1
|
|
|
<?php |
2
|
|
|
/** |
3
|
|
|
* Class ReedSolomonDecoder |
4
|
|
|
* |
5
|
|
|
* @created 24.01.2021 |
6
|
|
|
* @author ZXing Authors |
7
|
|
|
* @author Smiley <[email protected]> |
8
|
|
|
* @copyright 2021 Smiley |
9
|
|
|
* @license Apache-2.0 |
10
|
|
|
*/ |
11
|
|
|
|
12
|
|
|
namespace chillerlan\QRCode\Common; |
13
|
|
|
|
14
|
|
|
use RuntimeException; |
15
|
|
|
use function array_fill, count; |
16
|
|
|
|
17
|
|
|
/** |
18
|
|
|
* <p>Implements Reed-Solomon decoding, as the name implies.</p> |
19
|
|
|
* |
20
|
|
|
* <p>The algorithm will not be explained here, but the following references were helpful |
21
|
|
|
* in creating this implementation:</p> |
22
|
|
|
* |
23
|
|
|
* <ul> |
24
|
|
|
* <li>Bruce Maggs. |
25
|
|
|
* <a href="http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pscico-guyb/realworld/www/rs_decode.ps"> |
26
|
|
|
* "Decoding Reed-Solomon Codes"</a> (see discussion of Forney's Formula)</li> |
27
|
|
|
* <li>J.I. Hall. <a href="www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf"> |
28
|
|
|
* "Chapter 5. Generalized Reed-Solomon Codes"</a> |
29
|
|
|
* (see discussion of Euclidean algorithm)</li> |
30
|
|
|
* </ul> |
31
|
|
|
* |
32
|
|
|
* <p>Much credit is due to William Rucklidge since portions of this code are an indirect |
33
|
|
|
* port of his C++ Reed-Solomon implementation.</p> |
34
|
|
|
* |
35
|
|
|
* @author Sean Owen |
36
|
|
|
* @author William Rucklidge |
37
|
|
|
* @author sanfordsquires |
38
|
|
|
*/ |
39
|
|
|
final class ReedSolomonDecoder{ |
40
|
|
|
|
41
|
|
|
/** |
42
|
|
|
* <p>Decodes given set of received codewords, which include both data and error-correction |
43
|
|
|
* codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place, |
44
|
|
|
* in the input.</p> |
45
|
|
|
* |
46
|
|
|
* @param array $received data and error-correction codewords |
47
|
|
|
* @param int $numEccCodewords number of error-correction codewords available |
48
|
|
|
* |
49
|
|
|
* @return int[] |
50
|
|
|
* @throws \RuntimeException if decoding fails for any reason |
51
|
|
|
*/ |
52
|
|
|
public function decode(array $received, int $numEccCodewords):array{ |
53
|
|
|
$poly = new GenericGFPoly($received); |
54
|
|
|
$syndromeCoefficients = []; |
55
|
|
|
$noError = true; |
56
|
|
|
|
57
|
|
|
for($i = 0, $j = $numEccCodewords - 1; $i < $numEccCodewords; $i++, $j--){ |
58
|
|
|
$eval = $poly->evaluateAt(GF256::exp($i)); |
59
|
|
|
$syndromeCoefficients[$j] = $eval; |
60
|
|
|
|
61
|
|
|
if($eval !== 0){ |
62
|
|
|
$noError = false; |
63
|
|
|
} |
64
|
|
|
} |
65
|
|
|
|
66
|
|
|
if($noError){ |
|
|
|
|
67
|
|
|
return $received; |
68
|
|
|
} |
69
|
|
|
|
70
|
|
|
[$sigma, $omega] = $this->runEuclideanAlgorithm( |
71
|
|
|
GF256::buildMonomial($numEccCodewords, 1), |
72
|
|
|
new GenericGFPoly($syndromeCoefficients), |
73
|
|
|
$numEccCodewords |
74
|
|
|
); |
75
|
|
|
|
76
|
|
|
$errorLocations = $this->findErrorLocations($sigma); |
77
|
|
|
$errorMagnitudes = $this->findErrorMagnitudes($omega, $errorLocations); |
78
|
|
|
$errorLocationsCount = count($errorLocations); |
79
|
|
|
$receivedCount = count($received); |
80
|
|
|
|
81
|
|
|
for($i = 0; $i < $errorLocationsCount; $i++){ |
82
|
|
|
$position = $receivedCount - 1 - GF256::log($errorLocations[$i]); |
83
|
|
|
|
84
|
|
|
if($position < 0){ |
85
|
|
|
throw new RuntimeException('Bad error location'); |
86
|
|
|
} |
87
|
|
|
|
88
|
|
|
$received[$position] ^= $errorMagnitudes[$i]; |
89
|
|
|
} |
90
|
|
|
|
91
|
|
|
return $received; |
92
|
|
|
} |
93
|
|
|
|
94
|
|
|
/** |
95
|
|
|
* @return \chillerlan\QRCode\Common\GenericGFPoly[] [sigma, omega] |
96
|
|
|
* @throws \RuntimeException |
97
|
|
|
*/ |
98
|
|
|
private function runEuclideanAlgorithm(GenericGFPoly $a, GenericGFPoly $b, int $R):array{ |
99
|
|
|
// Assume a's degree is >= b's |
100
|
|
|
if($a->getDegree() < $b->getDegree()){ |
101
|
|
|
$temp = $a; |
102
|
|
|
$a = $b; |
103
|
|
|
$b = $temp; |
104
|
|
|
} |
105
|
|
|
|
106
|
|
|
$rLast = $a; |
107
|
|
|
$r = $b; |
108
|
|
|
$tLast = new GenericGFPoly([0]); |
109
|
|
|
$t = new GenericGFPoly([1]); |
110
|
|
|
|
111
|
|
|
// Run Euclidean algorithm until r's degree is less than R/2 |
112
|
|
|
while($r->getDegree() >= $R / 2){ |
113
|
|
|
$rLastLast = $rLast; |
114
|
|
|
$tLastLast = $tLast; |
115
|
|
|
$rLast = $r; |
116
|
|
|
$tLast = $t; |
117
|
|
|
|
118
|
|
|
// Divide rLastLast by rLast, with quotient in q and remainder in r |
119
|
|
|
[$q, $r] = $rLastLast->divide($rLast); |
120
|
|
|
|
121
|
|
|
$t = $q->multiply($tLast)->addOrSubtract($tLastLast); |
122
|
|
|
|
123
|
|
|
if($r->getDegree() >= $rLast->getDegree()){ |
124
|
|
|
throw new RuntimeException('Division algorithm failed to reduce polynomial?'); |
125
|
|
|
} |
126
|
|
|
} |
127
|
|
|
|
128
|
|
|
$sigmaTildeAtZero = $t->getCoefficient(0); |
129
|
|
|
|
130
|
|
|
if($sigmaTildeAtZero === 0){ |
131
|
|
|
throw new RuntimeException('sigmaTilde(0) was zero'); |
132
|
|
|
} |
133
|
|
|
|
134
|
|
|
$inverse = GF256::inverse($sigmaTildeAtZero); |
135
|
|
|
|
136
|
|
|
return [$t->multiplyInt($inverse), $r->multiplyInt($inverse)]; |
137
|
|
|
} |
138
|
|
|
|
139
|
|
|
/** |
140
|
|
|
* @throws \RuntimeException |
141
|
|
|
*/ |
142
|
|
|
private function findErrorLocations(GenericGFPoly $errorLocator):array{ |
143
|
|
|
// This is a direct application of Chien's search |
144
|
|
|
$numErrors = $errorLocator->getDegree(); |
145
|
|
|
|
146
|
|
|
if($numErrors === 1){ // shortcut |
147
|
|
|
return [$errorLocator->getCoefficient(1)]; |
148
|
|
|
} |
149
|
|
|
|
150
|
|
|
$result = array_fill(0, $numErrors, 0); |
151
|
|
|
$e = 0; |
152
|
|
|
|
153
|
|
|
for($i = 1; $i < 256 && $e < $numErrors; $i++){ |
154
|
|
|
if($errorLocator->evaluateAt($i) === 0){ |
155
|
|
|
$result[$e] = GF256::inverse($i); |
156
|
|
|
$e++; |
157
|
|
|
} |
158
|
|
|
} |
159
|
|
|
|
160
|
|
|
if($e !== $numErrors){ |
161
|
|
|
throw new RuntimeException('Error locator degree does not match number of roots'); |
162
|
|
|
} |
163
|
|
|
|
164
|
|
|
return $result; |
165
|
|
|
} |
166
|
|
|
|
167
|
|
|
private function findErrorMagnitudes(GenericGFPoly $errorEvaluator, array $errorLocations):array{ |
168
|
|
|
// This is directly applying Forney's Formula |
169
|
|
|
$s = count($errorLocations); |
170
|
|
|
$result = []; |
171
|
|
|
|
172
|
|
|
for($i = 0; $i < $s; $i++){ |
173
|
|
|
$xiInverse = GF256::inverse($errorLocations[$i]); |
174
|
|
|
$denominator = 1; |
175
|
|
|
|
176
|
|
|
for($j = 0; $j < $s; $j++){ |
177
|
|
|
if($i !== $j){ |
178
|
|
|
# $denominator = GF256::multiply($denominator, GF256::addOrSubtract(1, GF256::multiply($errorLocations[$j], $xiInverse))); |
179
|
|
|
// Above should work but fails on some Apple and Linux JDKs due to a Hotspot bug. |
180
|
|
|
// Below is a funny-looking workaround from Steven Parkes |
181
|
|
|
$term = GF256::multiply($errorLocations[$j], $xiInverse); |
182
|
|
|
$denominator = GF256::multiply($denominator, (($term & 0x1) === 0 ? $term | 1 : $term & ~1)); |
183
|
|
|
} |
184
|
|
|
} |
185
|
|
|
|
186
|
|
|
$result[$i] = GF256::multiply($errorEvaluator->evaluateAt($xiInverse), GF256::inverse($denominator)); |
187
|
|
|
} |
188
|
|
|
|
189
|
|
|
return $result; |
190
|
|
|
} |
191
|
|
|
|
192
|
|
|
} |
193
|
|
|
|