|
1
|
|
|
import math |
|
2
|
|
|
|
|
3
|
|
|
from pysie.dsl.set import TernarySearchSet, TernarySearchTrie |
|
4
|
|
|
from pysie.stats.distributions import MeanSamplingDistribution |
|
5
|
|
|
from pysie.stats.samples import SampleDistribution |
|
6
|
|
|
|
|
7
|
|
|
from scipy.stats import f, chi2 |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
class ContingencyTable(object): |
|
11
|
|
|
values = None |
|
12
|
|
|
rows = None |
|
13
|
|
|
columns = None |
|
14
|
|
|
|
|
15
|
|
|
def __init__(self): |
|
16
|
|
|
self.rows = TernarySearchSet() |
|
17
|
|
|
self.columns = TernarySearchSet() |
|
18
|
|
|
self.values = TernarySearchTrie() |
|
19
|
|
|
|
|
20
|
|
|
def set_cell(self, row_name, column_name, value): |
|
21
|
|
|
key = self.make_key(row_name, column_name) |
|
22
|
|
|
self.values.put(key, value) |
|
23
|
|
|
self.rows.add(row_name) |
|
24
|
|
|
self.columns.add(column_name) |
|
25
|
|
|
|
|
26
|
|
|
def get_cell(self, row_name, column_name): |
|
27
|
|
|
key = self.make_key(row_name, column_name) |
|
28
|
|
|
if not self.values.contains_key(key): |
|
29
|
|
|
return 0 |
|
30
|
|
|
return self.values.get(key) |
|
31
|
|
|
|
|
32
|
|
|
def make_key(self, row_name, column_name): |
|
33
|
|
|
return row_name + '-' + column_name |
|
34
|
|
|
|
|
35
|
|
|
def get_row_total(self, row_name): |
|
36
|
|
|
column_names = self.columns.to_array() |
|
37
|
|
|
result = 0 |
|
38
|
|
|
for x in column_names: |
|
39
|
|
|
result += self.get_cell(row_name, x) |
|
40
|
|
|
return result |
|
41
|
|
|
|
|
42
|
|
|
def get_column_total(self, column_name): |
|
43
|
|
|
row_names = self.rows.to_array() |
|
44
|
|
|
result = 0 |
|
45
|
|
|
for x in row_names: |
|
46
|
|
|
result += self.get_cell(x, column_name) |
|
47
|
|
|
return result |
|
48
|
|
|
|
|
49
|
|
|
def get_total(self): |
|
50
|
|
|
values = self.values.values() |
|
51
|
|
|
result = 0 |
|
52
|
|
|
for val in values: |
|
53
|
|
|
result += val |
|
54
|
|
|
return result |
|
55
|
|
|
|
|
56
|
|
|
|
|
57
|
|
|
class Anova(object): |
|
58
|
|
|
sample = None |
|
59
|
|
|
individual_samples = None |
|
60
|
|
|
individual_sample_distributions = None |
|
61
|
|
|
individual_sampling_distributions = None |
|
62
|
|
|
overall_sample_distribution = None |
|
63
|
|
|
overall_sampling_distribution = None |
|
64
|
|
|
|
|
65
|
|
|
sum_of_squares_total = None |
|
66
|
|
|
sum_of_squares_group = None |
|
67
|
|
|
sum_of_squares_error = None |
|
68
|
|
|
|
|
69
|
|
|
df_group = None |
|
70
|
|
|
df_error = None |
|
71
|
|
|
df_total = None |
|
72
|
|
|
|
|
73
|
|
|
mean_square_group = None |
|
74
|
|
|
mean_square_error = None |
|
75
|
|
|
|
|
76
|
|
|
F = None |
|
77
|
|
|
p_value = None |
|
78
|
|
|
|
|
79
|
|
|
significance_level = None |
|
80
|
|
|
reject_mean_same = None |
|
81
|
|
|
|
|
82
|
|
|
def __init__(self, sample, significance_level=None): |
|
83
|
|
|
if significance_level is not None: |
|
84
|
|
|
self.significance_level = significance_level |
|
85
|
|
|
|
|
86
|
|
|
self.sample = sample |
|
87
|
|
|
self.individual_sampling_distributions = TernarySearchTrie() |
|
88
|
|
|
self.individual_sample_distributions = TernarySearchTrie() |
|
89
|
|
|
self.individual_samples = sample.split_by_group_id() |
|
90
|
|
|
for group_id in self.individual_samples.keys(): |
|
91
|
|
|
sample_distribution = SampleDistribution(sample=self.individual_samples.get(group_id), group_id=group_id) |
|
92
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_distribution=sample_distribution) |
|
93
|
|
|
self.individual_sample_distributions.put(group_id, sample_distribution) |
|
94
|
|
|
self.individual_sampling_distributions.put(group_id, sampling_distribution) |
|
95
|
|
|
|
|
96
|
|
|
self.overall_sample_distribution = SampleDistribution(sample=sample, group_id=None) |
|
97
|
|
|
self.overall_sampling_distribution = MeanSamplingDistribution(self.overall_sample_distribution) |
|
98
|
|
|
self.build() |
|
99
|
|
|
|
|
100
|
|
|
def build(self): |
|
101
|
|
|
self.sum_of_squares_total = self.overall_sample_distribution.sum_of_squares |
|
102
|
|
|
self.sum_of_squares_group = 0 |
|
103
|
|
|
mean_overall = self.overall_sample_distribution.mean |
|
104
|
|
|
for sample_distribution_i in self.individual_sample_distributions.values(): |
|
105
|
|
|
mean_i = sample_distribution_i.mean |
|
106
|
|
|
self.sum_of_squares_group += math.pow(mean_i - mean_overall, 2.0) * sample_distribution_i.sample_size |
|
107
|
|
|
self.sum_of_squares_error = self.sum_of_squares_total - self.sum_of_squares_group |
|
108
|
|
|
|
|
109
|
|
|
self.df_total = self.sample.size() - 1 |
|
110
|
|
|
self.df_group = self.individual_samples.size() - 1 |
|
111
|
|
|
self.df_error = self.df_total - self.df_group |
|
112
|
|
|
|
|
113
|
|
|
self.mean_square_error = self.sum_of_squares_error / self.df_error |
|
114
|
|
|
self.mean_square_group = self.sum_of_squares_group / self.df_group |
|
115
|
|
|
|
|
116
|
|
|
self.F = self.mean_square_group / self.mean_square_error |
|
117
|
|
|
self.p_value = 1 - f.cdf(self.F, self.df_group, self.df_error) |
|
118
|
|
|
|
|
119
|
|
|
if self.significance_level is not None: |
|
120
|
|
|
self.reject_mean_same = self.p_value >= self.significance_level |
|
121
|
|
|
|
|
122
|
|
|
def will_reject(self, significance_level): |
|
123
|
|
|
|
|
124
|
|
|
return self.p_value < significance_level |
|
125
|
|
|
|
|
126
|
|
|
|
|
127
|
|
|
class ChiSquare(object): |
|
128
|
|
|
chiSq = None |
|
129
|
|
|
sample = None |
|
130
|
|
|
p_value = None |
|
131
|
|
|
df = None |
|
132
|
|
|
significance_level = None |
|
133
|
|
|
|
|
134
|
|
|
def __init__(self, sample, significance_level=None): |
|
135
|
|
|
|
|
136
|
|
|
self.sample = sample |
|
137
|
|
|
self.significance_level = significance_level |
|
138
|
|
|
|
|
139
|
|
|
table = ContingencyTable() |
|
140
|
|
|
for i in range(sample.size()): |
|
141
|
|
|
row = sample.get(i) |
|
142
|
|
|
row_name = row.label |
|
143
|
|
|
column_name = row.group_id |
|
144
|
|
|
table.set_cell(row_name, column_name, table.get_cell(row_name, column_name) + 1) |
|
145
|
|
|
|
|
146
|
|
|
total = table.get_total() |
|
147
|
|
|
self.chiSq = 0 |
|
148
|
|
|
for row in table.rows.to_array(): |
|
149
|
|
|
for column in table.columns.to_array(): |
|
150
|
|
|
expected = table.get_row_total(row) * table.get_column_total(column) / total |
|
151
|
|
|
observed = table.get_cell(row, column) |
|
152
|
|
|
self.chiSq += math.pow(observed - expected, 2) / expected |
|
153
|
|
|
|
|
154
|
|
|
self.df = (table.rows.size() - 1) * (table.columns.size() - 1) |
|
155
|
|
|
|
|
156
|
|
|
self.p_value = 1 - chi2.cdf(self.chiSq, self.df) |
|
157
|
|
|
|
|
158
|
|
|
if self.significance_level is not None: |
|
159
|
|
|
self.reject_mean_same = self.p_value >= self.significance_level |
|
160
|
|
|
|
|
161
|
|
|
def will_reject(self, significance_level): |
|
162
|
|
|
return self.p_value < significance_level |
|
163
|
|
|
|