|
@@ 41-68 (lines=28) @@
|
| 38 |
|
print('will reject mean_1 == mean_2 (one-tail) ? ' + str(reject_one_tail)) |
| 39 |
|
print('will reject mean_1 == mean_2 (two-tail) ? ' + str(reject_two_tail)) |
| 40 |
|
|
| 41 |
|
def test_student(self): |
| 42 |
|
grp1_mu = 0.0 |
| 43 |
|
grp1_sigma = 1.0 |
| 44 |
|
grp1_sample_size = 29 |
| 45 |
|
grp1_sample = Sample() |
| 46 |
|
|
| 47 |
|
grp2_mu = 0.09 |
| 48 |
|
grp2_sigma = 2.0 |
| 49 |
|
grp2_sample_size = 28 |
| 50 |
|
grp2_sample = Sample() |
| 51 |
|
|
| 52 |
|
for i in range(grp1_sample_size): |
| 53 |
|
grp1_sample.add_numeric(normal(grp1_mu, grp1_sigma)) |
| 54 |
|
|
| 55 |
|
for i in range(grp2_sample_size): |
| 56 |
|
grp2_sample.add_numeric(normal(grp2_mu, grp2_sigma)) |
| 57 |
|
|
| 58 |
|
sampling_distribution = MeanDiffSamplingDistribution(grp1_sample_distribution=SampleDistribution(grp1_sample), |
| 59 |
|
grp2_sample_distribution=SampleDistribution(grp2_sample)) |
| 60 |
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
| 61 |
|
testing = MeanDiffTesting(sampling_distribution=sampling_distribution) |
| 62 |
|
print('one tail p-value: ' + str(testing.p_value_one_tail)) |
| 63 |
|
print('two tail p-value: ' + str(testing.p_value_two_tail)) |
| 64 |
|
reject_one_tail, reject_two_tail = testing.will_reject(0.01) |
| 65 |
|
print('will reject mean_1 == mean_2 (one-tail) ? ' + str(reject_one_tail)) |
| 66 |
|
print('will reject mean_1 == mean_2 (two-tail) ? ' + str(reject_two_tail)) |
| 67 |
|
self.assertFalse(reject_one_tail) |
| 68 |
|
self.assertFalse(reject_two_tail) |
| 69 |
|
|
| 70 |
|
|
| 71 |
|
class ProportionDiffTestingUnitTest(unittest.TestCase): |
|
@@ 14-39 (lines=26) @@
|
| 11 |
|
|
| 12 |
|
class MeanDiffTestingUnitTest(unittest.TestCase): |
| 13 |
|
|
| 14 |
|
def test_normal(self): |
| 15 |
|
grp1_mu = 0.0 |
| 16 |
|
grp1_sigma = 1.0 |
| 17 |
|
grp1_sample_size = 31 |
| 18 |
|
grp1_sample = Sample() |
| 19 |
|
|
| 20 |
|
grp2_mu = 0.09 |
| 21 |
|
grp2_sigma = 2.0 |
| 22 |
|
grp2_sample_size = 36 |
| 23 |
|
grp2_sample = Sample() |
| 24 |
|
|
| 25 |
|
for i in range(grp1_sample_size): |
| 26 |
|
grp1_sample.add_numeric(normal(grp1_mu, grp1_sigma)) |
| 27 |
|
|
| 28 |
|
for i in range(grp2_sample_size): |
| 29 |
|
grp2_sample.add_numeric(normal(grp2_mu, grp2_sigma)) |
| 30 |
|
|
| 31 |
|
sampling_distribution = MeanDiffSamplingDistribution(grp1_sample_distribution=SampleDistribution(grp1_sample), |
| 32 |
|
grp2_sample_distribution=SampleDistribution(grp2_sample)) |
| 33 |
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
| 34 |
|
testing = MeanDiffTesting(sampling_distribution=sampling_distribution) |
| 35 |
|
print('one tail p-value: ' + str(testing.p_value_one_tail)) |
| 36 |
|
print('two tail p-value: ' + str(testing.p_value_two_tail)) |
| 37 |
|
reject_one_tail, reject_two_tail = testing.will_reject(0.01) |
| 38 |
|
print('will reject mean_1 == mean_2 (one-tail) ? ' + str(reject_one_tail)) |
| 39 |
|
print('will reject mean_1 == mean_2 (two-tail) ? ' + str(reject_two_tail)) |
| 40 |
|
|
| 41 |
|
def test_student(self): |
| 42 |
|
grp1_mu = 0.0 |