1 |
|
|
147
|
1 |
|
|
148
|
1 |
|
.. versionadded:: 0.4.0 |
149
|
1 |
|
|
150
|
|
|
""" |
151
|
1 |
|
normalizer = self._weights[5] * min(len(src), len(tar)) |
152
|
|
|
if len(src) != len(tar): |
153
|
1 |
|
normalizer += self._weights[7] |
154
|
|
|
normalizer += self._weights[6] * abs(abs(len(src) - len(tar)) - 1) |
155
|
|
|
|
156
|
|
|
return self.dist_abs(src, tar) / normalizer |
157
|
|
|
|
158
|
|
|
def alignment(self, src: str, tar: str) -> Tuple[float, str, str]: |
159
|
|
|
"""Return the top Covington alignment of two strings. |
160
|
|
|
|
161
|
|
|
This returns only the top alignment in a standard |
162
|
|
|
(score, source alignment, target alignment) tuple format. |
163
|
|
|
|
164
|
|
|
Parameters |
165
|
|
|
---------- |
166
|
|
|
src : str |
167
|
|
|
Source string for comparison |
168
|
|
|
tar : str |
169
|
|
|
Target string for comparison |
170
|
|
|
|
171
|
|
|
Returns |
172
|
|
|
------- |
173
|
|
|
tuple(float, str, str) |
174
|
|
|
Covington score & alignment |
175
|
|
|
|
176
|
|
|
Examples |
177
|
|
|
-------- |
178
|
|
|
>>> cmp = Covington() |
179
|
|
|
>>> cmp.alignment('hart', 'kordis') |
180
|
|
|
(240, 'hart--', 'kordis') |
181
|
|
|
>>> cmp.alignment('niy', 'genu') |
182
|
|
|
(170, '--niy', 'genu-') |
183
|
1 |
|
|
184
|
1 |
|
|
185
|
|
|
.. versionadded:: 0.4.1 |
186
|
1 |
|
|
187
|
|
|
""" |
188
|
|
|
alignment = self.alignments(src, tar, 1)[0] |
189
|
|
|
return alignment.score, alignment.src, alignment.tar |
190
|
|
|
|
191
|
|
|
def alignments( |
192
|
|
|
self, src: str, tar: str, top_n: Optional[int] = None |
193
|
|
|
) -> List[Alignment]: |
194
|
|
|
"""Return the Covington alignments of two strings. |
195
|
|
|
|
196
|
|
|
Parameters |
197
|
|
|
---------- |
198
|
|
|
src : str |
199
|
|
|
Source string for comparison |
200
|
|
|
tar : str |
201
|
|
|
Target string for comparison |
202
|
|
|
top_n : int |
203
|
|
|
The number of alignments to return. If None, all alignments will |
204
|
|
|
be returned. If 0, all alignments with the top score will be |
205
|
|
|
returned. |
206
|
|
|
|
207
|
|
|
Returns |
208
|
|
|
------- |
209
|
|
|
list |
210
|
|
|
Covington alignments |
211
|
|
|
|
212
|
|
|
Examples |
213
|
|
|
-------- |
214
|
|
|
>>> cmp = Covington() |
215
|
|
|
>>> cmp.alignments('hart', 'kordis', top_n=1)[0] |
216
|
|
|
Alignment(src='hart--', tar='kordis', score=240) |
217
|
1 |
|
>>> cmp.alignments('niy', 'genu', top_n=1)[0] |
218
|
1 |
|
Alignment(src='--niy', tar='genu-', score=170) |
219
|
1 |
|
|
220
|
1 |
|
|
221
|
|
|
.. versionadded:: 0.4.0 |
222
|
|
|
|
223
|
|
|
""" |
224
|
|
|
if not src: |
225
|
|
|
if not tar: |
226
|
|
|
return [Alignment('', '', 0)] |
227
|
1 |
|
return [ |
228
|
1 |
|
Alignment( |
229
|
|
|
'-' * len(tar), |
230
|
|
|
src, |
231
|
|
|
self._weights[7] + self._weights[6] * (len(tar) - 1), |
232
|
|
|
) |
233
|
|
|
] |
234
|
|
|
if not tar: |
235
|
|
|
return [ |
236
|
1 |
|
Alignment( |
237
|
|
|
src, |
238
|
1 |
|
'-' * len(src), |
239
|
1 |
|
self._weights[7] + self._weights[6] * (len(src) - 1), |
240
|
1 |
|
) |
241
|
1 |
|
] |
242
|
|
|
|
243
|
1 |
|
terminals = [] |
244
|
1 |
|
|
245
|
1 |
|
def _cost(s: str, t: str) -> float: |
246
|
1 |
|
if s[-1:] == '-': |
247
|
|
|
if s[-2:] == '--': |
248
|
1 |
|
return self._weights[6] |
249
|
|
|
else: |
250
|
1 |
|
return self._weights[7] |
251
|
1 |
|
elif t[-1:] == '-': |
252
|
|
|
if t[-2:] == '--': |
253
|
1 |
|
return self._weights[6] |
254
|
1 |
|
else: |
255
|
1 |
|
return self._weights[7] |
256
|
|
|
|
257
|
1 |
|
s = unicode_normalize('NFC', s)[-1:] |
258
|
|
|
t = unicode_normalize('NFC', t)[-1:] |
259
|
1 |
|
|
260
|
1 |
|
if s == t: |
261
|
|
|
if s in self._consonants or s in self._glides: |
262
|
1 |
|
return self._weights[0] |
263
|
1 |
|
else: |
264
|
|
|
return self._weights[1] |
265
|
1 |
|
|
266
|
1 |
|
if ''.join(sorted([s, t])) in {'iy', 'uw'}: |
267
|
|
|
return self._weights[2] |
268
|
1 |
|
|
269
|
1 |
|
sd = unicode_normalize('NFKD', s) |
270
|
1 |
|
td = unicode_normalize('NFKD', t) |
271
|
1 |
|
|
272
|
|
|
if sd[0] == td[0] and s in self._vowels: |
273
|
1 |
|
return self._weights[2] |
274
|
|
|
|
275
|
1 |
|
if sd[0] in self._vowels and td[0] in self._vowels: |
276
|
1 |
|
return self._weights[3] |
277
|
|
|
if sd[0] in self._consonants and td[0] in self._consonants: |
278
|
1 |
|
return self._weights[4] |
279
|
1 |
|
|
280
|
|
|
return self._weights[5] |
281
|
|
|
|
282
|
|
|
def _add_alignments( |
283
|
|
|
cost: float, src: str, tar: str, src_align: str, tar_align: str |
284
|
|
|
) -> None: |
285
|
|
|
cost += _cost(src_align, tar_align) |
286
|
1 |
|
|
287
|
1 |
|
if src and tar: |
288
|
|
|
_add_alignments( |
289
|
|
|
cost, |
290
|
1 |
|
src[1:], |
291
|
1 |
|
tar[1:], |
292
|
|
|
src_align + src[0], |
293
|
|
|
tar_align + tar[0], |
294
|
|
|
) |
295
|
1 |
|
if tar and tar_align[-1] != '-': |
296
|
1 |
|
_add_alignments( |
297
|
|
|
cost, src, tar[1:], src_align + '-', tar_align + tar[0] |
298
|
1 |
|
) |
299
|
|
|
if src and src_align[-1] != '-': |
300
|
1 |
|
_add_alignments( |
301
|
1 |
|
cost, src[1:], tar, src_align + src[0], tar_align + '-' |
302
|
1 |
|
) |
303
|
|
|
|
304
|
1 |
|
if not src and not tar: |
305
|
1 |
|
terminals.append(Alignment(src_align, tar_align, cost)) |
306
|
|
|
|
307
|
1 |
|
return |
308
|
|
|
|
309
|
1 |
|
_add_alignments(0, src, tar[1:], '-', tar[0]) |
310
|
1 |
|
_add_alignments(0, src[1:], tar, src[0], '-') |
311
|
1 |
|
_add_alignments(0, src[1:], tar[1:], src[0], tar[0]) |
312
|
1 |
|
|
313
|
|
|
terminals = sorted(terminals, key=lambda al: al.score) |
314
|
|
|
|
315
|
1 |
|
if top_n == 0: |
316
|
|
|
top_score = terminals[0].score |
317
|
1 |
|
top_n = 1 |
318
|
1 |
|
while ( |
319
|
|
|
top_n < len(terminals) and terminals[top_n].score == top_score |
320
|
1 |
|
): |
321
|
|
|
top_n += 1 |
322
|
|
|
|
323
|
|
|
if top_n is None: |
324
|
|
|
return terminals |
325
|
|
|
else: |
326
|
|
|
return terminals[:top_n] |
327
|
|
|
|
328
|
|
|
|
329
|
|
|
if __name__ == '__main__': |
330
|
|
|
import doctest |
331
|
|
|
|
332
|
|
|
doctest.testmod() |
333
|
|
|
|