Code Duplication    Length = 26-28 lines in 2 locations

tests/dsl/two_group_unit_test.py 2 locations

@@ 41-68 (lines=28) @@
38
        print('will reject mean_1 == mean_2 (one-tail) ? ' + str(reject_one_tail))
39
        print('will reject mean_1 == mean_2 (two-tail) ? ' + str(reject_two_tail))
40
41
    def test_student(self):
42
        grp1_mu = 0.0
43
        grp1_sigma = 1.0
44
        grp1_sample_size = 29
45
        grp1_sample = Sample()
46
47
        grp2_mu = 0.09
48
        grp2_sigma = 2.0
49
        grp2_sample_size = 28
50
        grp2_sample = Sample()
51
52
        for i in range(grp1_sample_size):
53
            grp1_sample.add_numeric(normal(grp1_mu, grp1_sigma))
54
55
        for i in range(grp2_sample_size):
56
            grp2_sample.add_numeric(normal(grp2_mu, grp2_sigma))
57
58
        sampling_distribution = MeanDiffSamplingDistribution(grp1_sample_distribution=SampleDistribution(grp1_sample),
59
                                                             grp2_sample_distribution=SampleDistribution(grp2_sample))
60
        self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t)
61
        testing = MeanDiffTesting(sampling_distribution=sampling_distribution)
62
        print('one tail p-value: ' + str(testing.p_value_one_tail))
63
        print('two tail p-value: ' + str(testing.p_value_two_tail))
64
        reject_one_tail, reject_two_tail = testing.will_reject(0.01)
65
        print('will reject mean_1 == mean_2 (one-tail) ? ' + str(reject_one_tail))
66
        print('will reject mean_1 == mean_2 (two-tail) ? ' + str(reject_two_tail))
67
        self.assertFalse(reject_one_tail)
68
        self.assertFalse(reject_two_tail)
69
70
71
class ProportionDiffTestingUnitTest(unittest.TestCase):
@@ 14-39 (lines=26) @@
11
12
class MeanDiffTestingUnitTest(unittest.TestCase):
13
14
    def test_normal(self):
15
        grp1_mu = 0.0
16
        grp1_sigma = 1.0
17
        grp1_sample_size = 31
18
        grp1_sample = Sample()
19
20
        grp2_mu = 0.09
21
        grp2_sigma = 2.0
22
        grp2_sample_size = 36
23
        grp2_sample = Sample()
24
25
        for i in range(grp1_sample_size):
26
            grp1_sample.add_numeric(normal(grp1_mu, grp1_sigma))
27
28
        for i in range(grp2_sample_size):
29
            grp2_sample.add_numeric(normal(grp2_mu, grp2_sigma))
30
31
        sampling_distribution = MeanDiffSamplingDistribution(grp1_sample_distribution=SampleDistribution(grp1_sample),
32
                                                             grp2_sample_distribution=SampleDistribution(grp2_sample))
33
        self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal)
34
        testing = MeanDiffTesting(sampling_distribution=sampling_distribution)
35
        print('one tail p-value: ' + str(testing.p_value_one_tail))
36
        print('two tail p-value: ' + str(testing.p_value_two_tail))
37
        reject_one_tail, reject_two_tail = testing.will_reject(0.01)
38
        print('will reject mean_1 == mean_2 (one-tail) ? ' + str(reject_one_tail))
39
        print('will reject mean_1 == mean_2 (two-tail) ? ' + str(reject_two_tail))
40
41
    def test_student(self):
42
        grp1_mu = 0.0