|
1
|
|
|
<?php |
|
2
|
|
|
/** |
|
3
|
|
|
* Class Binarizer |
|
4
|
|
|
* |
|
5
|
|
|
* @created 17.01.2021 |
|
6
|
|
|
* @author ZXing Authors |
|
7
|
|
|
* @author Smiley <[email protected]> |
|
8
|
|
|
* @copyright 2021 Smiley |
|
9
|
|
|
* @license Apache-2.0 |
|
10
|
|
|
*/ |
|
11
|
|
|
|
|
12
|
|
|
namespace chillerlan\QRCode\Decoder; |
|
13
|
|
|
|
|
14
|
|
|
use RuntimeException; |
|
15
|
|
|
use function array_fill, count, max; |
|
16
|
|
|
|
|
17
|
|
|
/** |
|
18
|
|
|
* This class implements a local thresholding algorithm, which while slower than the |
|
19
|
|
|
* GlobalHistogramBinarizer, is fairly efficient for what it does. It is designed for |
|
20
|
|
|
* high frequency images of barcodes with black data on white backgrounds. For this application, |
|
21
|
|
|
* it does a much better job than a global blackpoint with severe shadows and gradients. |
|
22
|
|
|
* However it tends to produce artifacts on lower frequency images and is therefore not |
|
23
|
|
|
* a good general purpose binarizer for uses outside ZXing. |
|
24
|
|
|
* |
|
25
|
|
|
* This class extends GlobalHistogramBinarizer, using the older histogram approach for 1D readers, |
|
26
|
|
|
* and the newer local approach for 2D readers. 1D decoding using a per-row histogram is already |
|
27
|
|
|
* inherently local, and only fails for horizontal gradients. We can revisit that problem later, |
|
28
|
|
|
* but for now it was not a win to use local blocks for 1D. |
|
29
|
|
|
* |
|
30
|
|
|
* This Binarizer is the default for the unit tests and the recommended class for library users. |
|
31
|
|
|
* |
|
32
|
|
|
* @author [email protected] (Daniel Switkin) |
|
33
|
|
|
*/ |
|
34
|
|
|
final class Binarizer{ |
|
35
|
|
|
|
|
36
|
|
|
// This class uses 5x5 blocks to compute local luminance, where each block is 8x8 pixels. |
|
37
|
|
|
// So this is the smallest dimension in each axis we can accept. |
|
38
|
|
|
private const BLOCK_SIZE_POWER = 3; |
|
39
|
|
|
private const BLOCK_SIZE = 8; // ...0100...00 |
|
40
|
|
|
private const BLOCK_SIZE_MASK = 7; // ...0011...11 |
|
41
|
|
|
private const MINIMUM_DIMENSION = 40; |
|
42
|
|
|
private const MIN_DYNAMIC_RANGE = 24; |
|
43
|
|
|
|
|
44
|
|
|
# private const LUMINANCE_BITS = 5; |
|
45
|
|
|
private const LUMINANCE_SHIFT = 3; |
|
46
|
|
|
private const LUMINANCE_BUCKETS = 32; |
|
47
|
|
|
|
|
48
|
|
|
private LuminanceSource $source; |
|
49
|
|
|
|
|
50
|
|
|
public function __construct(LuminanceSource $source){ |
|
51
|
|
|
$this->source = $source; |
|
52
|
|
|
} |
|
53
|
|
|
|
|
54
|
|
|
/** |
|
55
|
|
|
* @throws \RuntimeException |
|
56
|
|
|
*/ |
|
57
|
|
|
private function estimateBlackPoint(array $buckets):int{ |
|
58
|
|
|
// Find the tallest peak in the histogram. |
|
59
|
|
|
$numBuckets = count($buckets); |
|
60
|
|
|
$maxBucketCount = 0; |
|
61
|
|
|
$firstPeak = 0; |
|
62
|
|
|
$firstPeakSize = 0; |
|
63
|
|
|
|
|
64
|
|
|
for($x = 0; $x < $numBuckets; $x++){ |
|
65
|
|
|
|
|
66
|
|
|
if($buckets[$x] > $firstPeakSize){ |
|
67
|
|
|
$firstPeak = $x; |
|
68
|
|
|
$firstPeakSize = $buckets[$x]; |
|
69
|
|
|
} |
|
70
|
|
|
|
|
71
|
|
|
if($buckets[$x] > $maxBucketCount){ |
|
72
|
|
|
$maxBucketCount = $buckets[$x]; |
|
73
|
|
|
} |
|
74
|
|
|
} |
|
75
|
|
|
|
|
76
|
|
|
// Find the second-tallest peak which is somewhat far from the tallest peak. |
|
77
|
|
|
$secondPeak = 0; |
|
78
|
|
|
$secondPeakScore = 0; |
|
79
|
|
|
|
|
80
|
|
|
for($x = 0; $x < $numBuckets; $x++){ |
|
81
|
|
|
$distanceToBiggest = $x - $firstPeak; |
|
82
|
|
|
// Encourage more distant second peaks by multiplying by square of distance. |
|
83
|
|
|
$score = $buckets[$x] * $distanceToBiggest * $distanceToBiggest; |
|
84
|
|
|
|
|
85
|
|
|
if($score > $secondPeakScore){ |
|
86
|
|
|
$secondPeak = $x; |
|
87
|
|
|
$secondPeakScore = $score; |
|
88
|
|
|
} |
|
89
|
|
|
} |
|
90
|
|
|
|
|
91
|
|
|
// Make sure firstPeak corresponds to the black peak. |
|
92
|
|
|
if($firstPeak > $secondPeak){ |
|
93
|
|
|
$temp = $firstPeak; |
|
94
|
|
|
$firstPeak = $secondPeak; |
|
95
|
|
|
$secondPeak = $temp; |
|
96
|
|
|
} |
|
97
|
|
|
|
|
98
|
|
|
// If there is too little contrast in the image to pick a meaningful black point, throw rather |
|
99
|
|
|
// than waste time trying to decode the image, and risk false positives. |
|
100
|
|
|
if($secondPeak - $firstPeak <= $numBuckets / 16){ |
|
101
|
|
|
throw new RuntimeException('no meaningful dark point found'); |
|
102
|
|
|
} |
|
103
|
|
|
|
|
104
|
|
|
// Find a valley between them that is low and closer to the white peak. |
|
105
|
|
|
$bestValley = $secondPeak - 1; |
|
106
|
|
|
$bestValleyScore = -1; |
|
107
|
|
|
|
|
108
|
|
|
for($x = $secondPeak - 1; $x > $firstPeak; $x--){ |
|
109
|
|
|
$fromFirst = $x - $firstPeak; |
|
110
|
|
|
$score = $fromFirst * $fromFirst * ($secondPeak - $x) * ($maxBucketCount - $buckets[$x]); |
|
111
|
|
|
|
|
112
|
|
|
if($score > $bestValleyScore){ |
|
113
|
|
|
$bestValley = $x; |
|
114
|
|
|
$bestValleyScore = $score; |
|
115
|
|
|
} |
|
116
|
|
|
} |
|
117
|
|
|
|
|
118
|
|
|
return $bestValley << self::LUMINANCE_SHIFT; |
|
119
|
|
|
} |
|
120
|
|
|
|
|
121
|
|
|
/** |
|
122
|
|
|
* Calculates the final BitMatrix once for all requests. This could be called once from the |
|
123
|
|
|
* constructor instead, but there are some advantages to doing it lazily, such as making |
|
124
|
|
|
* profiling easier, and not doing heavy lifting when callers don't expect it. |
|
125
|
|
|
* |
|
126
|
|
|
* Converts a 2D array of luminance data to 1 bit data. As above, assume this method is expensive |
|
127
|
|
|
* and do not call it repeatedly. This method is intended for decoding 2D barcodes and may or |
|
128
|
|
|
* may not apply sharpening. Therefore, a row from this matrix may not be identical to one |
|
129
|
|
|
* fetched using getBlackRow(), so don't mix and match between them. |
|
130
|
|
|
* |
|
131
|
|
|
* @return \chillerlan\QRCode\Decoder\BitMatrix The 2D array of bits for the image (true means black). |
|
132
|
|
|
*/ |
|
133
|
|
|
public function getBlackMatrix():BitMatrix{ |
|
134
|
|
|
$width = $this->source->getWidth(); |
|
135
|
|
|
$height = $this->source->getHeight(); |
|
136
|
|
|
|
|
137
|
|
|
if($width >= self::MINIMUM_DIMENSION && $height >= self::MINIMUM_DIMENSION){ |
|
138
|
|
|
$subWidth = $width >> self::BLOCK_SIZE_POWER; |
|
139
|
|
|
|
|
140
|
|
|
if(($width & self::BLOCK_SIZE_MASK) !== 0){ |
|
141
|
|
|
$subWidth++; |
|
142
|
|
|
} |
|
143
|
|
|
|
|
144
|
|
|
$subHeight = $height >> self::BLOCK_SIZE_POWER; |
|
145
|
|
|
|
|
146
|
|
|
if(($height & self::BLOCK_SIZE_MASK) !== 0){ |
|
147
|
|
|
$subHeight++; |
|
148
|
|
|
} |
|
149
|
|
|
|
|
150
|
|
|
return $this->calculateThresholdForBlock($subWidth, $subHeight, $width, $height); |
|
151
|
|
|
} |
|
152
|
|
|
|
|
153
|
|
|
// If the image is too small, fall back to the global histogram approach. |
|
154
|
|
|
return $this->getHistogramBlackMatrix($width, $height); |
|
155
|
|
|
} |
|
156
|
|
|
|
|
157
|
|
|
public function getHistogramBlackMatrix(int $width, int $height):BitMatrix{ |
|
158
|
|
|
$matrix = new BitMatrix(max($width, $height)); |
|
159
|
|
|
|
|
160
|
|
|
// Quickly calculates the histogram by sampling four rows from the image. This proved to be |
|
161
|
|
|
// more robust on the blackbox tests than sampling a diagonal as we used to do. |
|
162
|
|
|
$buckets = array_fill(0, self::LUMINANCE_BUCKETS, 0); |
|
163
|
|
|
|
|
164
|
|
|
for($y = 1; $y < 5; $y++){ |
|
165
|
|
|
$row = (int)($height * $y / 5); |
|
166
|
|
|
$localLuminances = $this->source->getRow($row); |
|
167
|
|
|
$right = (int)(($width * 4) / 5); |
|
168
|
|
|
|
|
169
|
|
|
for($x = (int)($width / 5); $x < $right; $x++){ |
|
170
|
|
|
$pixel = $localLuminances[(int)$x] & 0xff; |
|
171
|
|
|
$buckets[$pixel >> self::LUMINANCE_SHIFT]++; |
|
172
|
|
|
} |
|
173
|
|
|
} |
|
174
|
|
|
|
|
175
|
|
|
$blackPoint = $this->estimateBlackPoint($buckets); |
|
176
|
|
|
|
|
177
|
|
|
// We delay reading the entire image luminance until the black point estimation succeeds. |
|
178
|
|
|
// Although we end up reading four rows twice, it is consistent with our motto of |
|
179
|
|
|
// "fail quickly" which is necessary for continuous scanning. |
|
180
|
|
|
$localLuminances = $this->source->getMatrix(); |
|
181
|
|
|
|
|
182
|
|
|
for($y = 0; $y < $height; $y++){ |
|
183
|
|
|
$offset = $y * $width; |
|
184
|
|
|
|
|
185
|
|
|
for($x = 0; $x < $width; $x++){ |
|
186
|
|
|
$pixel = (int)($localLuminances[$offset + $x] & 0xff); |
|
187
|
|
|
|
|
188
|
|
|
if($pixel < $blackPoint){ |
|
189
|
|
|
$matrix->set($x, $y); |
|
190
|
|
|
} |
|
191
|
|
|
} |
|
192
|
|
|
} |
|
193
|
|
|
|
|
194
|
|
|
return $matrix; |
|
195
|
|
|
} |
|
196
|
|
|
|
|
197
|
|
|
/** |
|
198
|
|
|
* Calculates a single black point for each block of pixels and saves it away. |
|
199
|
|
|
* See the following thread for a discussion of this algorithm: |
|
200
|
|
|
* |
|
201
|
|
|
* @see http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0 |
|
202
|
|
|
*/ |
|
203
|
|
|
private function calculateBlackPoints(array $luminances, int $subWidth, int $subHeight, int $width, int $height):array{ |
|
204
|
|
|
$blackPoints = array_fill(0, $subHeight, 0); |
|
205
|
|
|
|
|
206
|
|
|
foreach($blackPoints as $key => $point){ |
|
207
|
|
|
$blackPoints[$key] = array_fill(0, $subWidth, 0); |
|
208
|
|
|
} |
|
209
|
|
|
|
|
210
|
|
|
for($y = 0; $y < $subHeight; $y++){ |
|
211
|
|
|
$yoffset = ($y << self::BLOCK_SIZE_POWER); |
|
212
|
|
|
$maxYOffset = $height - self::BLOCK_SIZE; |
|
213
|
|
|
|
|
214
|
|
|
if($yoffset > $maxYOffset){ |
|
215
|
|
|
$yoffset = $maxYOffset; |
|
216
|
|
|
} |
|
217
|
|
|
|
|
218
|
|
|
for($x = 0; $x < $subWidth; $x++){ |
|
219
|
|
|
$xoffset = ($x << self::BLOCK_SIZE_POWER); |
|
220
|
|
|
$maxXOffset = $width - self::BLOCK_SIZE; |
|
221
|
|
|
|
|
222
|
|
|
if($xoffset > $maxXOffset){ |
|
223
|
|
|
$xoffset = $maxXOffset; |
|
224
|
|
|
} |
|
225
|
|
|
|
|
226
|
|
|
$sum = 0; |
|
227
|
|
|
$min = 255; |
|
228
|
|
|
$max = 0; |
|
229
|
|
|
|
|
230
|
|
|
for($yy = 0, $offset = $yoffset * $width + $xoffset; $yy < self::BLOCK_SIZE; $yy++, $offset += $width){ |
|
231
|
|
|
|
|
232
|
|
|
for($xx = 0; $xx < self::BLOCK_SIZE; $xx++){ |
|
233
|
|
|
$pixel = (int)($luminances[(int)($offset + $xx)]) & 0xff; |
|
234
|
|
|
$sum += $pixel; |
|
235
|
|
|
// still looking for good contrast |
|
236
|
|
|
if($pixel < $min){ |
|
237
|
|
|
$min = $pixel; |
|
238
|
|
|
} |
|
239
|
|
|
|
|
240
|
|
|
if($pixel > $max){ |
|
241
|
|
|
$max = $pixel; |
|
242
|
|
|
} |
|
243
|
|
|
} |
|
244
|
|
|
|
|
245
|
|
|
// short-circuit min/max tests once dynamic range is met |
|
246
|
|
|
if($max - $min > self::MIN_DYNAMIC_RANGE){ |
|
247
|
|
|
// finish the rest of the rows quickly |
|
248
|
|
|
for($yy++, $offset += $width; $yy < self::BLOCK_SIZE; $yy++, $offset += $width){ |
|
249
|
|
|
for($xx = 0; $xx < self::BLOCK_SIZE; $xx++){ |
|
250
|
|
|
$sum += $luminances[$offset + $xx] & 0xff; |
|
251
|
|
|
} |
|
252
|
|
|
} |
|
253
|
|
|
} |
|
254
|
|
|
} |
|
255
|
|
|
|
|
256
|
|
|
// The default estimate is the average of the values in the block. |
|
257
|
|
|
$average = $sum >> (self::BLOCK_SIZE_POWER * 2); |
|
258
|
|
|
|
|
259
|
|
|
if($max - $min <= self::MIN_DYNAMIC_RANGE){ |
|
260
|
|
|
// If variation within the block is low, assume this is a block with only light or only |
|
261
|
|
|
// dark pixels. In that case we do not want to use the average, as it would divide this |
|
262
|
|
|
// low contrast area into black and white pixels, essentially creating data out of noise. |
|
263
|
|
|
// |
|
264
|
|
|
// The default assumption is that the block is light/background. Since no estimate for |
|
265
|
|
|
// the level of dark pixels exists locally, use half the min for the block. |
|
266
|
|
|
$average = (int)($min / 2); |
|
267
|
|
|
|
|
268
|
|
|
if($y > 0 && $x > 0){ |
|
269
|
|
|
// Correct the "white background" assumption for blocks that have neighbors by comparing |
|
270
|
|
|
// the pixels in this block to the previously calculated black points. This is based on |
|
271
|
|
|
// the fact that dark barcode symbology is always surrounded by some amount of light |
|
272
|
|
|
// background for which reasonable black point estimates were made. The bp estimated at |
|
273
|
|
|
// the boundaries is used for the interior. |
|
274
|
|
|
|
|
275
|
|
|
// The (min < bp) is arbitrary but works better than other heuristics that were tried. |
|
276
|
|
|
$averageNeighborBlackPoint = (int)(($blackPoints[$y - 1][$x] + (2 * $blackPoints[$y][$x - 1]) + $blackPoints[$y - 1][$x - 1]) / 4); |
|
277
|
|
|
|
|
278
|
|
|
if($min < $averageNeighborBlackPoint){ |
|
279
|
|
|
$average = $averageNeighborBlackPoint; |
|
280
|
|
|
} |
|
281
|
|
|
} |
|
282
|
|
|
} |
|
283
|
|
|
|
|
284
|
|
|
$blackPoints[$y][$x] = (int)($average); |
|
285
|
|
|
} |
|
286
|
|
|
} |
|
287
|
|
|
|
|
288
|
|
|
return $blackPoints; |
|
289
|
|
|
} |
|
290
|
|
|
|
|
291
|
|
|
/** |
|
292
|
|
|
* For each block in the image, calculate the average black point using a 5x5 grid |
|
293
|
|
|
* of the blocks around it. Also handles the corner cases (fractional blocks are computed based |
|
294
|
|
|
* on the last pixels in the row/column which are also used in the previous block). |
|
295
|
|
|
*/ |
|
296
|
|
|
private function calculateThresholdForBlock( |
|
297
|
|
|
int $subWidth, |
|
298
|
|
|
int $subHeight, |
|
299
|
|
|
int $width, |
|
300
|
|
|
int $height |
|
301
|
|
|
):BitMatrix{ |
|
302
|
|
|
$matrix = new BitMatrix(max($width, $height)); |
|
303
|
|
|
$luminances = $this->source->getMatrix(); |
|
304
|
|
|
$blackPoints = $this->calculateBlackPoints($luminances, $subWidth, $subHeight, $width, $height); |
|
305
|
|
|
|
|
306
|
|
|
for($y = 0; $y < $subHeight; $y++){ |
|
307
|
|
|
$yoffset = ($y << self::BLOCK_SIZE_POWER); |
|
308
|
|
|
$maxYOffset = $height - self::BLOCK_SIZE; |
|
309
|
|
|
|
|
310
|
|
|
if($yoffset > $maxYOffset){ |
|
311
|
|
|
$yoffset = $maxYOffset; |
|
312
|
|
|
} |
|
313
|
|
|
|
|
314
|
|
|
for($x = 0; $x < $subWidth; $x++){ |
|
315
|
|
|
$xoffset = ($x << self::BLOCK_SIZE_POWER); |
|
316
|
|
|
$maxXOffset = $width - self::BLOCK_SIZE; |
|
317
|
|
|
|
|
318
|
|
|
if($xoffset > $maxXOffset){ |
|
319
|
|
|
$xoffset = $maxXOffset; |
|
320
|
|
|
} |
|
321
|
|
|
|
|
322
|
|
|
$left = $this->cap($x, 2, $subWidth - 3); |
|
323
|
|
|
$top = $this->cap($y, 2, $subHeight - 3); |
|
324
|
|
|
$sum = 0; |
|
325
|
|
|
|
|
326
|
|
|
for($z = -2; $z <= 2; $z++){ |
|
327
|
|
|
$blackRow = $blackPoints[$top + $z]; |
|
328
|
|
|
$sum += $blackRow[$left - 2] + $blackRow[$left - 1] + $blackRow[$left] + $blackRow[$left + 1] + $blackRow[$left + 2]; |
|
329
|
|
|
} |
|
330
|
|
|
|
|
331
|
|
|
$average = (int)($sum / 25); |
|
332
|
|
|
|
|
333
|
|
|
// Applies a single threshold to a block of pixels. |
|
334
|
|
|
for($j = 0, $o = $yoffset * $width + $xoffset; $j < self::BLOCK_SIZE; $j++, $o += $width){ |
|
335
|
|
|
for($i = 0; $i < self::BLOCK_SIZE; $i++){ |
|
336
|
|
|
// Comparison needs to be <= so that black == 0 pixels are black even if the threshold is 0. |
|
337
|
|
|
if(($luminances[$o + $i] & 0xff) <= $average){ |
|
338
|
|
|
$matrix->set($xoffset + $i, $yoffset + $j); |
|
339
|
|
|
} |
|
340
|
|
|
} |
|
341
|
|
|
} |
|
342
|
|
|
} |
|
343
|
|
|
} |
|
344
|
|
|
|
|
345
|
|
|
return $matrix; |
|
346
|
|
|
} |
|
347
|
|
|
|
|
348
|
|
|
private function cap(int $value, int $min, int $max):int{ |
|
349
|
|
|
|
|
350
|
|
|
if($value < $min){ |
|
351
|
|
|
return $min; |
|
352
|
|
|
} |
|
353
|
|
|
|
|
354
|
|
|
if($value > $max){ |
|
355
|
|
|
return $max; |
|
356
|
|
|
} |
|
357
|
|
|
|
|
358
|
|
|
return $value; |
|
359
|
|
|
} |
|
360
|
|
|
|
|
361
|
|
|
} |
|
362
|
|
|
|