1
|
|
|
import unittest |
2
|
|
|
|
3
|
|
|
from numpy.random import normal, random |
4
|
|
|
|
5
|
|
|
from pysie.stats.distributions import MeanSamplingDistribution, DistributionFamily, ProportionSamplingDistribution, \ |
6
|
|
|
MeanDiffSamplingDistribution, ProportionDiffSamplingDistribution |
7
|
|
|
from pysie.stats.samples import Sample, SampleDistribution |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
class MeanSamplingDistributionUnitTest(unittest.TestCase): |
11
|
|
|
def test_confidence_interval_with_sample_stats_normal(self): |
12
|
|
|
sample_mean = 0 |
13
|
|
|
sample_sd = 1 |
14
|
|
|
sample_size = 31 |
15
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_mean=sample_mean, sample_sd=sample_sd, |
16
|
|
|
sample_size=sample_size) |
17
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
18
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
19
|
|
|
+ ', standard_error=' + str(sampling_distribution.standard_error) + ')') |
20
|
|
View Code Duplication |
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
|
|
|
|
21
|
|
|
|
22
|
|
|
def test_confidence_interval_with_sample_normal(self): |
23
|
|
|
mu = 0.0 |
24
|
|
|
sigma = 1.0 |
25
|
|
|
sample_size = 31 |
26
|
|
|
sample = Sample() |
27
|
|
|
|
28
|
|
|
for i in range(sample_size): |
29
|
|
|
sample.add_numeric(normal(mu, sigma)) |
30
|
|
|
|
31
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_distribution=SampleDistribution(sample)) |
32
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
33
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
34
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
35
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
36
|
|
|
|
37
|
|
|
def test_confidence_interval_with_sample_stats_student(self): |
38
|
|
|
sample_mean = 0 |
39
|
|
|
sample_sd = 1 |
40
|
|
|
sample_size = 29 |
41
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_mean=sample_mean, sample_sd=sample_sd, |
42
|
|
|
sample_size=sample_size) |
43
|
|
View Code Duplication |
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
|
|
|
|
44
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
45
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
46
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
47
|
|
|
|
48
|
|
|
def test_confidence_interval_with_sample_student(self): |
49
|
|
|
mu = 0.0 |
50
|
|
|
sigma = 1.0 |
51
|
|
|
sample_size = 29 |
52
|
|
|
sample = Sample() |
53
|
|
|
|
54
|
|
|
for i in range(sample_size): |
55
|
|
|
sample.add_numeric(normal(mu, sigma)) |
56
|
|
|
|
57
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_distribution=SampleDistribution(sample)) |
58
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
59
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
60
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
61
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
62
|
|
|
|
63
|
|
|
|
64
|
|
|
class MeanDiffSamplingDistributionUnitTest(unittest.TestCase): |
65
|
|
|
def test_confidence_interval_with_sample_stats_normal(self): |
66
|
|
|
grp1_sample_mean = 0 |
67
|
|
|
grp1_sample_sd = 1 |
68
|
|
|
grp1_sample_size = 31 |
69
|
|
|
grp2_sample_mean = 0.001 |
70
|
|
|
grp2_sample_sd = 2.1 |
71
|
|
|
grp2_sample_size = 36 |
72
|
|
|
sampling_distribution = MeanDiffSamplingDistribution(grp1_sample_mean=grp1_sample_mean, |
73
|
|
|
grp1_sample_sd=grp1_sample_sd, |
74
|
|
View Code Duplication |
grp1_sample_size=grp1_sample_size, |
|
|
|
|
75
|
|
|
grp2_sample_mean=grp2_sample_mean, |
76
|
|
|
grp2_sample_sd=grp2_sample_sd, |
77
|
|
|
grp2_sample_size=grp2_sample_size) |
78
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
79
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
80
|
|
|
+ ', standard_error=' + str(sampling_distribution.standard_error) + ')') |
81
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
82
|
|
|
|
83
|
|
|
def test_confidence_interval_with_sample_normal(self): |
84
|
|
|
grp1_mu = 0.0 |
85
|
|
|
grp1_sigma = 1.0 |
86
|
|
|
grp1_sample_size = 31 |
87
|
|
|
grp1_sample = Sample() |
88
|
|
|
|
89
|
|
|
grp2_mu = 0.09 |
90
|
|
|
grp2_sigma = 2.0 |
91
|
|
|
grp2_sample_size = 36 |
92
|
|
|
grp2_sample = Sample() |
93
|
|
|
|
94
|
|
|
for i in range(grp1_sample_size): |
95
|
|
|
grp1_sample.add_numeric(normal(grp1_mu, grp1_sigma)) |
96
|
|
|
|
97
|
|
|
for i in range(grp2_sample_size): |
98
|
|
|
grp2_sample.add_numeric(normal(grp2_mu, grp2_sigma)) |
99
|
|
|
|
100
|
|
View Code Duplication |
sampling_distribution = MeanDiffSamplingDistribution(grp1_sample_distribution=SampleDistribution(grp1_sample), |
|
|
|
|
101
|
|
|
grp2_sample_distribution=SampleDistribution(grp2_sample)) |
102
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
103
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
104
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
105
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
106
|
|
|
|
107
|
|
|
def test_confidence_interval_with_sample_stats_student(self): |
108
|
|
|
grp1_sample_mean = 0 |
109
|
|
|
grp1_sample_sd = 1 |
110
|
|
|
grp1_sample_size = 29 |
111
|
|
|
grp2_sample_mean = 0.001 |
112
|
|
|
grp2_sample_sd = 1.3 |
113
|
|
|
grp2_sample_size = 24 |
114
|
|
|
sampling_distribution = MeanDiffSamplingDistribution(grp1_sample_mean=grp1_sample_mean, |
115
|
|
|
grp1_sample_sd=grp1_sample_sd, |
116
|
|
|
grp1_sample_size=grp1_sample_size, |
117
|
|
|
grp2_sample_mean=grp2_sample_mean, |
118
|
|
|
grp2_sample_sd=grp2_sample_sd, |
119
|
|
|
grp2_sample_size=grp2_sample_size) |
120
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
121
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
122
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
123
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
124
|
|
|
|
125
|
|
|
def test_confidence_interval_with_sample_student(self): |
126
|
|
|
grp1_mu = 0.0 |
127
|
|
|
grp1_sigma = 1.0 |
128
|
|
|
grp1_sample_size = 29 |
129
|
|
|
grp1_sample = Sample() |
130
|
|
|
grp2_mu = 0.08 |
131
|
|
|
grp2_sigma = 1.1 |
132
|
|
|
grp2_sample_size = 27 |
133
|
|
|
grp2_sample = Sample() |
134
|
|
|
|
135
|
|
|
for i in range(grp1_sample_size): |
136
|
|
|
grp1_sample.add_numeric(normal(grp1_mu, grp1_sigma)) |
137
|
|
|
for i in range(grp2_sample_size): |
138
|
|
|
grp2_sample.add_numeric(normal(grp2_mu, grp2_sigma)) |
139
|
|
|
|
140
|
|
|
sampling_distribution = MeanDiffSamplingDistribution(grp1_sample_distribution=SampleDistribution(grp1_sample), |
141
|
|
|
grp2_sample_distribution=SampleDistribution(grp2_sample)) |
142
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
143
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
144
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
145
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
146
|
|
|
|
147
|
|
|
|
148
|
|
|
class ProportionSamplingDistributionUnitTest(unittest.TestCase): |
149
|
|
|
def test_confidence_interval_with_sample_stats_normal(self): |
150
|
|
|
sample_proportion = 0.6 |
151
|
|
|
sample_size = 31 |
152
|
|
|
sampling_distribution = ProportionSamplingDistribution(sample_proportion=sample_proportion, |
153
|
|
|
sample_size=sample_size) |
154
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
155
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
156
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
157
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
158
|
|
|
|
159
|
|
|
def test_confidence_interval_with_sample_normal(self): |
160
|
|
|
sample = Sample() |
161
|
|
|
|
162
|
|
|
for i in range(100): |
163
|
|
|
if random() <= 0.6: |
164
|
|
|
sample.add_category("OK") |
165
|
|
|
else: |
166
|
|
|
sample.add_category("CANCEL") |
167
|
|
|
|
168
|
|
|
sampling_distribution = ProportionSamplingDistribution(sample_distribution=SampleDistribution(sample, |
169
|
|
|
categorical_value="OK")) |
170
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
171
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
172
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
173
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
174
|
|
|
|
175
|
|
|
def test_confidence_interval_with_sample_stats_simulation(self): |
176
|
|
|
sample_proportion = 0.6 |
177
|
|
|
sample_size = 10 |
178
|
|
|
sampling_distribution = ProportionSamplingDistribution(sample_proportion=sample_proportion, |
179
|
|
|
sample_size=sample_size) |
180
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.simulation) |
181
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
182
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
183
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
184
|
|
|
|
185
|
|
|
def test_confidence_interval_with_sample_simulation(self): |
186
|
|
|
sample = Sample() |
187
|
|
|
|
188
|
|
|
for i in range(10): |
189
|
|
|
if random() <= 0.6: |
190
|
|
|
sample.add_category("OK") |
191
|
|
|
else: |
192
|
|
|
sample.add_category("CANCEL") |
193
|
|
|
|
194
|
|
|
sampling_distribution = ProportionSamplingDistribution(sample_distribution=SampleDistribution(sample, |
195
|
|
|
categorical_value="OK")) |
196
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.simulation) |
197
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
198
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
199
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
200
|
|
|
|
201
|
|
|
|
202
|
|
|
class ProportionDiffSamplingDistributionUnitTest(unittest.TestCase): |
203
|
|
|
def test_confidence_interval_with_sample_stats_normal(self): |
204
|
|
|
grp1_sample_proportion = 0.6 |
205
|
|
|
grp1_sample_size = 31 |
206
|
|
|
grp2_sample_proportion = 0.51 |
207
|
|
|
grp2_sample_size = 32 |
208
|
|
|
sampling_distribution = ProportionDiffSamplingDistribution(grp1_sample_proportion=grp1_sample_proportion, |
209
|
|
|
grp1_sample_size=grp1_sample_size, |
210
|
|
|
grp2_sample_proportion=grp2_sample_proportion, |
211
|
|
|
grp2_sample_size=grp2_sample_size) |
212
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
213
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
214
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
215
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
216
|
|
|
|
217
|
|
View Code Duplication |
def test_confidence_interval_with_sample_normal(self): |
|
|
|
|
218
|
|
|
grp1_sample = Sample() |
219
|
|
|
grp2_sample = Sample() |
220
|
|
|
|
221
|
|
|
for i in range(100): |
222
|
|
|
if random() <= 0.6: |
223
|
|
|
grp1_sample.add_category("OK") |
224
|
|
|
else: |
225
|
|
|
grp1_sample.add_category("CANCEL") |
226
|
|
|
|
227
|
|
|
for i in range(100): |
228
|
|
|
if random() <= 0.61: |
229
|
|
|
grp2_sample.add_category("OK") |
230
|
|
|
else: |
231
|
|
|
grp2_sample.add_category("CANCEL") |
232
|
|
|
|
233
|
|
|
sampling_distribution = ProportionDiffSamplingDistribution(grp1_sample_distribution=SampleDistribution( |
234
|
|
|
grp1_sample, categorical_value="OK"), |
235
|
|
|
grp2_sample_distribution=SampleDistribution( |
236
|
|
|
grp2_sample, categorical_value="OK")) |
237
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
238
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
239
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
240
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
241
|
|
|
|
242
|
|
|
def test_confidence_interval_with_sample_stats_simulation(self): |
243
|
|
|
grp1_sample_proportion = 0.6 |
244
|
|
|
grp1_sample_size = 10 |
245
|
|
|
grp2_sample_proportion = 0.61 |
246
|
|
|
grp2_sample_size = 9 |
247
|
|
|
sampling_distribution = ProportionDiffSamplingDistribution(grp1_sample_proportion=grp1_sample_proportion, |
248
|
|
|
grp1_sample_size=grp1_sample_size, |
249
|
|
|
grp2_sample_proportion=grp2_sample_proportion, |
250
|
|
|
grp2_sample_size=grp2_sample_size |
251
|
|
|
) |
252
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.simulation) |
253
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
254
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
255
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
256
|
|
|
|
257
|
|
View Code Duplication |
def test_confidence_interval_with_sample_simulation(self): |
|
|
|
|
258
|
|
|
grp1_sample = Sample() |
259
|
|
|
grp2_sample = Sample() |
260
|
|
|
|
261
|
|
|
for i in range(10): |
262
|
|
|
if random() <= 0.6: |
263
|
|
|
grp1_sample.add_category("OK") |
264
|
|
|
else: |
265
|
|
|
grp1_sample.add_category("CANCEL") |
266
|
|
|
|
267
|
|
|
for i in range(9): |
268
|
|
|
if random() <= 0.61: |
269
|
|
|
grp2_sample.add_category("OK") |
270
|
|
|
else: |
271
|
|
|
grp2_sample.add_category("CANCEL") |
272
|
|
|
|
273
|
|
|
sampling_distribution = ProportionDiffSamplingDistribution( |
274
|
|
|
grp1_sample_distribution=SampleDistribution(grp1_sample, |
275
|
|
|
categorical_value="OK"), |
276
|
|
|
grp2_sample_distribution=SampleDistribution( |
277
|
|
|
grp2_sample, |
278
|
|
|
categorical_value="OK") |
279
|
|
|
) |
280
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.simulation) |
281
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
282
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
283
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
284
|
|
|
|
285
|
|
|
|
286
|
|
|
if __name__ == '__main__': |
287
|
|
|
unittest.main() |
288
|
|
|
|