|
1
|
|
|
import unittest |
|
2
|
|
|
|
|
3
|
|
|
from numpy.random import normal |
|
4
|
|
|
|
|
5
|
|
|
from pysie.stats.distributions import MeanSamplingDistribution, DistributionFamily |
|
6
|
|
|
from pysie.stats.samples import Sample, SampleDistribution |
|
7
|
|
|
|
|
8
|
|
|
|
|
9
|
|
|
class MeanSamplingDistributionUnitTest(unittest.TestCase): |
|
10
|
|
|
|
|
11
|
|
|
def test_confidence_interval_with_sample_stats_normal(self): |
|
12
|
|
|
sample_mean = 0 |
|
13
|
|
|
sample_sd = 1 |
|
14
|
|
|
sample_size = 31 |
|
15
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_mean=sample_mean, sample_sd=sample_sd, sample_size=sample_size) |
|
16
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
|
17
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) + ', standard_error=' + str(sampling_distribution.standard_error) + ')') |
|
18
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
19
|
|
|
|
|
20
|
|
View Code Duplication |
def test_confidence_interval_with_sample_normal(self): |
|
|
|
|
|
|
21
|
|
|
mu = 0.0 |
|
22
|
|
|
sigma = 1.0 |
|
23
|
|
|
sample_size = 31 |
|
24
|
|
|
sample = Sample() |
|
25
|
|
|
|
|
26
|
|
|
for i in range(sample_size): |
|
27
|
|
|
sample.add_numeric(normal(mu, sigma)) |
|
28
|
|
|
|
|
29
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_distribution=SampleDistribution(sample)) |
|
30
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
|
31
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) + ', standard_error=' + str(sampling_distribution.standard_error) + ')') |
|
32
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
33
|
|
|
|
|
34
|
|
|
def test_confidence_interval_with_sample_stats_student(self): |
|
35
|
|
|
sample_mean = 0 |
|
36
|
|
|
sample_sd = 1 |
|
37
|
|
|
sample_size = 29 |
|
38
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_mean=sample_mean, sample_sd=sample_sd, sample_size=sample_size) |
|
39
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
|
40
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) + ', standard_error=' + str(sampling_distribution.standard_error) + ')') |
|
41
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
42
|
|
|
|
|
43
|
|
View Code Duplication |
def test_confidence_interval_with_sample_student(self): |
|
|
|
|
|
|
44
|
|
|
mu = 0.0 |
|
45
|
|
|
sigma = 1.0 |
|
46
|
|
|
sample_size = 29 |
|
47
|
|
|
sample = Sample() |
|
48
|
|
|
|
|
49
|
|
|
for i in range(sample_size): |
|
50
|
|
|
sample.add_numeric(normal(mu, sigma)) |
|
51
|
|
|
|
|
52
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_distribution=SampleDistribution(sample)) |
|
53
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
|
54
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) + ', standard_error=' + str(sampling_distribution.standard_error) + ')') |
|
55
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
56
|
|
|
|
|
57
|
|
|
if __name__ == '__main__': |
|
58
|
|
|
unittest.main() |
|
59
|
|
|
|