1
|
|
|
import random |
2
|
|
|
|
3
|
|
|
from pysie.stats.distributions import DistributionFamily |
4
|
|
|
from scipy.stats import norm, t |
5
|
|
|
import math |
6
|
|
|
|
7
|
|
|
|
8
|
|
|
class MeanDiffTesting(object): |
9
|
|
|
sampling_distribution = None |
10
|
|
|
p_value_one_tail = None |
11
|
|
|
p_value_two_tail = None |
12
|
|
|
test_statistic = None |
13
|
|
|
significance_level = None |
14
|
|
View Code Duplication |
reject_mean_same = None |
|
|
|
|
15
|
|
|
|
16
|
|
|
def __init__(self, sampling_distribution, significance_level=None): |
17
|
|
|
self.sampling_distribution = sampling_distribution |
18
|
|
|
if significance_level is not None: |
19
|
|
|
self.significance_level = significance_level |
20
|
|
|
|
21
|
|
|
if self.sampling_distribution.distribution_family == DistributionFamily.normal: |
22
|
|
|
Z = sampling_distribution.point_estimate / sampling_distribution.standard_error |
23
|
|
|
self.test_statistic = Z |
24
|
|
|
pf = norm.cdf(Z) |
25
|
|
|
if Z < 0: |
26
|
|
|
pf = 1 - pf |
27
|
|
|
self.p_value_one_tail = 1 - pf |
28
|
|
|
self.p_value_two_tail = self.p_value_one_tail * 2 |
29
|
|
|
else: |
30
|
|
|
td_df = sampling_distribution.point_estimate / sampling_distribution.standard_error |
31
|
|
|
self.test_statistic = td_df |
32
|
|
|
pf = t.cdf(td_df, sampling_distribution.df) |
33
|
|
|
if td_df < 0: |
34
|
|
|
pf = 1 - pf |
35
|
|
|
self.p_value_one_tail = 1 - pf |
36
|
|
|
self.p_value_two_tail = self.p_value_one_tail * 2 |
37
|
|
|
|
38
|
|
|
if significance_level is not None: |
39
|
|
|
self.reject_mean_same = (self.p_value_one_tail < significance_level, |
40
|
|
|
self.p_value_two_tail < significance_level) |
41
|
|
|
|
42
|
|
|
def will_reject(self, significance_level): |
43
|
|
|
|
44
|
|
|
return self.p_value_one_tail < significance_level, self.p_value_two_tail < significance_level |
45
|
|
|
|
46
|
|
|
|
47
|
|
|
class ProportionDiffTesting(object): |
48
|
|
|
sampling_distribution = None |
49
|
|
|
p_value_one_tail = None |
50
|
|
|
p_value_two_tail = None |
51
|
|
|
p_null = None |
52
|
|
|
test_statistic = None |
53
|
|
|
significance_level = None |
54
|
|
|
reject_proportion_same = None |
55
|
|
|
|
56
|
|
|
def __init__(self, sampling_distribution, significance_level=None): |
57
|
|
|
self.sampling_distribution = sampling_distribution |
58
|
|
|
p_null = (sampling_distribution.grp1_point_estimate + sampling_distribution.grp2_point_estimate) / 2 |
59
|
|
|
self.p_null = p_null |
60
|
|
|
if significance_level is not None: |
61
|
|
|
self.significance_level = significance_level |
62
|
|
|
|
63
|
|
|
if self.sampling_distribution.distribution_family == DistributionFamily.normal: |
64
|
|
|
standard_error_null = math.sqrt(p_null * (1 - p_null) / sampling_distribution.grp1_sample_size + p_null * (1-p_null) / sampling_distribution.grp2_sample_size) |
65
|
|
|
Z = sampling_distribution.point_estimate / standard_error_null |
66
|
|
|
self.test_statistic = Z |
67
|
|
|
pf = norm.cdf(Z) |
68
|
|
|
if Z < 0: |
69
|
|
|
pf = 1 - pf |
70
|
|
|
self.p_value_one_tail = 1 - pf |
71
|
|
|
self.p_value_two_tail = self.p_value_one_tail * 2 |
72
|
|
|
else: |
73
|
|
|
simulated_proportions = self.simulate() |
74
|
|
|
diff = sampling_distribution.grp1_point_estimate - sampling_distribution.grp2_point_estimate |
75
|
|
|
pf = sum(1.0 for x in simulated_proportions if x > diff) / 1000.0 |
76
|
|
|
self.p_value_one_tail = pf |
77
|
|
|
self.p_value_two_tail = sum(1.0 for x in simulated_proportions if x > diff or x < -diff) / 1000.0 |
78
|
|
|
|
79
|
|
|
if significance_level is not None: |
80
|
|
|
self.reject_proportion_same = (self.p_value_one_tail < significance_level, |
81
|
|
|
self.p_value_two_tail < significance_level) |
82
|
|
|
|
83
|
|
|
def simulate(self): |
84
|
|
|
simulated_proportions = [0] * 1000 |
85
|
|
|
for i in range(1000): |
86
|
|
|
count1 = 0 |
87
|
|
|
for trials in range(self.sampling_distribution.grp1_sample_size): |
88
|
|
|
if random.random() <= self.p_null: |
89
|
|
|
count1 += 1 |
90
|
|
|
count2 = 0 |
91
|
|
|
for trials in range(self.sampling_distribution.grp2_sample_size): |
92
|
|
|
if random.random() <= self.p_null: |
93
|
|
|
count2 += 1 |
94
|
|
|
|
95
|
|
|
simulated_proportions[i] = float(count1) / self.sampling_distribution.grp1_sample_size - float(count2) / self.sampling_distribution.grp2_sample_size |
96
|
|
|
return sorted(simulated_proportions) |
97
|
|
|
|
98
|
|
|
def will_reject(self, significance_level): |
99
|
|
|
|
100
|
|
|
return self.p_value_one_tail < significance_level, self.p_value_two_tail < significance_level |