| 1 |  |  | """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  | This module can be used to read cycling data of the CX2, CS2 and PL type cells as | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  | a dataframe. It converts cumulative values into individual values for | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  | each cycle and determines net charge of the battery at every datapoint. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  | It can also be used to train and test a LSTM model and predict discharge capacity | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  | using the LSTM model. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  | """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  | import datetime | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  | import os | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  | from os import listdir | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  | from os.path import isfile, join | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  | import re | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  | # import matplotlib.pyplot as plt | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  | # import seaborn as sns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  | import pandas as pd | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  | import numpy as np | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  | from sklearn.model_selection import train_test_split | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  | from keras.models import Sequential | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  | from keras.layers import Dense | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  | from keras.layers import LSTM | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  | from keras.models import load_model | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  | # @profile | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  | def date_time_converter(date_time_list): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  |     This function gets the numpy array with date_time in matlab format | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |     and returns a numpy array with date_time in human readable format. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  |     if not isinstance(date_time_list, list): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 33 |  |  |         raise TypeError("date_time_list should be a list") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 34 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  |     # Empty array to hold the results | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  |     date_time_human = [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  |     for i in date_time_list: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  |         date_time_human.append( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  |             datetime.datetime.fromordinal( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  |                 int(i)) + | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 |  |  |             datetime.timedelta( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  |                 days=i % | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  |                 1) - | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 |  |  |             datetime.timedelta( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 |  |  |                 days=366)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  |     return date_time_human | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 |  |  | # @profile | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 |  |  | def get_dict_files(data_dir, file_name_format, ignore_file_indices): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  |     This function finds all the files at the location of the file name | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 |  |  |     format as specified and then creates a dictionary after ignoring the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |     list of file specified | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  |     Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  |         data_dir (string): This is the absolute path to the data directory. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  |         file_name_format (string): Format of the filename, used to deduce other | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  |         files. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |         ignore_file_indices (list, int): This list of ints tells | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  |         which to ignore. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  |         The dictionary with all data from files dataframes. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  |     # get the list of files in the directory | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  |     onlyfiles = [f for f in listdir(data_dir) if isfile(join(data_dir, f))] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  |     # Extract the experiment name from the file_name_format | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  |     exp_name = file_name_format[0:4] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  |     # Empty dictionary to hold all the dataframe for various files | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  |     dict_files = {} | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |     # Iterate over all the files of certain type and get the file number from | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |     # them | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  |     for filename in onlyfiles: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |         if exp_name in filename: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  |             # Extract the filenumber from the name | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  |             file_number = re.search( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  |                 exp_name + r'\((.+?)\).csv', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  |                 filename).group(1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  |             # Give a value of dataframe to each key | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  |             dict_files[int(file_number)] = pd.read_csv( | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  |                 join(data_dir, filename)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |     # Empty dictionary to hold the ordered dictionaries | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  |     dict_ordered = {} | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  |     # Sort the dictionary based on keys | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |     for key in sorted(dict_files.keys()): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  |         dict_ordered[key] = dict_files[key] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  |     # Keys with files to keep, remove the ignore indices from all keys | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |     wanted_keys = np.array( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  |         list(set(dict_ordered.keys()) - set(ignore_file_indices))) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |     # Remove the ignored dataframes for characterization | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |     dict_ord_cycling_data = {k: dict_ordered[k] for k in wanted_keys} | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  |     return dict_ord_cycling_data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  | def concat_dict_dataframes(dict_ord_cycling_data): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |     This function takes in a dictionary with ordered keys | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |     and concatenates the dataframes in the values of the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  |     dictionary to create a large dataframe with all the records. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |     Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |         dict_ord_cycling_data (dict): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  |             The dictionary with ordered integer keys and dataframes as values | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |         The dataframe after concatenation | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |     # Raise an exception if the type of the inputs is not correct | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |     if not isinstance(dict_ord_cycling_data, dict): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |         raise TypeError('dict_ord_cycling_data is not of type dict') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |     #print(dict_ord_cycling_data.keys()) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |     for i in dict_ord_cycling_data.keys(): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |         # Raise an exception if the type of the keys is not integers | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  |         # print(type(i)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |         if not isinstance(i, (int, np.int64)): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |             raise TypeError('a key in the dictionary is not an integer') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  |     for i in dict_ord_cycling_data.values(): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |         # Raise an exception if the type of the values is not a dataframe | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |         if not isinstance(i, pd.DataFrame): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |             raise TypeError('a value in the dictionary is not a pandas ' + | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |                             'dataframe') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  |         # print(i.columns) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |         # Raise am exception if the necessary columns are not found in the df | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  |         if not { | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |                 'Cycle', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |                 'Charge_Ah', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  |                 'Discharge_Ah', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |                 'Time_sec', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  |                 'Current_Amp', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |                 'Voltage_Volt'}.issubset(i.columns): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  |             raise Exception("the dataframe doesnt have the columns 'Cycle'" + | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |                             ", 'Charge_Ah', 'Discharge_Ah', " + | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |                             "'Time_sec', 'Voltage_Volt', 'Current_Amp' ") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |     # Concatenate the dataframes to create the total dataframe | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  |     df_out = None | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |     for k in dict_ord_cycling_data.keys(): | 
            
                                                                                                            
                            
            
                                                                    
                                                                                                        
            
            
                | 154 |  | View Code Duplication |         if df_out is None: | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |             df_next = dict_ord_cycling_data[k] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |             df_out = pd.DataFrame(data=None, columns=df_next.columns) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |             df_out = pd.concat([df_out, df_next]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |             df_next = dict_ord_cycling_data[k] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |             df_next['Cycle'] = np.array( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |                 df_next['Cycle']) + max(np.array(df_out['Cycle'])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |             df_next['Time_sec'] = np.array( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |                 df_next['Time_sec']) + max(np.array(df_out['Time_sec'])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |             df_next['Charge_Ah'] = np.array( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  |                 df_next['Charge_Ah']) + max(np.array(df_out['Charge_Ah'])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  |             df_next['Discharge_Ah'] = np.array( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  |                 df_next['Discharge_Ah']) + max(np.array(df_out['Discharge_Ah'])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |             df_out = pd.concat([df_out, df_next]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  |     return df_out | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  | def get_cycle_capacities(df_out): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  |     This function takes the dataframe, creates a new index and then calculates | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  |     capacities per cycle from cumulative charge and discharge capacities | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |     Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  |         df_out (pandas.DataFrame): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  |             Concatenated dataframe | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  |         the dataframe with capacities per cycle | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 187 |  |  |     # Raise am exception if the necessary columns are not found in the df | 
            
                                                                                                            
                            
            
                                    
            
            
                | 188 |  |  |     if not {'Cycle', 'Charge_Ah', 'Discharge_Ah', 'Time_sec', 'Current_Amp', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 189 |  |  |             'Voltage_Volt'}.issubset(df_out.columns): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 190 |  |  |         raise Exception("the dataframe doesnt have the columns 'Cycle'" + | 
            
                                                                                                            
                            
            
                                    
            
            
                | 191 |  |  |                         ", 'Charge_Ah', 'Discharge_Ah', " + | 
            
                                                                                                            
                            
            
                                    
            
            
                | 192 |  |  |                         "'Time_sec', 'Voltage_Volt', 'Current_Amp' ") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 193 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 194 |  |  |     # Reset the index and drop the old index | 
            
                                                                                                            
                            
            
                                    
            
            
                | 195 |  |  |     df_out_indexed = df_out.reset_index(drop=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 196 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 197 |  |  |     # Proceed further with correcting the capacity | 
            
                                                                                                            
                            
            
                                    
            
            
                | 198 |  |  |     df_grouped = df_out_indexed.groupby(['Cycle']).count() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 199 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 200 |  |  |     # Get the indices when a cycle starts | 
            
                                                                                                            
                            
            
                                    
            
            
                | 201 |  |  |     cycle_start_indices = df_grouped['Time_sec'].cumsum() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 202 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 203 |  |  |     # Get the charge_Ah per cycle | 
            
                                                                                                            
                            
            
                                    
            
            
                | 204 |  |  |     # Create numpy array to store the old charge_Ah row, and then | 
            
                                                                                                            
                            
            
                                    
            
            
                | 205 |  |  |     # perform transformation on it, rather than in the pandas series | 
            
                                                                                                            
                            
            
                                    
            
            
                | 206 |  |  |     # this is a lot faster in this case | 
            
                                                                                                            
                            
            
                                    
            
            
                | 207 |  |  |     charge_cycle_ah = np.array(df_out_indexed['Charge_Ah']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 208 |  |  |     charge_ah = np.array(df_out_indexed['Charge_Ah']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 209 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 210 |  |  |     for i in range(1, len(cycle_start_indices)): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 211 |  |  |         begin_value = cycle_start_indices.iloc[i - 1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 212 |  |  |         end_value = cycle_start_indices.iloc[i] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 213 |  |  |         charge_cycle_ah[begin_value:end_value] = charge_ah[begin_value:end_value] - \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 214 |  |  |             charge_ah[begin_value - 1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 215 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 216 |  |  |     df_out_indexed['charge_cycle_ah'] = charge_cycle_ah | 
            
                                                                                                            
                            
            
                                    
            
            
                | 217 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 218 |  |  |     # Get the discharge_Ah per cycle | 
            
                                                                                                            
                            
            
                                    
            
            
                | 219 |  |  |     discharge_cycle_ah = np.array(df_out_indexed['Discharge_Ah']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 220 |  |  |     discharge_ah = np.array(df_out_indexed['Discharge_Ah']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 221 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 222 |  |  |     for i in range(1, len(cycle_start_indices)): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 223 |  |  |         begin_value = cycle_start_indices.iloc[i - 1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 224 |  |  |         end_value = cycle_start_indices.iloc[i] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 225 |  |  |         discharge_cycle_ah[begin_value:end_value] = discharge_ah[begin_value:end_value] - \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 226 |  |  |             discharge_ah[begin_value - 1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 227 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 228 |  |  |     df_out_indexed['discharge_cycle_ah'] = discharge_cycle_ah | 
            
                                                                                                            
                            
            
                                    
            
            
                | 229 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 230 |  |  |     # This is the data column we can use for prediction. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 231 |  |  |     # This is not totally accurate, as this still has some points that go negative, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 232 |  |  |     # due to incorrect discharge_Ah values every few cycles. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 233 |  |  |     # But the machine learning algorithm should consider these as outliers and | 
            
                                                                                                            
                            
            
                                    
            
            
                | 234 |  |  |     # hopefully get over it. We can come back and correct this. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 235 |  |  |     df_out_indexed['capacity_ah'] = charge_cycle_ah - discharge_cycle_ah | 
            
                                                                                                            
                            
            
                                    
            
            
                | 236 |  |  |     df_out_indexed.rename(columns={'Current_Amp':'Current(A)','Voltage_Volt':'Voltage(V)'}, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 237 |  |  |                           inplace=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 238 |  |  |     return df_out_indexed | 
            
                                                                                                            
                            
            
                                    
            
            
                | 239 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 240 |  |  | # @profile | 
            
                                                                                                            
                            
            
                                    
            
            
                | 241 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 242 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 243 |  |  | def pl_samples_file_reader(data_dir, file_name_format, ignore_file_indices): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 244 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 245 |  |  |     This function reads in the data for PL Samples experiment and returns a | 
            
                                                                                                            
                            
            
                                    
            
            
                | 246 |  |  |     nice dataframe with cycles in ascending order. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 247 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 248 |  |  |     Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 249 |  |  |         data_dir (string): This is the absolute path to the data directory. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 250 |  |  |         file_name_format (string): Format of the filename, used to deduce other files. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 251 |  |  |         ignore_file_indices (list, int): This list of ints tells which to ignore. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 252 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 253 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 254 |  |  |         The complete test data in a dataframe with extra column for capacity in Ah. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 255 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 256 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 257 |  |  |     # Raise an exception if the type of the inputs is not correct | 
            
                                                                                                            
                            
            
                                    
            
            
                | 258 |  |  |     if not isinstance(data_dir, str): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 259 |  |  |         raise TypeError('data_dir is not of type string') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 260 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 261 |  |  |     if not isinstance(file_name_format, str): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 262 |  |  |         raise TypeError('file_name_format is not of type string') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 263 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 264 |  |  |     if not isinstance(ignore_file_indices, list): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 265 |  |  |         raise TypeError("ignore_file_indices should be a list") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 266 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 267 |  |  |     for ignore_file_indice in ignore_file_indices: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 268 |  |  |         if not isinstance(ignore_file_indice, int): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 269 |  |  |             raise TypeError("""ignore_file_indices elements should be | 
            
                                                                                                            
                            
            
                                    
            
            
                | 270 |  |  |             of type integer""") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 271 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 272 |  |  |     if not os.path.exists(join(data_dir, file_name_format)): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 273 |  |  |         raise FileNotFoundError("File {} not found in the location {}" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 274 |  |  |                                 .format(file_name_format, data_dir)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 275 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 276 |  |  |     dict_ord_cycling_data = get_dict_files( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 277 |  |  |         data_dir, file_name_format, ignore_file_indices) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 278 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 279 |  |  |     df_out = concat_dict_dataframes(dict_ord_cycling_data) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 280 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 281 |  |  |     #### | 
            
                                                                                                            
                            
            
                                    
            
            
                | 282 |  |  |     # This has been commented out for performance, as we do not need date_time | 
            
                                                                                                            
                            
            
                                    
            
            
                | 283 |  |  |     #### | 
            
                                                                                                            
                            
            
                                    
            
            
                | 284 |  |  |     # Convert the Date_Time from matlab datenum to human readable Date_Time | 
            
                                                                                                            
                            
            
                                    
            
            
                | 285 |  |  |     # First convert the series into a numpy array | 
            
                                                                                                            
                            
            
                                    
            
            
                | 286 |  |  |     # date_time_matlab = df_out['Date_Time'].tolist() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 287 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 288 |  |  |     # # Apply the conversion to the numpy array | 
            
                                                                                                            
                            
            
                                    
            
            
                | 289 |  |  |     # df_out['Date_Time_new'] =  date_time_converter(date_time_matlab) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 290 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 291 |  |  |     # Get the cycle capacities from cumulative capacities | 
            
                                                                                                            
                            
            
                                    
            
            
                | 292 |  |  |     df_out_indexed = get_cycle_capacities(df_out) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 293 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 294 |  |  |     return df_out_indexed | 
            
                                                                                                            
                            
            
                                    
            
            
                | 295 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 296 |  |  | # Wrapping function to train the LSTM model and calculate model_loss, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 297 |  |  | # and response to the testing data set. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 298 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 299 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 300 |  |  | def model_training(data_dir, file_name_format, sheet_name): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 301 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 302 |  |  |     This function converts cumulative battery cycling data into individual cycle data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 303 |  |  |     and trains the LSTM model with the converted data set. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 304 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 305 |  |  |     Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 306 |  |  |         data_dir (string): This is the absolute path to the data directory. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 307 |  |  |         file_name_format (string): Format of the filename, used to deduce other files. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 308 |  |  |         sheet_name(string or int): Sheet name or sheet number in the excel file containing | 
            
                                                                                                            
                            
            
                                    
            
            
                | 309 |  |  |         the relevant data. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 310 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 311 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 312 |  |  |         model_loss(dictionary): Returns the history dictionary (more info to be added) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 313 |  |  |         y_hat(array): Predicted response for the testing dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 314 |  |  |         # y_prediction(array): Predicted response for the completely new dataset | 
            
                                                                                                            
                            
            
                                    
            
            
                | 315 |  |  |         # (The input has to be the time series cycling data including values of | 
            
                                                                                                            
                            
            
                                    
            
            
                | 316 |  |  |         #  Current, Voltage and Discharge Capacity) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 317 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 318 |  |  |     # The function 'cx2_file_reader' is used to read all the excel files | 
            
                                                                                                            
                            
            
                                    
            
            
                | 319 |  |  |     # in the given path and convert the given cumulative data into individual | 
            
                                                                                                            
                            
            
                                    
            
            
                | 320 |  |  |     # cycle data. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 321 |  |  |     individual_cycle_data = cx2_file_reader(data_dir, file_name_format, sheet_name) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 322 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 323 |  |  |     # The function 'data_formatting' is used to drop the unnecesary columns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 324 |  |  |     # from the training data i.e. only the features considered in the model | 
            
                                                                                                            
                            
            
                                    
            
            
                | 325 |  |  |     # (Current, Voltage and Discharge capacity) are retained. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 326 |  |  |     formatted_data = data_formatting(individual_cycle_data) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 327 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 328 |  |  |     # The function 'series_to_supervised' is used to frame the time series training | 
            
                                                                                                            
                            
            
                                    
            
            
                | 329 |  |  |     # data as supervised learning dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 330 |  |  |     learning_df = series_to_supervised( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 331 |  |  |         formatted_data, n_in=1, n_out=1, dropnan=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 332 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 333 |  |  |     # The function 'long_short_term_memory' is used to train the model | 
            
                                                                                                            
                            
            
                                    
            
            
                | 334 |  |  |     # and predict response for the new input dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 335 |  |  |     model_loss, y_hat = long_short_term_memory(learning_df) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 336 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 337 |  |  |     return model_loss, y_hat | 
            
                                                                                                            
                            
            
                                    
            
            
                | 338 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 339 |  |  |  | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 340 |  |  | # Function to predict the discharge capacity using the trained LSTM model. | 
            
                                                                        
                            
            
                                    
            
            
                | 341 |  |  | def model_prediction(input_data): | 
            
                                                                        
                            
            
                                    
            
            
                | 342 |  |  |     """ | 
            
                                                                        
                            
            
                                    
            
            
                | 343 |  |  |     This function can be used to forecast the discharge capacity of a battery using | 
            
                                                                        
                            
            
                                    
            
            
                | 344 |  |  |     the trained LSTM model | 
            
                                                                        
                            
            
                                    
            
            
                | 345 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 346 |  |  |     Args: | 
            
                                                                        
                            
            
                                    
            
            
                | 347 |  |  |     input_data(dataframe): This is the dataframe containing the current, voltage and | 
            
                                                                        
                            
            
                                    
            
            
                | 348 |  |  |     discharge capacity values at a prior time which can be used to forecast discharge | 
            
                                                                        
                            
            
                                    
            
            
                | 349 |  |  |     capacity at a further time. | 
            
                                                                        
                            
            
                                    
            
            
                | 350 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 351 |  |  |     Returns: | 
            
                                                                        
                            
            
                                    
            
            
                | 352 |  |  |     y_predicted: The forecasted values of discharge capacity. | 
            
                                                                        
                            
            
                                    
            
            
                | 353 |  |  |     """ | 
            
                                                                        
                            
            
                                    
            
            
                | 354 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 355 |  |  |     # The function 'series_to_supervised' is used to frame the time series training | 
            
                                                                        
                            
            
                                    
            
            
                | 356 |  |  |     # data as supervised learning dataset. | 
            
                                                                        
                            
            
                                    
            
            
                | 357 |  |  |     learning_df = series_to_supervised( | 
            
                                                                        
                            
            
                                    
            
            
                | 358 |  |  |         input_data, n_in=1, n_out=1, dropnan=True) | 
            
                                                                        
                            
            
                                    
            
            
                | 359 |  |  |     learning_df = learning_df.iloc[:, 0:3].values | 
            
                                                                        
                            
            
                                    
            
            
                | 360 |  |  |     # Reshaping the input dataset. | 
            
                                                                        
                            
            
                                    
            
            
                | 361 |  |  |     learning_df = learning_df.reshape( | 
            
                                                                        
                            
            
                                    
            
            
                | 362 |  |  |         (learning_df.shape[0], 1, learning_df.shape[1])) | 
            
                                                                        
                            
            
                                    
            
            
                | 363 |  |  |     # Predicting the discharge values using the saved LSTM model. | 
            
                                                                        
                            
            
                                    
            
            
                | 364 |  |  |     module_dir = os.path.dirname(os.path.abspath(__file__)) | 
            
                                                                        
                            
            
                                    
            
            
                | 365 |  |  |     model_path = join(module_dir,'models') | 
            
                                                                        
                            
            
                                    
            
            
                | 366 |  |  |     model = load_model(join(model_path,'lstm_trained_model.h5')) | 
            
                                                                        
                            
            
                                    
            
            
                | 367 |  |  |     y_predicted = model.predict(learning_df) | 
            
                                                                        
                            
            
                                    
            
            
                | 368 |  |  |     return y_predicted | 
            
                                                                                                            
                            
            
                                    
            
            
                | 369 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 370 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 371 |  |  | # Wrapping function only to merge and convert cumulative data to | 
            
                                                                                                            
                            
            
                                    
            
            
                | 372 |  |  | # individual cycle data. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 373 |  |  | def cx2_file_reader(data_dir, file_name_format, sheet_name): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 374 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 375 |  |  |     This function reads in the data for CX2 samples experiment and returns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 376 |  |  |     a well formatted dataframe with cycles in ascending order. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 377 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 378 |  |  |     Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 379 |  |  |     data_dir (string): This is the absolute path to the data directory. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 380 |  |  |     file_name_format (string): Format of the filename, used to deduce other files. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 381 |  |  |     sheet_name (string): Sheet name containing the data in the excel file. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 382 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 383 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 384 |  |  |     The complete test data in a dataframe with extra column for capacity in Ah. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 385 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 386 |  |  |     # Raise an exception if the type of the inputs is not correct | 
            
                                                                                                            
                            
            
                                    
            
            
                | 387 |  |  |     if not isinstance(data_dir, str): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 388 |  |  |         raise TypeError('data_dir is not of type string') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 389 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 390 |  |  |     if not isinstance(file_name_format, str): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 391 |  |  |         raise TypeError('file_name_format is not of type string') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 392 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 393 |  |  |     if not isinstance(sheet_name, (str, int)): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 394 |  |  |         raise TypeError('Sheet_Name format is not of type string or integer') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 395 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 396 |  |  |     if not os.path.exists(join(data_dir, file_name_format)): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 397 |  |  |         raise FileNotFoundError("File {} not found in the location {}" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 398 |  |  |                                 .format(file_name_format, data_dir)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 399 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 400 |  |  |     # Get the list of files in the directory | 
            
                                                                                                            
                            
            
                                    
            
            
                | 401 |  |  |     path = join(data_dir, file_name_format) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 402 |  |  |     files = listdir(path) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 403 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 404 |  |  |     # Extract the experiment name from the file_name_format | 
            
                                                                                                            
                            
            
                                    
            
            
                | 405 |  |  |     # exp_name = file_name_format[0:6] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 406 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 407 |  |  |     # Filtering out and reading the excel files in the data directory | 
            
                                                                                                            
                            
            
                                    
            
            
                | 408 |  |  |     file_names = list(filter(lambda x: x[-5:] == '.xlsx', files)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 409 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 410 |  |  |     # Sorting the file names using the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 411 |  |  |     # 'file_name_sorting' function. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 412 |  |  |     sorted_name_list = file_name_sorting(file_names) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 413 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 414 |  |  |     # Reading dataframes according to the date of experimentation | 
            
                                                                                                            
                            
            
                                    
            
            
                | 415 |  |  |     # using 'reading_dataframes' function. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 416 |  |  |     sorted_df = reading_dataframes(sorted_name_list, sheet_name, path) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 417 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 418 |  |  |     # Merging all the dataframes and adjusting the cycle index | 
            
                                                                                                            
                            
            
                                    
            
            
                | 419 |  |  |     # using the 'concat_df' function. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 420 |  |  |     cycle_data = concat_df(sorted_df) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 421 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 422 |  |  |     # Calculating the net capacity of the battery at every datapoint | 
            
                                                                                                            
                            
            
                                    
            
            
                | 423 |  |  |     # using the function 'capacity'. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 424 |  |  |     capacity_data = capacity(cycle_data) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 425 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 426 |  |  |     # Returns the dataframe with new cycle indices and capacity data. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 427 |  |  |     return capacity_data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 428 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 429 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 430 |  |  | def file_name_sorting(file_name_list): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 431 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 432 |  |  |     This function sorts all the file names according to the date | 
            
                                                                                                            
                            
            
                                    
            
            
                | 433 |  |  |     on the file name. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 434 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 435 |  |  |     Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 436 |  |  |     file_name_list(list): List containing all the file names to be read | 
            
                                                                                                            
                            
            
                                    
            
            
                | 437 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 438 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 439 |  |  |     A list of file names sorted according to the date on the file name. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 440 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 441 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 442 |  |  |     filename = pd.DataFrame(data=file_name_list, columns=['file_name']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 443 |  |  |     # Splitting the file name into different columns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 444 |  |  |     filename['cell_type'], filename['cell_num'], filename['month'], filename[ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 445 |  |  |         'day'], filename['year'] = filename['file_name'].str.split('_', 4).str | 
            
                                                                                                            
                            
            
                                    
            
            
                | 446 |  |  |     filename['year'], filename['ext'] = filename['year'].str.split('.', 1).str | 
            
                                                                                                            
                            
            
                                    
            
            
                | 447 |  |  |     filename['date'] = '' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 448 |  |  |     # Merging the year, month and date column to create a string for DateTime | 
            
                                                                                                            
                            
            
                                    
            
            
                | 449 |  |  |     # object. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 450 |  |  |     filename['date'] = filename['year'].map( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 451 |  |  |         str) + filename['month'].map(str) + filename['day'].map(str) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 452 |  |  |     # Creating a DateTime object. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 453 |  |  |     filename['date_time'] = '' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 454 |  |  |     filename['date_time'] = pd.to_datetime(filename['date'], format="%y%m%d") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 455 |  |  |     # Sorting the file names according to the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 456 |  |  |     # created DateTime object. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 457 |  |  |     filename.sort_values(['date_time'], inplace=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 458 |  |  |     # Created a list of sorted file names | 
            
                                                                                                            
                            
            
                                    
            
            
                | 459 |  |  |     sorted_file_names = filename['file_name'].values | 
            
                                                                                                            
                            
            
                                    
            
            
                | 460 |  |  |     return sorted_file_names | 
            
                                                                                                            
                            
            
                                    
            
            
                | 461 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 462 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 463 |  |  | def reading_dataframes(file_names, sheet_name, path): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 464 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 465 |  |  |     This function reads all the files in the sorted | 
            
                                                                                                            
                            
            
                                    
            
            
                | 466 |  |  |     file names list as a dataframe | 
            
                                                                                                            
                            
            
                                    
            
            
                | 467 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 468 |  |  |     Args(list): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 469 |  |  |     file_names: Sorted file names list | 
            
                                                                                                            
                            
            
                                    
            
            
                | 470 |  |  |     sheet_name: Sheet name in the excel file containing the data. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 471 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 472 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 473 |  |  |     Dictionary of dataframes in the order of the sorted file names. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 474 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 475 |  |  |     # Empty dictionary to store all the dataframes according | 
            
                                                                                                            
                            
            
                                    
            
            
                | 476 |  |  |     # to the order in the sorted files name list | 
            
                                                                                                            
                            
            
                                    
            
            
                | 477 |  |  |     df_raw = {} | 
            
                                                                                                            
                            
            
                                    
            
            
                | 478 |  |  |     # Reading the dataframes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 479 |  |  |     for i, filename in enumerate(file_names): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 480 |  |  |         df_raw[i] = pd.read_excel( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 481 |  |  |             join( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 482 |  |  |                 path, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 483 |  |  |                 filename), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 484 |  |  |             sheet_name=sheet_name) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 485 |  |  |     return df_raw | 
            
                                                                                                            
                            
            
                                    
            
            
                | 486 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 487 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 488 |  |  | def concat_df(df_dict): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 489 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 490 |  |  |     This function concatenates all the dataframes and edits | 
            
                                                                                                            
                            
            
                                    
            
            
                | 491 |  |  |     the cycle index for the concatenated dataframes. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 492 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 493 |  |  |     Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 494 |  |  |     df_dict(dictionary): Dictionary of dataframes to be concatenated. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 495 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 496 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 497 |  |  |     A concatenated dataframe with editted cycle index | 
            
                                                                                                            
                            
            
                                    
            
            
                | 498 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 499 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 500 |  |  |     df_concat = None | 
            
                                                                                                            
                            
            
                                    
            
            
                | 501 |  |  |     for data in df_dict: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 502 |  |  |         if df_concat is None: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 503 |  |  |             df_next = df_dict[data] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 504 |  |  |             df_concat = pd.DataFrame(data=None, columns=df_next.columns) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 505 |  |  |             # df_next['Cycle'] = df_next['Cycle'] + max(df_pl12['Cycle']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 506 |  |  |             df_concat = pd.concat([df_concat, df_next]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 507 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 508 |  |  |             df_next = df_dict[data] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 509 |  |  |             df_next['Cycle_Index'] = np.array( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 510 |  |  |                 df_next['Cycle_Index']) + max(np.array(df_concat['Cycle_Index'])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 511 |  |  |             df_next['Test_Time(s)'] = np.array( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 512 |  |  |                 df_next['Test_Time(s)']) + max(np.array(df_concat['Test_Time(s)'])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 513 |  |  |             df_next['Charge_Capacity(Ah)'] = np.array( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 514 |  |  |                 df_next['Charge_Capacity(Ah)']) + max(np.array(df_concat['Charge_Capacity(Ah)'])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 515 |  |  |             df_next['Discharge_Capacity(Ah)'] = np.array( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 516 |  |  |                 df_next['Discharge_Capacity(Ah)']) + max( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 517 |  |  |                     np.array(df_concat['Discharge_Capacity(Ah)'])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 518 |  |  |             df_concat = pd.concat([df_concat, df_next]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 519 |  |  |     # Reset the index and drop the old index | 
            
                                                                                                            
                            
            
                                    
            
            
                | 520 |  |  |     df_reset = df_concat.reset_index(drop=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 521 |  |  |     return df_reset | 
            
                                                                                                            
                            
            
                                    
            
            
                | 522 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 523 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 524 |  |  | def capacity(df_data): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 525 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 526 |  |  |     This function calculates the net capacity of the battery | 
            
                                                                                                            
                            
            
                                    
            
            
                | 527 |  |  |     from the charge capacity and discharge capacity values. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 528 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 529 |  |  |     Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 530 |  |  |     df_data(dataframe): Concatenated dataframe which has the values of charge | 
            
                                                                                                            
                            
            
                                    
            
            
                | 531 |  |  |     capacity and discharge capacity for which net capacity has to be | 
            
                                                                                                            
                            
            
                                    
            
            
                | 532 |  |  |     calculated. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 533 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 534 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 535 |  |  |     Dataframe with net capacity of the battery for every point of the charge | 
            
                                                                                                            
                            
            
                                    
            
            
                | 536 |  |  |     and discharge cycle. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 537 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 538 |  |  |     # Grouping rows by the cycle index. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 539 |  |  |     group = df_data.groupby(['Cycle_Index']).count() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 540 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 541 |  |  |     # Get the indices when a cycle starts | 
            
                                                                                                            
                            
            
                                    
            
            
                | 542 |  |  |     cycle_start_indices = group['Data_Point'].cumsum() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 543 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 544 |  |  |     # Get the charge_Ah per cycle | 
            
                                                                                                            
                            
            
                                    
            
            
                | 545 |  |  |     # Create numpy array to store the old charge_Ah row, and then | 
            
                                                                                                            
                            
            
                                    
            
            
                | 546 |  |  |     # perform transformation on it, rather than in the pandas series | 
            
                                                                                                            
                            
            
                                    
            
            
                | 547 |  |  |     # this is a lot faster in this case | 
            
                                                                                                            
                            
            
                                    
            
            
                | 548 |  |  |     charge_cycle_ah = np.array(df_data['Charge_Capacity(Ah)']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 549 |  |  |     charge_ah = np.array(df_data['Charge_Capacity(Ah)']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 550 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 551 |  |  |     for i in range(1, len(cycle_start_indices)): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 552 |  |  |         begin_value = cycle_start_indices.iloc[i - 1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 553 |  |  |         end_value = cycle_start_indices.iloc[i] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 554 |  |  |         charge_cycle_ah[begin_value:end_value] = charge_ah[begin_value:end_value] - \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 555 |  |  |             charge_ah[begin_value - 1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 556 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 557 |  |  |     df_data['charge_cycle_ah'] = charge_cycle_ah | 
            
                                                                                                            
                            
            
                                    
            
            
                | 558 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 559 |  |  |     # Get the discharge_Ah per cycle | 
            
                                                                                                            
                            
            
                                    
            
            
                | 560 |  |  |     discharge_cycle_ah = np.array(df_data['Discharge_Capacity(Ah)']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 561 |  |  |     discharge_ah = np.array(df_data['Discharge_Capacity(Ah)']) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 562 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 563 |  |  |     for i in range(1, len(cycle_start_indices)): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 564 |  |  |         begin_value = cycle_start_indices.iloc[i - 1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 565 |  |  |         end_value = cycle_start_indices.iloc[i] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 566 |  |  |         discharge_cycle_ah[begin_value:end_value] = discharge_ah[begin_value:end_value] - \ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 567 |  |  |             discharge_ah[begin_value - 1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 568 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 569 |  |  |     df_data['discharge_cycle_ah'] = discharge_cycle_ah | 
            
                                                                                                            
                            
            
                                    
            
            
                | 570 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 571 |  |  |     # This is the data column we can use for prediction. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 572 |  |  |     # This is not totally accurate, as this still has some points that go negative, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 573 |  |  |     # due to incorrect discharge_Ah values every few cycles. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 574 |  |  |     # But the machine learning algorithm should consider these as outliers and | 
            
                                                                                                            
                            
            
                                    
            
            
                | 575 |  |  |     # hopefully get over it. We can come back and correct this. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 576 |  |  |     df_data['capacity_ah'] = df_data['charge_cycle_ah'] - df_data['discharge_cycle_ah'] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 577 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 578 |  |  |     return df_data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 579 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 580 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 581 |  |  | def data_formatting(merged_df): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 582 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 583 |  |  |     This function formats the merged dataframe so that it can be used to frame the given | 
            
                                                                                                            
                            
            
                                    
            
            
                | 584 |  |  |     time series data as a supervised learning dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 585 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 586 |  |  |     Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 587 |  |  |         merged_df(dataframe): The merged dataframe which can be obtained by using the | 
            
                                                                                                            
                            
            
                                    
            
            
                | 588 |  |  |         function 'cx2_file_reader' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 589 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 590 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 591 |  |  |         A numpy array with only values required to frame a time series as a | 
            
                                                                                                            
                            
            
                                    
            
            
                | 592 |  |  |         supervised learning dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 593 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 594 |  |  |     # Get the columns containing text 'Current', 'Voltage' and | 
            
                                                                                                            
                            
            
                                    
            
            
                | 595 |  |  |     # 'discharge_cycle_ah' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 596 |  |  |     merged_df = merged_df.filter(regex='Current|Voltage|discharge_cycle_ah') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 597 |  |  |     formatted_df = merged_df.astype('float32') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 598 |  |  |     return formatted_df | 
            
                                                                                                            
                            
            
                                    
            
            
                | 599 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 600 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 601 |  |  | def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 602 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 603 |  |  |     Frame a time series as a supervised learning dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 604 |  |  |      | 
            
                                                                                                            
                            
            
                                    
            
            
                | 605 |  |  |     Arguments: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 606 |  |  |         data: Sequence of observations as a list or NumPy array. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 607 |  |  |         n_in: Number of lag observations as input (X). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 608 |  |  |         n_out: Number of observations as output (y). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 609 |  |  |         dropnan: Boolean whether or not to drop rows with NaN values. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 610 |  |  |      | 
            
                                                                                                            
                            
            
                                    
            
            
                | 611 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 612 |  |  |         Pandas DataFrame of series framed for supervised learning. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 613 |  |  |      | 
            
                                                                                                            
                            
            
                                    
            
            
                | 614 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 615 |  |  |     n_vars = 1 if isinstance(data, list) else data.shape[1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 616 |  |  |     df_data = pd.DataFrame(data) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 617 |  |  |     cols, names = list(), list() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 618 |  |  |     # input sequence (t-n, ... t-1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 619 |  |  |     for i in range(n_in, 0, -1): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 620 |  |  |         cols.append(df_data.shift(i)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 621 |  |  |         names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 622 |  |  |     # forecast sequence (t, t+1, ... t+n) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 623 |  |  |     for i in range(0, n_out): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 624 |  |  |         cols.append(df_data.shift(-i)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 625 |  |  |         if i == 0: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 626 |  |  |             names += [('var%d(t)' % (j + 1)) for j in range(n_vars)] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 627 |  |  |         else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 628 |  |  |             names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 629 |  |  |     # put it all together | 
            
                                                                                                            
                            
            
                                    
            
            
                | 630 |  |  |     sl_df = pd.concat(cols, axis=1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 631 |  |  |     sl_df.columns = names | 
            
                                                                                                            
                            
            
                                    
            
            
                | 632 |  |  |     # drop rows with NaN values | 
            
                                                                                                            
                            
            
                                    
            
            
                | 633 |  |  |     if dropnan: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 634 |  |  |         sl_df.dropna(inplace=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 635 |  |  |     sl_df.drop(sl_df.columns[[3, 4]], axis=1, inplace=True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 636 |  |  |     sl_df.rename(columns={'var1(t-1)':'Current(t-1)','var2(t-1)':'Voltage(t-1)', | 
            
                                                                                                            
                            
            
                                    
            
            
                | 637 |  |  |                  'var3(t-1)':'discharge_capacity(t-1)','var3(t)':'discharge_capacity(t)'}, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 638 |  |  |                  inplace = True) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 639 |  |  |     return sl_df | 
            
                                                                                                            
                            
            
                                    
            
            
                | 640 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 641 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 642 |  |  | def long_short_term_memory(model_data): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 643 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 644 |  |  |     This function splits the input dataset into training | 
            
                                                                                                            
                            
            
                                    
            
            
                | 645 |  |  |     and testing datasets. The keras LSTM model is then | 
            
                                                                                                            
                            
            
                                    
            
            
                | 646 |  |  |     trained and tested using the respective datasets. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 647 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 648 |  |  |     Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 649 |  |  |         model_data(dataframe): Values of input and output variables | 
            
                                                                                                            
                            
            
                                    
            
            
                | 650 |  |  |         of time series data framed as a supervised learning dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 651 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 652 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 653 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 654 |  |  |         model_loss(dictionary): Returns the history dictionary (more info to be added) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 655 |  |  |         y_hat(array): Predicted response for the testing dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 656 |  |  |         y_prediction(array): Predicted response for the completely new dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 657 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 658 |  |  |     # Splitting the input dataset into training and testing data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 659 |  |  |     train, test = train_test_split(model_data, test_size=0.2, random_state=944) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 660 |  |  |     # split into input and outputs | 
            
                                                                                                            
                            
            
                                    
            
            
                | 661 |  |  |     train_x, train_y = train[train.columns[0:3] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 662 |  |  |                              ].values, train[train.columns[3]].values | 
            
                                                                                                            
                            
            
                                    
            
            
                | 663 |  |  |     test_x, test_y = test[test.columns[0:3] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 664 |  |  |                           ].values, test[test.columns[3]].values | 
            
                                                                                                            
                            
            
                                    
            
            
                | 665 |  |  |     # reshape input to be 3D [samples, timesteps, features] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 666 |  |  |     train_x = train_x.reshape((train_x.shape[0], 1, train_x.shape[1])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 667 |  |  |     test_x = test_x.reshape((test_x.shape[0], 1, test_x.shape[1])) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 668 |  |  |     # print(train_x.shape, train_y.shape, test_x.shape, test_y.shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 669 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 670 |  |  |     # Designing the network | 
            
                                                                                                            
                            
            
                                    
            
            
                | 671 |  |  |     model = Sequential() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 672 |  |  |     model.add(LSTM(50, input_shape=(train_x.shape[1], train_x.shape[2]))) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 673 |  |  |     model.add(Dense(1)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 674 |  |  |     model.compile(loss='mae', optimizer='adam') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 675 |  |  |     # Fitting the network with training and testing data | 
            
                                                                                                            
                            
            
                                    
            
            
                | 676 |  |  |     history = model.fit( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 677 |  |  |         train_x, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 678 |  |  |         train_y, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 679 |  |  |         epochs=50, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 680 |  |  |         batch_size=72, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 681 |  |  |         validation_data=( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 682 |  |  |             test_x, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 683 |  |  |             test_y), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 684 |  |  |         verbose=0, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 685 |  |  |         shuffle=False) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 686 |  |  |     model_loss = history.history | 
            
                                                                                                            
                            
            
                                    
            
            
                | 687 |  |  |     # Prediction for the test dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 688 |  |  |     yhat = model.predict(test_x) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 689 |  |  |     # model.save('lstm_trained_model.h5') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 690 |  |  |     return model_loss, yhat | 
            
                                                                                                            
                            
            
                                    
            
            
                | 691 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 692 |  |  | def file_reader(data_dir, file_name_format, sheet_name, ignore_file_indices): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 693 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 694 |  |  |     This function reads PL sample, CX2 and CS2 files and returns a nice  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 695 |  |  |     dataframe with cyclic values of charge and discharge capacity with  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 696 |  |  |     cycles in ascending order | 
            
                                                                                                            
                            
            
                                    
            
            
                | 697 |  |  |      | 
            
                                                                                                            
                            
            
                                    
            
            
                | 698 |  |  |     Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 699 |  |  |     data_dir (string): This is the absolute path to the data directory. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 700 |  |  |     file_name_format (string): Format of the filename, used to deduce other files. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 701 |  |  |     sheet_name (string): Sheet name containing the data in the excel file. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 702 |  |  |     ignore_file_indices (list, int): This list of ints tells which to ignore. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 703 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 704 |  |  |     Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 705 |  |  |     The complete test data in a dataframe with extra column for capacity in Ah. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 706 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 707 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 708 |  |  |     # For excel files (CX2 and CS2 datafiles), the function 'cx2_file_reader' | 
            
                                                                                                            
                            
            
                                    
            
            
                | 709 |  |  |     # is used. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 710 |  |  |     if file_name_format[:3] == 'CX2' or file_name_format[:3] == 'CS2': | 
            
                                                                                                            
                            
            
                                    
            
            
                | 711 |  |  |         df_output = cx2_file_reader(data_dir,file_name_format,sheet_name)  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 712 |  |  |     else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 713 |  |  |         df_output = pl_samples_file_reader(data_dir,file_name_format,ignore_file_indices) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 714 |  |  |     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 715 |  |  |     # The function 'data_formatting' is used to drop the unnecesary columns | 
            
                                                                                                            
                            
            
                                    
            
            
                | 716 |  |  |     # from the training data i.e. only the features considered in the model | 
            
                                                                                                            
                            
            
                                    
            
            
                | 717 |  |  |     # (Current, Voltage and Discharge capacity) are retained. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 718 |  |  |     formatted_data = data_formatting(df_output) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 719 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 720 |  |  |     # The function 'series_to_supervised' is used to frame the time series training | 
            
                                                                                                            
                            
            
                                    
            
            
                | 721 |  |  |     # data as supervised learning dataset. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 722 |  |  |     # df_out = series_to_supervised( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 723 |  |  |     #     formatted_data, n_in=1, n_out=1, dropnan=True) | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 724 |  |  |     return formatted_data | 
            
                                                        
            
                                    
            
            
                | 725 |  |  |  |