|
1
|
|
|
import math |
|
2
|
|
|
import random |
|
3
|
|
|
|
|
4
|
|
|
from enum import Enum |
|
5
|
|
|
|
|
6
|
|
|
from scipy.stats import norm, t |
|
7
|
|
|
|
|
8
|
|
|
|
|
9
|
|
|
class DistributionFamily(Enum): |
|
10
|
|
|
normal = 1 |
|
11
|
|
|
student_t = 2 |
|
12
|
|
|
fisher = 3 |
|
13
|
|
|
chi_square = 4 |
|
14
|
|
|
simulation = 5 |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
class MeanSamplingDistribution(object): |
|
18
|
|
|
sample_distribution = None |
|
19
|
|
|
point_estimate = None |
|
20
|
|
|
distribution_family = None |
|
21
|
|
|
df = None |
|
22
|
|
|
sample_sd = None |
|
23
|
|
|
sample_size = None |
|
24
|
|
|
|
|
25
|
|
|
def __init__(self, sample_distribution=None, sample_mean=None, sample_sd=None, sample_size=None): |
|
26
|
|
|
if sample_mean is not None: |
|
27
|
|
|
self.point_estimate = sample_mean |
|
28
|
|
|
|
|
29
|
|
|
if sample_sd is not None: |
|
30
|
|
|
self.sample_sd = sample_sd |
|
31
|
|
|
|
|
32
|
|
|
if sample_size is not None: |
|
33
|
|
|
self.sample_size = sample_size |
|
34
|
|
|
|
|
35
|
|
|
if sample_distribution is not None: |
|
36
|
|
|
self.sample_distribution = sample_distribution |
|
37
|
|
|
self.point_estimate = sample_distribution.mean |
|
38
|
|
|
self.sample_sd = sample_distribution.sd |
|
39
|
|
|
self.sample_size = sample_distribution.sample_size |
|
40
|
|
|
|
|
41
|
|
|
self.standard_error = MeanSamplingDistribution.calculate_standard_error(self.sample_sd, self.sample_size) |
|
42
|
|
|
|
|
43
|
|
|
self.df = self.sample_size - 1.0 |
|
44
|
|
|
if self.sample_size < 30: |
|
45
|
|
|
self.distribution_family = DistributionFamily.student_t |
|
46
|
|
|
else: |
|
47
|
|
|
self.distribution_family = DistributionFamily.normal |
|
48
|
|
|
|
|
49
|
|
|
@staticmethod |
|
50
|
|
|
def calculate_standard_error(sample_sd, sample_size): |
|
51
|
|
|
return sample_sd / math.sqrt(sample_size) |
|
52
|
|
|
|
|
53
|
|
|
def confidence_interval(self, confidence_level): |
|
54
|
|
|
q = 1 - (1 - confidence_level) / 2 |
|
55
|
|
|
if self.distribution_family == DistributionFamily.normal: |
|
56
|
|
|
z = norm.ppf(q) |
|
57
|
|
|
pf = z * self.standard_error |
|
58
|
|
|
return self.point_estimate - pf, self.point_estimate + pf |
|
59
|
|
|
else: |
|
60
|
|
|
t_df = t.ppf(q, self.df) |
|
61
|
|
|
pf = t_df * self.standard_error + self.point_estimate |
|
62
|
|
|
return self.point_estimate - pf, self.point_estimate + pf |
|
63
|
|
|
|
|
64
|
|
|
|
|
65
|
|
|
class MeanDiffSamplingDistribution(object): |
|
66
|
|
|
grp1_sample_distribution = None |
|
67
|
|
|
grp2_sample_distribution = None |
|
68
|
|
|
grp1_point_estimate = None |
|
69
|
|
|
grp2_point_estimate = None |
|
70
|
|
|
grp1_sample_sd = None |
|
71
|
|
|
grp2_sample_sd = None |
|
72
|
|
|
grp1_sample_size = None |
|
73
|
|
|
grp2_sample_size = None |
|
74
|
|
|
distribution_family = None |
|
75
|
|
|
df = None |
|
76
|
|
|
point_estimate = None |
|
77
|
|
|
|
|
78
|
|
|
def __init__(self, grp1_sample_distribution=None, grp1_sample_mean=None, grp1_sample_sd=None, grp1_sample_size=None, |
|
79
|
|
|
grp2_sample_distribution=None, grp2_sample_mean=None, grp2_sample_sd=None, grp2_sample_size=None): |
|
80
|
|
|
self.build_grp1(grp1_sample_distribution, grp1_sample_mean, grp1_sample_sd, grp1_sample_size) |
|
81
|
|
|
self.build_grp2(grp2_sample_distribution, grp2_sample_mean, grp2_sample_sd, grp2_sample_size) |
|
82
|
|
|
|
|
83
|
|
|
self.standard_error = self.calculate_standard_error() |
|
84
|
|
|
|
|
85
|
|
|
self.df = min(self.grp1_sample_size - 1.0, self.grp2_sample_size - 1.0) |
|
86
|
|
|
self.point_estimate = self.grp1_point_estimate - self.grp2_point_estimate |
|
87
|
|
|
|
|
88
|
|
|
if self.grp1_sample_size < 30 or self.grp2_sample_size < 30: |
|
89
|
|
|
self.distribution_family = DistributionFamily.student_t |
|
90
|
|
|
else: |
|
91
|
|
|
self.distribution_family = DistributionFamily.normal |
|
92
|
|
|
|
|
93
|
|
|
def build_grp1(self, grp1_sample_distribution=None, grp1_sample_mean=None, grp1_sample_sd=None, grp1_sample_size=None): |
|
94
|
|
|
if grp1_sample_mean is not None: |
|
95
|
|
|
self.grp1_point_estimate = grp1_sample_mean |
|
96
|
|
|
|
|
97
|
|
|
if grp1_sample_sd is not None: |
|
98
|
|
|
self.grp1_sample_sd = grp1_sample_sd |
|
99
|
|
|
|
|
100
|
|
|
if grp1_sample_size is not None: |
|
101
|
|
|
self.grp1_sample_size = grp1_sample_size |
|
102
|
|
|
|
|
103
|
|
|
if grp1_sample_distribution is not None: |
|
104
|
|
|
self.grp1_sample_distribution = grp1_sample_distribution |
|
105
|
|
|
self.grp1_point_estimate = grp1_sample_distribution.mean |
|
106
|
|
|
self.grp1_sample_sd = grp1_sample_distribution.sd |
|
107
|
|
|
self.grp1_sample_size = grp1_sample_distribution.sample_size |
|
108
|
|
|
|
|
109
|
|
|
def build_grp2(self, grp2_sample_distribution=None, grp2_sample_mean=None, grp2_sample_sd=None, grp2_sample_size=None): |
|
110
|
|
|
if grp2_sample_mean is not None: |
|
111
|
|
|
self.grp2_point_estimate = grp2_sample_mean |
|
112
|
|
|
|
|
113
|
|
|
if grp2_sample_sd is not None: |
|
114
|
|
|
self.grp2_sample_sd = grp2_sample_sd |
|
115
|
|
|
|
|
116
|
|
|
if grp2_sample_size is not None: |
|
117
|
|
|
self.grp2_sample_size = grp2_sample_size |
|
118
|
|
|
|
|
119
|
|
|
if grp2_sample_distribution is not None: |
|
120
|
|
|
self.grp2_sample_distribution = grp2_sample_distribution |
|
121
|
|
|
self.grp2_point_estimate = grp2_sample_distribution.mean |
|
122
|
|
|
self.grp2_sample_sd = grp2_sample_distribution.sd |
|
123
|
|
|
self.grp2_sample_size = grp2_sample_distribution.sample_size |
|
124
|
|
|
|
|
125
|
|
|
def calculate_standard_error(self): |
|
126
|
|
|
return math.sqrt(self.grp1_sample_sd * self.grp1_sample_sd / self.grp1_sample_size + |
|
127
|
|
|
self.grp2_sample_sd * self.grp2_sample_sd / self.grp2_sample_size) |
|
128
|
|
|
|
|
129
|
|
|
def confidence_interval(self, confidence_level): |
|
130
|
|
|
q = 1 - (1 - confidence_level) / 2 |
|
131
|
|
|
if self.distribution_family == DistributionFamily.normal: |
|
132
|
|
|
z = norm.ppf(q) |
|
133
|
|
|
pf = z * self.standard_error |
|
134
|
|
|
|
|
135
|
|
|
return self.point_estimate - pf, self.point_estimate + pf |
|
136
|
|
|
else: |
|
137
|
|
|
t_df = t.ppf(q, self.df) |
|
138
|
|
|
pf = t_df * self.standard_error + self.point_estimate |
|
139
|
|
|
return self.point_estimate - pf, self.point_estimate + pf |
|
140
|
|
|
|
|
141
|
|
|
|
|
142
|
|
|
class ProportionSamplingDistribution(object): |
|
143
|
|
|
sample_distribution = None |
|
144
|
|
|
point_estimate = None |
|
145
|
|
|
distribution_family = None |
|
146
|
|
|
sample_size = None |
|
147
|
|
|
categorical_value = None |
|
148
|
|
|
standard_error = None |
|
149
|
|
|
simulated_proportions = None |
|
150
|
|
|
|
|
151
|
|
|
def __init__(self, sample_distribution=None, categorical_value=None, sample_proportion=None, sample_size=None): |
|
152
|
|
|
if sample_proportion is not None: |
|
153
|
|
|
self.point_estimate = sample_proportion |
|
154
|
|
|
|
|
155
|
|
|
if sample_size is not None: |
|
156
|
|
|
self.sample_size = sample_size |
|
157
|
|
|
|
|
158
|
|
|
if categorical_value is not None: |
|
159
|
|
|
self.categorical_value = categorical_value |
|
160
|
|
|
|
|
161
|
|
|
if sample_distribution is not None: |
|
162
|
|
|
self.build(sample_distribution) |
|
163
|
|
|
|
|
164
|
|
|
if self.sample_size * self.point_estimate < 10 or self.sample_size * (1 - self.point_estimate) < 10: |
|
165
|
|
|
self.distribution_family = DistributionFamily.simulation |
|
166
|
|
|
self.simulate() |
|
167
|
|
|
else: |
|
168
|
|
|
self.distribution_family = DistributionFamily.normal |
|
169
|
|
|
self.standard_error = math.sqrt(self.point_estimate * (1 - self.point_estimate) / self.sample_size) |
|
170
|
|
|
|
|
171
|
|
|
def build(self, sample_distribution): |
|
172
|
|
|
self.sample_distribution = sample_distribution |
|
173
|
|
|
self.point_estimate = sample_distribution.proportion |
|
174
|
|
|
self.categorical_value = sample_distribution.categorical_value |
|
175
|
|
|
self.sample_size = sample_distribution.sample_size |
|
176
|
|
|
|
|
177
|
|
|
def simulate(self): |
|
178
|
|
|
self.simulated_proportions = [0] * 1000 |
|
179
|
|
|
for i in range(1000): |
|
180
|
|
|
count = 0 |
|
181
|
|
|
for trials in range(self.sample_size): |
|
182
|
|
|
if random.random() <= self.point_estimate: |
|
183
|
|
|
count += 1 |
|
184
|
|
|
self.simulated_proportions[i] = float(count) / self.sample_size |
|
185
|
|
|
self.simulated_proportions = sorted(self.simulated_proportions) |
|
186
|
|
|
|
|
187
|
|
View Code Duplication |
def confidence_interval(self, confidence_level): |
|
|
|
|
|
|
188
|
|
|
q = 1 - (1 - confidence_level) / 2 |
|
189
|
|
|
if self.distribution_family == DistributionFamily.normal: |
|
190
|
|
|
z = norm.ppf(q) |
|
191
|
|
|
pf = z * self.standard_error |
|
192
|
|
|
return self.point_estimate - pf, self.point_estimate + pf |
|
193
|
|
|
else: |
|
194
|
|
|
threshold1 = int(1000 * (1 - confidence_level) / 2) |
|
195
|
|
|
threshold2 = int(1000 * q) |
|
196
|
|
|
return self.simulated_proportions[threshold1], self.simulated_proportions[threshold2] |
|
197
|
|
|
|
|
198
|
|
|
|
|
199
|
|
|
class ProportionDiffSamplingDistribution(object): |
|
200
|
|
|
grp1_sample_distribution = None |
|
201
|
|
|
grp2_sample_distribution = None |
|
202
|
|
|
grp1_point_estimate = None |
|
203
|
|
|
grp2_point_estimate = None |
|
204
|
|
|
distribution_family = None |
|
205
|
|
|
grp1_sample_size = None |
|
206
|
|
|
grp2_sample_size = None |
|
207
|
|
|
categorical_value = None |
|
208
|
|
|
standard_error = None |
|
209
|
|
|
grp1_simulated_proportions = None |
|
210
|
|
|
grp2_simulated_proportions = None |
|
211
|
|
|
diff_simulated_proportions = None |
|
212
|
|
|
point_estimate = None |
|
213
|
|
|
|
|
214
|
|
|
def __init__(self, categorical_value=None, |
|
215
|
|
|
grp1_sample_distribution=None, grp1_sample_proportion=None, grp1_sample_size=None, |
|
216
|
|
|
grp2_sample_distribution=None, grp2_sample_proportion=None, grp2_sample_size=None): |
|
217
|
|
|
if categorical_value is not None: |
|
218
|
|
|
self.categorical_value = categorical_value |
|
219
|
|
|
|
|
220
|
|
|
self.build_grp1(grp1_sample_distribution, grp1_sample_proportion, grp1_sample_size) |
|
221
|
|
|
self.build_grp2(grp2_sample_distribution, grp2_sample_proportion, grp2_sample_size) |
|
222
|
|
|
|
|
223
|
|
|
if not self.is_clt_held(): |
|
224
|
|
|
self.distribution_family = DistributionFamily.simulation |
|
225
|
|
|
self.simulate() |
|
226
|
|
|
else: |
|
227
|
|
|
self.distribution_family = DistributionFamily.normal |
|
228
|
|
|
self.standard_error = self.calculate_standard_error() |
|
229
|
|
|
|
|
230
|
|
|
self.point_estimate = self.grp1_point_estimate - self.grp2_point_estimate |
|
231
|
|
|
|
|
232
|
|
|
def calculate_standard_error(self): |
|
233
|
|
|
return math.sqrt(self.grp1_point_estimate * (1 - self.grp1_point_estimate) / self.grp2_sample_size + |
|
234
|
|
|
self.grp2_point_estimate * (1 - self.grp2_point_estimate) / self.grp2_sample_size) |
|
235
|
|
|
|
|
236
|
|
|
def is_clt_held(self): |
|
237
|
|
|
if self.grp1_sample_size * self.grp1_point_estimate < 10: |
|
238
|
|
|
return False |
|
239
|
|
|
if self.grp1_sample_size * (1 - self.grp1_point_estimate) < 10: |
|
240
|
|
|
return False |
|
241
|
|
|
if self.grp2_sample_size * self.grp2_point_estimate < 10: |
|
242
|
|
|
return False |
|
243
|
|
|
if self.grp2_sample_size * (1 - self.grp2_point_estimate) < 10: |
|
244
|
|
|
return False |
|
245
|
|
|
return True |
|
246
|
|
|
|
|
247
|
|
|
def build_grp1(self, grp1_sample_distribution=None, grp1_sample_proportion=None, grp1_sample_size=None): |
|
248
|
|
|
if grp1_sample_proportion is not None: |
|
249
|
|
|
self.grp1_point_estimate = grp1_sample_proportion |
|
250
|
|
|
|
|
251
|
|
|
if grp1_sample_size is not None: |
|
252
|
|
|
self.grp1_sample_size = grp1_sample_size |
|
253
|
|
|
|
|
254
|
|
|
if grp1_sample_distribution is not None: |
|
255
|
|
|
self.grp1_sample_distribution = grp1_sample_distribution |
|
256
|
|
|
self.grp1_point_estimate = grp1_sample_distribution.proportion |
|
257
|
|
|
self.categorical_value = grp1_sample_distribution.categorical_value |
|
258
|
|
|
self.grp1_sample_size = grp1_sample_distribution.sample_size |
|
259
|
|
|
|
|
260
|
|
|
def build_grp2(self, grp2_sample_distribution=None, grp2_sample_proportion=None, grp2_sample_size=None): |
|
261
|
|
|
if grp2_sample_proportion is not None: |
|
262
|
|
|
self.grp2_point_estimate = grp2_sample_proportion |
|
263
|
|
|
|
|
264
|
|
|
if grp2_sample_size is not None: |
|
265
|
|
|
self.grp2_sample_size = grp2_sample_size |
|
266
|
|
|
|
|
267
|
|
|
if grp2_sample_distribution is not None: |
|
268
|
|
|
self.grp2_sample_distribution = grp2_sample_distribution |
|
269
|
|
|
self.grp2_point_estimate = grp2_sample_distribution.proportion |
|
270
|
|
|
self.categorical_value = grp2_sample_distribution.categorical_value |
|
271
|
|
|
self.grp2_sample_size = grp2_sample_distribution.sample_size |
|
272
|
|
|
|
|
273
|
|
|
def simulate(self): |
|
274
|
|
|
self.grp1_simulated_proportions = ProportionDiffSamplingDistribution.simulate_grp(self.grp1_point_estimate, |
|
275
|
|
|
self.grp1_sample_size) |
|
276
|
|
|
self.grp2_simulated_proportions = ProportionDiffSamplingDistribution.simulate_grp(self.grp2_point_estimate, |
|
277
|
|
|
self.grp2_sample_size) |
|
278
|
|
|
|
|
279
|
|
|
self.diff_simulated_proportions = [0] * 1000; |
|
280
|
|
|
for i in range(1000): |
|
281
|
|
|
self.diff_simulated_proportions[i] = self.grp1_simulated_proportions[i] - self.grp2_simulated_proportions[i] |
|
282
|
|
|
|
|
283
|
|
|
@staticmethod |
|
284
|
|
|
def simulate_grp(proportion, sample_size): |
|
285
|
|
|
simulated_proportions = [0] * 1000 |
|
286
|
|
|
for iter in range(1000): |
|
287
|
|
|
count = 0 |
|
288
|
|
|
for trials in range(sample_size): |
|
289
|
|
|
if random.random() <= proportion: |
|
290
|
|
|
count += 1 |
|
291
|
|
|
simulated_proportions[iter] = float(count) / sample_size |
|
292
|
|
|
|
|
293
|
|
|
return sorted(simulated_proportions) |
|
294
|
|
|
|
|
295
|
|
View Code Duplication |
def confidence_interval(self, confidence_level): |
|
|
|
|
|
|
296
|
|
|
q = 1 - (1 - confidence_level) / 2 |
|
297
|
|
|
if self.distribution_family == DistributionFamily.normal: |
|
298
|
|
|
z = norm.ppf(q) |
|
299
|
|
|
pf = z * self.standard_error |
|
300
|
|
|
return self.point_estimate - pf, self.point_estimate + pf |
|
301
|
|
|
else: |
|
302
|
|
|
threshold1 = int(1000 * (1 - confidence_level) / 2) |
|
303
|
|
|
threshold2 = int(1000 * q) |
|
304
|
|
|
return self.diff_simulated_proportions[threshold1], self.diff_simulated_proportions[threshold2] |
|
305
|
|
|
|
|
306
|
|
|
|
|
307
|
|
|
|
|
308
|
|
|
|